JPS6276255A - Hydrogen occlusion electrode - Google Patents

Hydrogen occlusion electrode

Info

Publication number
JPS6276255A
JPS6276255A JP60217659A JP21765985A JPS6276255A JP S6276255 A JPS6276255 A JP S6276255A JP 60217659 A JP60217659 A JP 60217659A JP 21765985 A JP21765985 A JP 21765985A JP S6276255 A JPS6276255 A JP S6276255A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
hydrogen occlusion
electrode
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60217659A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Takanao Matsumoto
松本 孝直
Seiji Kameoka
亀岡 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60217659A priority Critical patent/JPS6276255A/en
Publication of JPS6276255A publication Critical patent/JPS6276255A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To lengthen the cycle life of charge/discharge by preparing alloy of specific chemical formula while having a crystal structure of CaCu5 structure where cobalt is contained in mish metal-nickel system alloy as hydrogen occlusion material. CONSTITUTION:An alloy where cobelt is contained in mish metal-nickel system alloy while having a crystal structure of CaCu5 structure and a chemical formula represented by MnNixCoy, where, 3>=x>=2, 2<=y<=3 and 4.5<=x+y<=5.5 is prepared as hydrogen occlusion material. 80wt% of such hydrogen occlusion alloy powder, 10wt% of acetylene black as conductive material and 10wt% of fluororesin powder and mixed uniformly while fluororesin is fiberized. Then the compound is wrapped up in nickel mesh and pressure molded to produce hydrogen occlusion electrode.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアルカリ蓄電池の負極として用いられる水素吸
蔵電極に関し、特に高容量を長期にわたって維持するよ
う改良された水素吸蔵電極に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a hydrogen storage electrode used as a negative electrode of an alkaline storage battery, and more particularly to a hydrogen storage electrode that has been improved to maintain high capacity over a long period of time.

(ロ)従来の技術 従来からよく用いられる蓄電池として鉛電池及びニッケ
ルーカドミウム電池があるが、近年これら電池より軽量
で且つ高容量となる可能性があるということで、特に低
圧に於いて負極活物質であろ水素を可逆的に吸蔵及び放
出することのできる水素吸蔵合金を備えた電極を負極に
用い、水酸化ニッケルなどの金属酸化物からなる正極活
物質を備えた!極を正極に用いた金属−水素アルカリ蓄
電池が注目されている。
(b) Conventional technology Lead-acid batteries and nickel-cadmium batteries have traditionally been commonly used storage batteries, but in recent years they have been shown to be lighter than these batteries and have the potential to have higher capacities, so negative electrode activation has been developed, especially at low pressures. The negative electrode is an electrode equipped with a hydrogen storage alloy that can reversibly absorb and release hydrogen, and the positive electrode active material is made of a metal oxide such as nickel hydroxide! Metal-hydrogen alkaline storage batteries using the electrode as the positive electrode are attracting attention.

一般にこの種蓄電池に用いられる水素吸蔵合金を備えた
水素吸蔵電極は特公昭58−46827号公報に於いて
提案されているように水素を吸蔵する合金粉末と水素を
吸蔵しない合金粉末との混合物を焼結して焼結多孔体を
作製し、これを水素吸蔵N、極とする方法、あるいは特
開昭53−103541号公報に於いて提案きれている
ように水素を吸蔵する合金粉末とアセチレンブラック及
び電極支持体とを耐電解液性の粒子状結着剤により相互
に結合させて水素吸蔵電極とする方法によって作製され
ており、これら電極に用いる水素吸蔵合金として、特公
昭59−49671号公報に於いてLaN1aCo。
Hydrogen storage electrodes equipped with hydrogen storage alloys that are generally used in this type of storage battery are made by using a mixture of alloy powders that store hydrogen and alloy powders that do not store hydrogen, as proposed in Japanese Patent Publication No. 58-46827. A method of producing a sintered porous body by sintering and using this as a hydrogen-absorbing N, pole, or using an alloy powder that absorbs hydrogen and acetylene black as proposed in JP-A-53-103541. and an electrode support are bonded to each other using a particulate binder that is resistant to electrolytic solution to form a hydrogen storage electrode, and a hydrogen storage alloy used in these electrodes is disclosed in Japanese Patent Publication No. 59-49671. In LaN1aCo.

LaN1aCo、LaNi+、Feo、* 、LaNi
5などが提案されている。しかしながら、これら水素吸
蔵合金を水素吸蔵材として備えた水素吸蔵電極は、充放
電サイクルの経過に伴い放電容量が減少し、す1′タル
寿命が短くなるため満足できるものではなかった。
LaN1aCo, LaNi+, Feo, *, LaNi
5 etc. have been proposed. However, hydrogen storage electrodes equipped with these hydrogen storage alloys as hydrogen storage materials have been unsatisfactory because their discharge capacity decreases with the passage of charge/discharge cycles and their total lifespans become short.

