JPS6115149B2 - - Google Patents

Info

Publication number
JPS6115149B2
JPS6115149B2 JP53068222A JP6822278A JPS6115149B2 JP S6115149 B2 JPS6115149 B2 JP S6115149B2 JP 53068222 A JP53068222 A JP 53068222A JP 6822278 A JP6822278 A JP 6822278A JP S6115149 B2 JPS6115149 B2 JP S6115149B2
Authority
JP
Japan
Prior art keywords
aluminum oxide
carbide alloy
alloy body
sintered carbide
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53068222A
Other languages
Japanese (ja)
Other versions
JPS5410314A (en
Inventor
Kaaru Herumaa Sumisu Urufu
Nirusu Rindoshutoreemu Yan
Mantoru Harorudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik AB
Original Assignee
Sandvik AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik AB filed Critical Sandvik AB
Publication of JPS5410314A publication Critical patent/JPS5410314A/en
Publication of JPS6115149B2 publication Critical patent/JPS6115149B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemically Coating (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は薄い極度に耐摩耗性の表面層で被覆さ
れた焼結炭化物合金体に関する。本発明はまたか
かる被覆体を作る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintered carbide alloy body coated with a thin, extremely wear-resistant surface layer. The invention also relates to a method of making such a coating.

例えばチツプ形成機のための植刃の如き圧縮
し、半融させた焼結炭化物合金体の耐摩耗性は、
硬質表面層を付与することによつてかなり増大せ
しめうることは知られている。特に金属炭化物、
金属窒化物または金属酸化物が、焼結炭化物合金
芯または基体上に薄い層(例えば1〜20μmの厚
さを有する層)として付与されている。またある
場合には、お互いにその上に付与した二つまたは
数個の異なる層からなる薄い被覆を用いることに
よつて更に利点を得ることができることも知られ
ている。特に外側セラミツク層の下に中間層とし
て炭化物または窒化物を使用することを挙げるこ
とができる。酸化アルミニウム(Al2O3)および
酸化ジルコニウム(ZrO2)はかかるセラミツク表
面層の例である。表面被覆を付与する一つの主要
な方法はCDV法即ち化学的蒸着法である、この
方法においてはガス状成分間の反応によつて熱基
体上に被覆が沈着する。酸化アルミニウム被覆製
造のため使用されている最も普通の化学的蒸着法
は、直接蒸発させるかあるいはアルミニウム金属
と塩素または塩化水素との間の反応によつて形成
される塩化アルミニウムの水素還元と、直接蒸発
させるか、あるいは水素と二酸化炭素によつて形
成された蒸気、または酸素との反応を含む方法で
ある。
For example, the wear resistance of a compressed and semi-melted sintered carbide alloy body, such as a cutting blade for a chip forming machine, is
It is known that this can be increased considerably by applying a hard surface layer. Especially metal carbides,
The metal nitride or metal oxide is applied as a thin layer (for example a layer having a thickness of 1 to 20 μm) on a sintered carbide alloy core or substrate. It is also known that in some cases further advantages can be obtained by using thin coatings consisting of two or several different layers applied on top of each other. Mention may be made, in particular, of using carbides or nitrides as an intermediate layer below the outer ceramic layer. Aluminum oxide (Al 2 O 3 ) and zirconium oxide (ZrO 2 ) are examples of such ceramic surface layers. One major method of applying surface coatings is the CDV or chemical vapor deposition process, in which the coating is deposited onto a hot substrate by reaction between gaseous components. The most common chemical vapor deposition methods used for the production of aluminum oxide coatings are hydrogen reduction of aluminum chloride, which is formed by direct evaporation or reaction between aluminum metal and chlorine or hydrogen chloride; The process involves vaporizing or reacting hydrogen with the vapor formed by carbon dioxide or oxygen.

所望される耐摩耗性を有する酸化アルミニウム
の好適な硬く、多結晶質の緊密な良く接着した被
覆は、通常約950℃以上の付着温度で得られるに
すぎない。より低い温度では、酸化アルミニウム
のガンマおよび/またはシータ相からなるゆるい
粉末状の付着が通常得られる。約1000℃以上の付
着温度で、切削工具に好適であると通常認められ
ている酸化アルミニウム相はα相である。しかし
ながらこの酸化アルミニウムの相は、1000℃以下
の付着温度では化学的蒸着によつて純粋な状態で
作ることを通常期待できない高温相である。1000
℃以下の温度で付着するα酸化アルミニウムの安
定性は、被覆される基体またはガス相から来る不
純物またはドープ剤の存在によつて決る。純粋な
α酸化アルミニウム基体を用いるとき、化学的蒸
着によつてα酸化アルミニウムの配向重複成長が
約1500℃以上の付着温度で生ずるのみである。
Suitable hard, polycrystalline, tight, well-adhered coatings of aluminum oxide with the desired abrasion resistance are usually only obtained at deposition temperatures of about 950° C. or higher. At lower temperatures, loose powder-like deposits consisting of gamma and/or theta phases of aluminum oxide are usually obtained. At deposition temperatures of about 1000° C. or higher, the aluminum oxide phase generally accepted as suitable for cutting tools is the alpha phase. However, this aluminum oxide phase is a high temperature phase that cannot normally be expected to be produced in pure form by chemical vapor deposition at deposition temperatures below 1000°C. 1000
The stability of alpha aluminum oxide deposited at temperatures below 0 C depends on the presence of impurities or dopants coming from the substrate being coated or from the gas phase. When using pure alpha aluminum oxide substrates, oriented overgrowth of alpha aluminum oxide by chemical vapor deposition only occurs at deposition temperatures above about 1500 DEG C.

このことから、被覆工具の製造に当つて通常使
用される温度で、多相酸化アルミニウム被覆を得
る危険がかなりあることが明らかである。多相被
覆においては、各相の境界域がかなり機械的に弱
い帯域を構成し、従つてそれらは早期工具破損の
原因となりうる。
It is clear from this that there is a considerable risk of obtaining a multiphase aluminum oxide coating at the temperatures normally used in the production of coated tools. In multiphase coatings, the boundary areas of each phase constitute zones of considerable mechanical weakness and therefore they can be a source of premature tool failure.

酸化アルミニウム被覆の付着は、基体および/
またはガス相から種々な種の拡散を含む。被覆の
形成を支配する各拡散の相互作用、核形成および
成長機構は非常に微妙なもので、不均質付着の形
成を容易に生ぜしめることができる。かかる機構
はしばしば制御困難であるから、安定な特別な酸
化アルミニウム相を提供しうる方法が、単一相酸
化アルミニウム被覆を有する焼結炭化物体が、多
相酸化アルミニウム被覆と比較したときすぐれた
より一貫した性能を有することが期待しうること
から最も有利であると考えられる。
The deposition of the aluminum oxide coating is applied to the substrate and/or
or involving the diffusion of various species from the gas phase. The diffusion interactions, nucleation and growth mechanisms governing coating formation are very subtle and can easily give rise to the formation of heterogeneous deposits. Since such mechanisms are often difficult to control, methods that can provide a stable special aluminum oxide phase may result in sintered carbide bodies with single-phase aluminum oxide coatings being superior and more consistent when compared to multi-phase aluminum oxide coatings. It is considered to be the most advantageous because it can be expected to have a high performance.

本発明によればチツプ形成機に関して非常に重
大な相からなる酸化アルミニウム被覆を設けた焼
結炭化物合金体を作ることができることを見出し
た。本質的に単相である酸化アルミニウムはカツ
パ相からなり、その製造は一定の良く制御された
工程および指針によつて形成された。層は被覆さ
れた焼結炭化物合金体のみならず非被覆基体上に
付与でき、また多くの種々な種類の多層被覆中の
表面層または中間層としても使用できる。被覆は
耐摩耗性炭化物、窒化物、炭化窒化物および/ま
たは硼化物の中間層上に付与するのが好ましい。
特にこれらの炭化物、炭化窒化物、窒化物および
硼化物は、元素Ti、Zr、Hf、V、Nb、Ta、Cr、
Mo、W、SiおよびB(元素Bで形成される硼化
物を除く)の一つで形成させる。中間層としてチ
タンの炭化物、窒化物および/または炭化窒化物
が特に好適である。
It has now been found that according to the invention it is possible to produce a sintered carbide alloy body provided with an aluminum oxide coating, which is a very important phase for chip forming machines. Aluminum oxide, which is essentially single-phase, consists of a Katsupah phase, and its manufacture has been shaped by certain well-controlled processes and guidelines. The layer can be applied not only to a coated cemented carbide alloy body, but also to an uncoated substrate, and can be used as a surface layer or intermediate layer in many different types of multilayer coatings. Preferably, the coating is applied on an intermediate layer of wear-resistant carbides, nitrides, carbonitrides and/or borides.
In particular, these carbides, carbonitrides, nitrides and borides contain the elements Ti, Zr, Hf, V, Nb, Ta, Cr,
It is formed from one of Mo, W, Si, and B (excluding borides formed by element B). Titanium carbides, nitrides and/or carbonitrides are particularly suitable as intermediate layers.