(ハ)発明が解決しようとする問題点 本発明は充放電によるサイクル寿命の長い水素吸蔵電極
を得ようとするものである。
(c) Problems to be Solved by the Invention The present invention attempts to obtain a hydrogen storage electrode that has a long cycle life during charging and discharging.

(ニ)問題点を解決するだめの手段 本発明の水素吸蔵W極は、水素吸蔵材としてミンシュメ
タルーニッケル系合金にコバルトヲ含有させてなり、C
aCua構造の結晶構造を有し、且つ化学式がMmN 
I x Co yで表ゎきれ、Xが3≧X≧2、yが2
≦y≦3、z+yが4.5≦z+y≦5.5の範囲内で
ある合金を備えたものである。
(d) Means for solving the problem The hydrogen storage W pole of the present invention is made by adding cobalt to a minsch metal-nickel alloy as a hydrogen storage material.
It has the aCua crystal structure and the chemical formula is MmN.
I x Co y can be expressed, X is 3≧X≧2, y is 2
The alloy has an alloy in which ≦y≦3 and z+y is within the range of 4.5≦z+y≦5.5.

(ホ)作用 Ca Cu 6構造の結晶構造を有し、且つ化学式がM
mNixCoyで表わされ、Xが3≧X≧2、yが2≦
y≦3、x+yが4.5≦x+y≦5.5の範囲内にあ
る合金を備えた水素吸蔵電極は、充放電によるサイクル
寿命が伸び、放電容量が増大する。
(e) It has a crystal structure of functional Ca Cu 6 structure, and the chemical formula is M
It is expressed as mNixCoy, where X is 3≧X≧2, and y is 2≦
A hydrogen storage electrode including an alloy in which y≦3 and x+y are within the ranges of 4.5≦x+y≦5.5 has a longer cycle life during charging and discharging, and an increased discharge capacity.

〈ホ)実施例 市販のミンシュメタル、ニッケル、コバルトヲ組成比M
m二Nj:Co−1:3:2になるよう混合し、アーク
溶解炉に入れて加熱、溶解して合金化した後粉砕して、
結晶構造がCaCu5構造をとるL a N i s 
CO!粉末を得た。また同様にして混合、合金化及び粉
砕という操作を行なって、結晶構造がCaCug構造で
あり組成が種々異なる各種水素吸蔵合金粉末を得た。こ
うして得られた各種水素吸蔵合金粉末80ffi量%、
導電材としてのアセチレンブラック10重量%及び結着
剤としてのフッ素樹脂粉末10重量%を混合機で均一に
混合すると共にフッ素樹脂をm維化する。そして得られ
た混線物を二・7ケル金網で包み込み3ton/cIT
I2で加圧成型することにより、外面がニッケル金網で
覆われた水素吸蔵電極を作製した。この外面がニッケル
金網で覆われた構造の水素吸蔵電極は、充電時に電極中
の水素吸蔵合金が水素を吸蔵すると共に水素ガスを発生
して生じる電極の膨張を前記二/ケル金網によって機械
的に抑え、この1極の膨張による機械的強度の劣化及び
それに伴う水素吸蔵合金の脱落が抑えられて充放電の繰
り返しによる性能の早期低下を抑制する。尚、これら水
素吸蔵電極に用いた合金粉末は夫々的1.5gである。
(e) Example Composition ratio M of commercially available minshmetal, nickel, and cobalt
m2Nj:Co-1:3:2, mixed, put in an arc melting furnace, heated, melted and alloyed, then crushed,
L a N i s whose crystal structure is CaCu5 structure
CO! A powder was obtained. Further, by performing the same operations of mixing, alloying, and pulverizing, various hydrogen storage alloy powders having a CaCug crystal structure and having various compositions were obtained. 80ffi amount% of various hydrogen storage alloy powders obtained in this way,
10% by weight of acetylene black as a conductive material and 10% by weight of fluororesin powder as a binder are uniformly mixed in a mixer and the fluororesin is turned into m-fibers. Then, the resulting mixed material was wrapped in a 2.7K wire mesh and the amount of 3ton/cIT
A hydrogen storage electrode whose outer surface was covered with a nickel wire mesh was produced by pressure molding with I2. This hydrogen storage electrode has a structure in which the outer surface is covered with a nickel wire mesh. During charging, the hydrogen storage alloy in the electrode absorbs hydrogen and generates hydrogen gas, which causes expansion of the electrode. This suppresses the deterioration of mechanical strength due to the expansion of this single pole and the resulting drop-off of the hydrogen storage alloy, thereby suppressing early deterioration of performance due to repeated charging and discharging. The amount of alloy powder used for each of these hydrogen storage electrodes was 1.5 g.