本発明による焼結炭化物合金体の製造または被
覆の製造は、付着工程中、本質的に四価のチタン
および/またはジルコニウムおよび/またはハフ
ニウムイオンの特定の制御された量で酸化アルミ
ニウム被覆をドーピングすることによつて行なう
ことができ、かくすると、独占的にまたは殆ど独
占的にカツパアルミナが形成される。
The production of the sintered carbide alloy body or the production of the coating according to the invention involves doping the aluminum oxide coating with specific and controlled amounts of essentially tetravalent titanium and/or zirconium and/or hafnium ions during the deposition process. This can be done by a method such that exclusively or almost exclusively katsupa alumina is formed.

チタンおよび/またはジルコニウムおよび/ま
たはハフニウムは、酸化アルミニウムの付着に使
用する通常のガス混合物中に、ハロゲン化チタ
ン、ジルコニウムまたはハフニウム、特に四塩化
チタンを加えることによつて、酸化アルミニウム
被覆に混入することができる。酸化アルミニウム
および酸化チタンの共付着のため上述したガス混
合物にハロゲン化チタンを加えることは、複合ア
ルフア酸化アルミニウム/セスキ酸化チタン
(Ti2O3)被覆を作るため従来より使用されてい
た。しかしながら本発明は沈着ガス混合物に加え
るべきハロゲン化物の量を正確に決定し、かくし
て従来の酸化アルミニウム被覆の品質と比較した
とき殆ど独占的に、全く予期せざる程独占的にカ
ツパアルミナの形成をもたらすような方法で、チ
タンおよび/またはジルコニウムおよび/または
ハフニウムイオンを酸化アルミニウムに混入でき
るようにしたことに関する。チタンおよび/また
はジルコニウムおよび/またはハフニウムが反応
器中に正しい濃度および原子価状態(+4)の下
で存在するとき、その一部または全部が被覆中に
入り、カツパ相を形成させるのであろう(この説
明は理論的には複雑であり、未だ明確にはなつて
いない、しかし先の説明において、既知の方法は
チタンが多分3価イオンとして加えられ、通常の
α酸化アルミナの形成をもたらすということがで
きる)。
Titanium and/or zirconium and/or hafnium are incorporated into the aluminum oxide coating by adding titanium, zirconium or hafnium halides, especially titanium tetrachloride, to the usual gas mixtures used for depositing the aluminum oxide. be able to. The addition of titanium halides to the gas mixtures described above for co-deposition of aluminum oxide and titanium oxide has traditionally been used to create composite alpha aluminum oxide/sesquititanium oxide (Ti 2 O 3 ) coatings. However, the present invention precisely determines the amount of halide to be added to the deposition gas mixture, thus resulting in the formation of Katupa alumina almost exclusively and quite unexpectedly exclusively when compared to the quality of conventional aluminum oxide coatings. The present invention relates to a method in which titanium and/or zirconium and/or hafnium ions can be mixed into aluminum oxide. When titanium and/or zirconium and/or hafnium is present in the reactor under the correct concentration and valence state (+4), some or all of it will enter the coating and form the Katupa phase ( This explanation is theoretically complex and not yet clear, but in the previous explanation, the known method is that the titanium is probably added as a trivalent ion, resulting in the formation of the usual alpha alumina oxide. ).

本発明にとつて重要なことは、基体または中間
層の表面の酸化状態を決定する酸化アルミニウム
付着法の開始条件にもある。例えば炭化チタンの
中間層の場合に、酸化アルミニウム付着法開始前
の酸化条件は酸化アルミニウムのカツパ相を与え
なくて、その代りに酸化アルミニウムのアルフア
相を与える。
Also of importance to the invention are the starting conditions of the aluminum oxide deposition process, which determine the oxidation state of the surface of the substrate or intermediate layer. For example, in the case of a titanium carbide interlayer, the oxidation conditions prior to starting the aluminum oxide deposition process do not provide a cuppa phase of aluminum oxide, but instead give an alpha phase of aluminum oxide.

酸化アルミニウムで被覆する前の中間炭化チタ
ン層の予備酸化は既に文献に提示されている。か
くして得られる酸化チタンは多かれ少なかれ下の
炭化チタン層によつて溶解されて、オキシ炭化物
を形成するか、あるいは酸化アルミニウム層によ
つて溶解されて混合酸化物を形成することができ
る。炭化チタン層中へ酸素移行がある場合、炭化
チタンのかなりの範囲の非理論量と、酸化チタン
と炭化チタンの相互溶解度のため、オキシ炭化物
が形成する。
Preoxidation of intermediate titanium carbide layers before coating with aluminum oxide has already been proposed in the literature. The titanium oxide thus obtained can be dissolved to a greater or lesser extent by the underlying titanium carbide layer to form an oxycarbide, or by the aluminum oxide layer to form a mixed oxide. When there is oxygen migration into the titanium carbide layer, oxycarbide is formed due to the considerable non-stoichiometric content of titanium carbide and the mutual solubility of titanium oxide and titanium carbide.

最も驚いたことには、カツパ酸化アルミニウム
の被覆がアルフア相のものよりもすぐれているこ
とを見出したことにある、何故ならばアルフア変
態はカツパ相よりも密であるからである(カツパ
相3.25Kg/dm3に対して3.99Kg/dm3である)。ここ
でできる説明は、これはカツパ相の観察された微
細な粒子の大きさによるか、あるいはカツパ酸化
アルミニウム層と基体例えば炭化チタン層の間に
生ずる改良された結合によるのであるということ
である。改良された結合はカツパ酸化アルミニウ
ムが本発明によつて得られたとき、炭化チタン層
の頂部帯域上または中に過剰の酸化アルミニウム
が存在しないという理由によるものと考えられ
る。酸化チタンの形成は下にある炭化チタンに対
して容積膨張を含む、これは炭化チタンの表面帯
域での接着に有害な効果を有しうる。
Most surprisingly, we found that the coating of Katsupa aluminum oxide is superior to that of the alpha phase, since the alpha transformation is denser than the Katsupa phase (Katsupa phase 3.25 Kg/dm 3 vs. 3.99Kg/dm 3 ). Possible explanations here are that this is due to the observed fine grain size of the Katsupa phase or to the improved bond that occurs between the Katsupa aluminum oxide layer and the substrate, such as a titanium carbide layer. The improved bonding is believed to be due to the fact that when Kappa aluminum oxide is obtained according to the invention, there is no excess aluminum oxide on or in the top zone of the titanium carbide layer. The formation of titanium oxide involves a volumetric expansion relative to the underlying titanium carbide, which can have a detrimental effect on adhesion at the surface zone of the titanium carbide.