次いで丑記水素吸蔵電極を夫々理論容量が600mAH
の焼結式ニッケル正極と組合わせ電解液に水酸化カリウ
ム水溶液を用いて密閉型ニッケルー水素アルカリ蓄電池
を種々作製し、負極に用いた水素吸蔵合金の種類により
、表1表に示す如く電池A乃至Hとする。
Next, the hydrogen storage electrodes described above each have a theoretical capacity of 600 mAH.
Various sealed nickel-hydrogen alkaline storage batteries were prepared using a sintered nickel positive electrode and an aqueous potassium hydroxide solution as the electrolyte. Let it be H.

これらの電池を0.25C電流で5時間充電した後、0
.5C’i:流で放電して電池電圧が1.OVになった
時点で放電停止するサイクル条件で充放電を繰り返して
1池性能を測定し、各電池の初期容量を夫々100とし
てそのサイクル特性を第1図に示すと共に各電池のサイ
クル寿命を第2図に示す。
After charging these batteries with 0.25C current for 5 hours, 0
.. 5C'i: The battery voltage is 1. The performance of one battery was measured by repeating charging and discharging under cycle conditions in which discharging was stopped when the battery reached OV. The initial capacity of each battery was assumed to be 100, and the cycle characteristics are shown in Figure 1, and the cycle life of each battery was calculated as follows. Shown in Figure 2.

以下余白 第  1  表 第1図及び第2図から明らかなようにM m N i。Margin below Table 1 As is clear from FIGS. 1 and 2, M m N i.

をベースとしNiをCoに置換する量を種々変化させて
作製した水吸蔵合金を負極の水素吸蔵材とする電池A乃
至Fの中でも、電池B、C,D及びEがLaN(aやL
 a N i 4Cuを負極の水素吸蔵材とする電池よ
りもサイクル特性が良好であり、特に電池C及びDのサ
イクル特性が優れている。
Among the batteries A to F in which the hydrogen storage material of the negative electrode is a water storage alloy prepared by varying the amount of replacing Ni with Co based on LaN (a and L), batteries B, C, D, and E are
The cycle characteristics are better than batteries using aN i 4Cu as the negative electrode hydrogen storage material, and the cycle characteristics of Batteries C and D are particularly excellent.

上記の如<、MmNi5Co*及びMmNLCosを負
極の水素吸蔵材として用いた電池C及びDが特に優れた
特性を有することが判明したので、更にこれらMmNi
5Co*及びMmNi、Cosの組成のうち、Ni及び
Coの組成比を若干変化させて第2表に示すような水素
吸蔵合金を作製し、前述同様これら水素吸蔵合金を負極
の水素吸蔵材として用いたニッケルー水素蓄電池を得、
水素吸蔵合金の種類により電池!乃至Oとする。
As mentioned above, it was found that batteries C and D using MmNi5Co* and MmNLCos as negative electrode hydrogen storage materials had particularly excellent characteristics.
Among the compositions of 5Co*, MmNi, and Cos, hydrogen storage alloys as shown in Table 2 were prepared by slightly changing the composition ratios of Ni and Co, and these hydrogen storage alloys were used as hydrogen storage materials for negative electrodes as described above. Obtained a nickel-metal hydride storage battery,
Batteries depending on the type of hydrogen storage alloy! 〜O.

第  2  表 第3図は上記電池■乃至0と電池C及びDを前述と同様
のサイクル条件で測定したサイクル特性を示1図面であ
る。これら電池の中でも電池I乃至Mと電池C及びDの
サイクル特性が電池N及び○より侵れることから、Mm
NixCoyの化学式で示きれるもののうち特にXが3
≧X≧2、yが2≦y≦3、X+、Fが4.5≦x+y
≦5.5の範囲にある水素吸蔵合金を備えた水素吸蔵電
極を負極に用いることにより優れた特性が得られること
がわかる。
Table 2 and Figure 3 are graphs showing the cycle characteristics of the batteries 1 to 0 and batteries C and D measured under the same cycle conditions as described above. Among these batteries, the cycle characteristics of Batteries I to M and Batteries C and D are worse than Batteries N and ○, so Mm
Of the things that can be shown by the NixCoy chemical formula, especially when X is 3
≧X≧2, y is 2≦y≦3, X+, F is 4.5≦x+y
It can be seen that excellent characteristics can be obtained by using a hydrogen storage electrode having a hydrogen storage alloy in the range of ≦5.5 as the negative electrode.

(ト)発明の効果 本発明の水素吸蔵電極は、水素吸蔵材としミッシュメタ
ル−ニッケル系合金にコバルトを含有きせてなり、Ca
Cu5構造の結晶構造を有し、且つ化学式がMrrrN
ixCoyで表わされ、Xが3≧X≧2、yが2≦y≦
3、X−1−31が4.5≦X+y≦5.5の範囲内に
ある合金を備えたものであり、サイクル特性の向上をも
たらすものであるから、この水素吸蔵電極を負極に用い
ることにより、優れた性能の蓄電池を提供することがで
き、その工業的価値は極めて大きい。
(G) Effects of the Invention The hydrogen storage electrode of the present invention is made by adding cobalt to a misch metal-nickel alloy as a hydrogen storage material.
It has a crystal structure of Cu5 structure and the chemical formula is MrrrN
It is expressed as ixCoy, where X is 3≧X≧2, and y is 2≦y≦
3. Since X-1-31 includes an alloy in the range of 4.5≦X+y≦5.5 and improves cycle characteristics, this hydrogen storage electrode can be used as a negative electrode. As a result, a storage battery with excellent performance can be provided, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は各種水素吸蔵合金を備えた水素吸蔵
電極を負極に用いた電池の特性を示す図面であり、第1
図及び第3図はサイクル特性図、第2図はサイクル寿命
を示す図面である。
Figures 1 to 3 are drawings showing the characteristics of a battery using a hydrogen storage electrode equipped with various hydrogen storage alloys as a negative electrode.
3 and 3 are cycle characteristic diagrams, and FIG. 2 is a diagram showing cycle life.

Claims (1)

【特許請求の範囲】[Claims] (1)ミッシュメタル−ニッケル系合金にコバルトを含
有させてなり、CaCu_5構造の結晶構造を有し、且
つ化学式がMmNixCoyで表わされ、xが3≧x≧
2、yが2≦y≦3、x+yが4.5≦x+y≦5.5
の範囲内である合金を備えたことを特徴とする水素吸蔵
電極。
(1) Misch metal - made of a nickel-based alloy containing cobalt, has a crystal structure of CaCu_5 structure, and has a chemical formula of MmNixCoy, where x is 3≧x≧
2, y is 2≦y≦3, x+y is 4.5≦x+y≦5.5
A hydrogen storage electrode characterized by comprising an alloy within the range of .
JP60217659A 1985-09-30 1985-09-30 Hydrogen occlusion electrode Pending JPS6276255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60217659A JPS6276255A (en) 1985-09-30 1985-09-30 Hydrogen occlusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217659A JPS6276255A (en) 1985-09-30 1985-09-30 Hydrogen occlusion electrode

Publications (1)

Publication Number Publication Date
JPS6276255A true JPS6276255A (en) 1987-04-08

Family

ID=16707707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217659A Pending JPS6276255A (en) 1985-09-30 1985-09-30 Hydrogen occlusion electrode

Country Status (1)

Country Link
JP (1) JPS6276255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG101413A1 (en) * 1995-04-06 2004-01-30 Treibacher Auermet Prod Gmbh Alkaline metal oxide/metal hydride battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937667A (en) * 1982-08-26 1984-03-01 Toshiba Corp Metal oxide-hydrogen battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937667A (en) * 1982-08-26 1984-03-01 Toshiba Corp Metal oxide-hydrogen battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG101413A1 (en) * 1995-04-06 2004-01-30 Treibacher Auermet Prod Gmbh Alkaline metal oxide/metal hydride battery

Similar Documents

Publication Publication Date Title
JPH02277737A (en) Electrode made of hydrogen storage alloy
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2595967B2 (en) Hydrogen storage electrode
JPS61176067A (en) Hydrogen occlusion electrode
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JPS6276255A (en) Hydrogen occlusion electrode
JP2537084B2 (en) Hydrogen storage alloy electrode
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPH0586622B2 (en)
JPS6276254A (en) Hydrogen occlusion electrode
JP2926965B2 (en) Hydrogen storage alloy
JPH06145849A (en) Hydrogen storage alloy electrode
JPH061695B2 (en) Hydrogen storage electrode
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JPH03226539A (en) Hydrogen storage alloy electrode
JPS61176066A (en) Hydrogen occlusion electrode
JP2529898B2 (en) Hydrogen storage alloy electrode
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JPS61176065A (en) Hydrogen occlusion electrode
JPS61288371A (en) Hydrogen occlusion electrode
JPS61181063A (en) Hydrogen occulusion electrode