市場で入手でき、二重に被覆された(酸化アル
ミニウム−炭化チタン)、焼結炭化物合金品質に
おいて、かなりの量のカツパ酸化アルミニウムも
形成される、事実表面の2〜98%はカツパ酸化ア
ルミニウムからなり、残余はアルフア酸化アルミ
ニウムからなる。この場合、カツパ酸化アルミニ
ウムの量の分散はかなり著しいものである。更に
アルフア酸化アルミニウムの円形部域の大きさは
実に大きく10〜200μmである。表面の大きな部
分がアルフア相からなると円形スポツトがしばし
ば合体し、カツパ酸化アルミニウムの不規則な形
の部域を残す。アルフア酸化アルミニウムの重積
した部域は望ましくない、何故ならばそれらは容
易に破壊し、それらが工具刃の重要な帯域に位置
を占めるようになつたとき、チツプまたは加工片
によつて運び去れることになるからである。
In the dual coated (aluminum oxide-titanium carbide), sintered carbide alloy qualities available on the market, significant amounts of Katsupa aluminum oxide are also formed, in fact between 2 and 98% of the surface is from Katsupa aluminum oxide. The remainder consists of alpha aluminum oxide. In this case, the dispersion of the amount of katsupa aluminum oxide is quite significant. Furthermore, the size of the circular area of alpha aluminum oxide is quite large, ranging from 10 to 200 μm. When a large portion of the surface consists of alpha phase, the circular spots often coalesce, leaving irregularly shaped areas of Katupa aluminum oxide. Stacked areas of alpha aluminum oxide are undesirable because they break easily and are carried away by chips or workpieces when they occupy a critical zone of the tool edge. This is because it will result in a loss.

本発明によれば、アルフア酸化アルミニウムの
量を一致した方法で15%以下、好ましくは10%以
下に減少させることができ、また残存アルフア相
スポツトの大きさを約10μm以下、好ましくは6
μm以下に減少させることができることをここに
見出した。
According to the invention, the amount of alpha aluminum oxide can be reduced in a consistent manner to less than 15%, preferably less than 10%, and the size of the residual alpha phase spots can be reduced to less than about 10 μm, preferably 6 μm.
It has now been discovered that it can be reduced to below μm.

アルフア相スポツトの大きさおよび量および面
積の間の関係を第1図に示す。従来より知られて
いる酸化アルミニウム被覆においては、前述した
如く、相対的に大きなアルフア相スポツト、およ
びアルフア相スポツトの大きさに関する大きな変
動のみならずアルフア相の量の大きな変動を見出
すことができる。この面積の下限を図の曲線D−
Eによつてしるす。本発明によれば、アルフア相
スポツトの大きさおよび発生率をそれらが第1図
の面積AOB内、好ましくは面積A′OB′内に入る
ように規制すると性質を大きく改良できることを
ここに見出した。
The relationship between the size, amount and area of alpha phase spots is shown in FIG. In the previously known aluminum oxide coatings, as mentioned above, relatively large alpha-phase spots and large variations in the size of the alpha-phase spots as well as large variations in the amount of alpha-phase can be found. The lower limit of this area is the curve D-
Marked by E. According to the present invention, it has now been discovered that the properties can be greatly improved by controlling the size and incidence of alpha phase spots so that they fall within the area AOB, preferably within the area A'OB' of FIG. .

更に本発明の別の利点は、劇的に短縮した製造
時間をもたらす増大された付着速度にある。加え
るハロゲン化物の量によつて、二つ以上のフアク
ターによつてハロゲン化物ドープ剤なしで得られ
る成長速度以上の成長速度が得られる。被覆の製
造速度における増大とは別に、成長速度の増大
は、被覆が高温にさらされる時間を短縮する、そ
の結果として高温に曝露されることによる被覆組
織における望ましからぬ変化の生ずる可能性が著
しく減少することで、被覆の品質に直接的な利益
をもたらす。
Yet another advantage of the present invention resides in increased deposition rates resulting in dramatically reduced manufacturing times. Depending on the amount of halide added, two or more factors provide growth rates that are greater than those obtained without the halide dopant. Apart from an increase in the manufacturing rate of the coating, an increase in the growth rate reduces the time that the coating is exposed to high temperatures, with the result that undesirable changes in the coating structure may occur due to exposure to high temperatures. The significant reduction has a direct benefit on the quality of the coating.

酸化アルミニウム層は任意の通常の方法で付着
させることができる、しかしチタンおよび/また
はジルコニウムおよび/またはハフニウムドープ
剤を加えて、化学蒸着によつて付着させるのが好
ましい。これは焼結炭化物基体を中間層で被覆し
たとき、あるいは実際の酸化アルミニウム層付与
前または後に連続的に幾つかの層を付与または形
成させるときにも適用できる。カツパ酸化アルミ
ニウム被覆の化学蒸着は中間層(または他の可能
な表面層)の付着とは別に作ることができる、し
かし同じ装置で連続的に作るのが好ましい、かく
すると中間層の表面の酸化を制御して行なうこと
ができる。表面の過度の酸化は避けるべきであ
る、何故ならば例えば炭化チタンの酸化は容積膨
張および組織の変化をもたらし、接着の消失をも
たらすからである。
The aluminum oxide layer can be deposited by any conventional method, but is preferably deposited by chemical vapor deposition with the addition of titanium and/or zirconium and/or hafnium dopants. This is also applicable when coating the cemented carbide substrate with an intermediate layer or when applying or forming several layers in succession before or after the actual application of the aluminum oxide layer. The chemical vapor deposition of the Katsupa aluminum oxide coating can be made separately from the deposition of the interlayer (or other possible surface layer), but is preferably made sequentially in the same equipment, thus preventing surface oxidation of the interlayer. It can be done under control. Excessive oxidation of the surface should be avoided, since oxidation of, for example, titanium carbide leads to volume expansion and textural changes, leading to loss of adhesion.

酸化アルミニウム層の厚さは通常0.1〜20μm
でしばしば0.2〜10μmであるが、特に0.3〜3μ
mである。しかしながら付与する酸化物層は0.5
〜2μmの厚さが好ましい。アルミナ被覆の上の
みならず下にある中間層または連続付与した層の
厚さは、通常同じ大きさ、即ち0.1〜20μmであ
る。耐摩耗性の炭化物、窒化物、炭化窒化物およ
び/または硼化物の中間層を使用する場合には、
厚さは通常1〜8μmであり、1.5〜7μmが好
ましい。
The thickness of the aluminum oxide layer is usually 0.1-20μm
often between 0.2 and 10 μm, but especially between 0.3 and 3 μm.
It is m. However, the applied oxide layer is 0.5
A thickness of ~2 μm is preferred. The thickness of the intermediate layer or successively applied layer above as well as below the alumina coating is usually of the same size, ie from 0.1 to 20 μm. When using a wear-resistant carbide, nitride, carbonitride and/or boride intermediate layer,
The thickness is usually 1 to 8 μm, preferably 1.5 to 7 μm.

カツパ酸化アルミニウム被覆を付着させるた
め、ハロゲン化アルミニウム好ましくは塩化アル
ミニウム(AlCl3)の水素還元および水蒸気または
酸素との反応を含む方法を使用できる。ハロゲン
化アルミニウムは、固体または液体の形のものを
蒸発させることによつて、またはアルミニウム金
属を塩素または塩化水素と反応させることによつ
てガスの形で作ることができる。水蒸気は蒸発に
よつてガスの形で作るとよい、あるいは水素と二
酸化炭素との反応によつて作るのが好ましい。酸
化アルミニウムをドーピングするため四塩化チタ
ンは液体の蒸発によつて蒸気の形で作る。チタ
ン、ジルコニウムまたはハフニウムの他のハロゲ
ン化物を使用するとき、蒸気は同じ方法で作るこ
とができる。各反応成分を、被覆されるべき焼結
炭化物合金試料を置いた反応室中に通す。試料は
誘電加熱によつて直接加熱してもよく、あるいは
例えば電気抵抗加熱で支持プレートまたは反応器
を加熱することによる間接的加熱でもよい。付着
温度は700〜1200℃の範囲であるが、950℃〜1150
℃が好ましい、実際の温度は存在する不純物また
は使用するドーピング剤の種類によつて決る。
To deposit the Katsupa aluminum oxide coating, a method involving hydrogen reduction of an aluminum halide, preferably aluminum chloride (AlCl 3 ) and reaction with water vapor or oxygen can be used. Aluminum halides can be made in gaseous form by evaporating solid or liquid forms or by reacting aluminum metal with chlorine or hydrogen chloride. Water vapor may be produced in gaseous form by evaporation, or preferably by reaction of hydrogen and carbon dioxide. For doping aluminum oxide, titanium tetrachloride is produced in vapor form by evaporation of a liquid. When using other halides of titanium, zirconium or hafnium, steam can be made in the same way. Each reactant is passed into a reaction chamber containing the sintered carbide alloy sample to be coated. The sample may be heated directly by dielectric heating or indirectly, for example by heating the support plate or reactor with electrical resistance heating. The deposition temperature ranges from 700 to 1200℃, but from 950℃ to 1150℃
C. is preferred; the actual temperature will depend on the impurities present or the type of doping agent used.

反応成分ガス混合物中の塩化アルミニウムおよ
び水蒸気(または二酸化炭素または酸素)濃度は
好ましくはほぼ理論量であるべきである。化学的
蒸着の場合、四価ハロゲン化物の濃度は、反応器
に供給するガスの全量の0.03〜0.5%、好ましく
は0.2%以下にすべきである。付着を化学的蒸着
方法以外の方法によつて行なうときには、相当す
るハロゲン化物の量を使用すべきである。また
CO2およびH2の濃度は注意して制御することが重
要である。推奨される四価ハロゲン化物の量は二
酸化炭素と塩化アルミニウムのほぼ理論量の割合
にする。反応器中がより還元性の状態にある場
合、二酸化炭素対水素または水蒸気対水素のより
低い比は、より大量の四価ハロゲン化物を加える
ことを必要とする。ガス相の全圧は1〜760トル
の範囲であることができるが、30〜80トルが好ま
しい。付着が上述した条件に従つて注意深く制御
されないときには、アルフアまたはその他の望ま
しからぬ酸化アルミニウム相がかなりの量で形成
される。
The aluminum chloride and water vapor (or carbon dioxide or oxygen) concentrations in the reactant gas mixture should preferably be approximately stoichiometric. In the case of chemical vapor deposition, the concentration of tetravalent halides should be between 0.03 and 0.5% of the total amount of gas fed to the reactor, preferably below 0.2%. Corresponding amounts of halide should be used when deposition is carried out by methods other than chemical vapor deposition. Also
It is important that the concentrations of CO2 and H2 are carefully controlled. The recommended amount of tetravalent halide is approximately the stoichiometric ratio of carbon dioxide and aluminum chloride. If there are more reducing conditions in the reactor, a lower ratio of carbon dioxide to hydrogen or steam to hydrogen requires the addition of a larger amount of tetravalent halide. The total pressure of the gas phase can range from 1 to 760 Torr, but is preferably from 30 to 80 Torr. If deposition is not carefully controlled according to the conditions described above, significant amounts of alpha or other undesirable aluminum oxide phases are formed.

チタンおよび/またはジルコニウムおよび/ま
たはハフニウムドーピング剤の添加は酸化アルミ
ニウムの付着速度をかなり増大させる。得られた
結果の例として、第2図に、添加した四塩化チタ
ンの量(容量%)の関数として成長速度を示すグ
ラフを示す。この図から例えば約0.05%の四塩化
チタンの添加が成長速度の3倍の増大を与えたこ
と(0.1μm/hrから約0.3μm/hrへ)を計画でき
る。
The addition of titanium and/or zirconium and/or hafnium dopants considerably increases the rate of aluminum oxide deposition. As an example of the results obtained, FIG. 2 shows a graph showing the growth rate as a function of the amount (% by volume) of titanium tetrachloride added. From this figure it can be calculated that, for example, the addition of about 0.05% titanium tetrachloride gave a three-fold increase in the growth rate (from 0.1 μm/hr to about 0.3 μm/hr).

カツパ酸化アルミニウムの被覆は通常酸化物層
中に例えばそれぞれチタン、ハフニウムまたはジ
ルコニウムの二酸化物の形でチタン、ハフニウム
および/またはジルコニウムのある量を含有す
る。Ti、Hfおよび/またはZrの添加は酸化アル
ミニウム被覆形成中酸化物の形成に影響を与え
る。二酸化チタンが層の一部である場合、量は通
常0.5〜10%である。
Katsupa aluminum oxide coatings usually contain a certain amount of titanium, hafnium and/or zirconium in the oxide layer, for example in the form of titanium, hafnium or zirconium dioxide, respectively. The addition of Ti, Hf and/or Zr affects the formation of oxides during aluminum oxide coating formation. If titanium dioxide is part of the layer, the amount is usually 0.5-10%.

以下の実施例は本発明による表面被覆焼結炭化
物体を作るため使用した種々な条件およびかかる
焼結炭化物体を試験して得られた結果を示す。
The following examples illustrate various conditions used to make surface coated sintered carbonized bodies according to the present invention and the results obtained when such sintered carbonized bodies were tested.

実施例 1 ISOグレードM20の多数の焼結炭化物合金切削
植刃を、6μmの厚さの炭化チタン層で被覆し、
次いて続いて1μmの厚さのカツパ酸化アルミニ
ウム層で被覆した。
Example 1 A number of sintered carbide alloy cutting inserts of ISO grade M20 were coated with a 6 μm thick titanium carbide layer,
It was then subsequently coated with a 1 μm thick layer of Kappa aluminum oxide.

カツパ酸化アルミニウム付着条件は次のとおり
であつた。
The conditions for adhering aluminum oxide to Katsupa were as follows.

反応成分ガス混合物 H2 90 % AlCl3 2 % CO2 6 % TiCl4 0.1% CO 1.9% ガス流速 2 m/s ガス混合物の圧力 50 トル(6.7kpa) 温 度 1010 ℃(1283〓) 付着時間 1.5時間 カツパ酸化アルミニウム被覆は完全に密で、多
結晶質で良く接着していた。
Reactant gas mixture H 2 90% AlCl 3 2% CO 2 6% TiCl 4 0.1% CO 1.9% Gas flow rate 2 m/s Pressure of gas mixture 50 torr (6.7 kpa) Temperature 1010 °C (1283〓) Deposition time 1.5 Time The Katupa aluminum oxide coating was completely dense, polycrystalline and well bonded.

本発明により被覆した植刃の性能の試験におい
て、四価ハロゲン化物の添加を含まない従来より
使用されていた方法に従つて被覆した植刃の寿命
と比較したとき20%までの植刃の寿命の増大が得
られた。
In tests of the performance of blades coated according to the present invention, the lifetime of blades coated according to the present invention was up to 20% when compared to the life of blades coated according to conventionally used methods that do not include the addition of tetravalent halides. was obtained.

実施例 2 被覆を3μmの炭化チタンの中間層および3μ
mの酸化アルミニウムの外層で構成したこと以外
は実施例1と同様にして多数の焼結炭化物合金切
削植刃を被覆した。酸化アルミニウムの付着時間
を5時間に増大した、一方炭化物付着のための時
間は半分にした、付着条件は実施例1と同じであ
る。
Example 2 Coating with a 3μm titanium carbide intermediate layer and a 3μm titanium carbide intermediate layer.
A large number of sintered carbide alloy cutting inserts were coated in the same manner as in Example 1, except that the outer layer was made of aluminum oxide. The deposition conditions are the same as in Example 1, with the aluminum oxide deposition time increased to 5 hours, while the time for carbide deposition was halved.

外側被覆は99%までカツパ相酸化アルミニウム
からなり、残余が直径5μmを越えない丸い区域
の形でのアルフア酸化アルミニウムであつた。
The outer coating consisted of up to 99% of Katsupa phase aluminum oxide, the remainder being alpha aluminum oxide in the form of rounded areas not exceeding 5 μm in diameter.

実施例1の方法と同じ方法でこれらの被覆の性
能の比較試験において、100%という大きい植刃
の寿命の増大が見出された。
In a comparative test of the performance of these coatings in the same manner as in Example 1, a 100% increase in large blade life was found.

実施例 3 ISOグレードM20の多数の焼結炭化物合金植刃
を、焼結炭化物の基体上に直接カツパ酸化アルミ
ニウムで被覆した。酸化物被覆のため実施例1と
同じ条件を使用した。この場合にも、従来の方法
で酸化アルミニウムで被覆した植刃に比して約20
%まで植刃の寿命の増大が得られた。試験は約1
%の炭素含有率を有する鋼の丸削として行なつ
た。
Example 3 A number of ISO grade M20 sintered carbide alloy inserts were coated with Katsupa aluminum oxide directly onto a sintered carbide substrate. The same conditions as in Example 1 were used for the oxide coating. In this case as well, compared to implanted blades coated with aluminum oxide using the conventional method, approximately 20%
An increase in the lifespan of the grafted blade by up to % was obtained. The test is about 1
It was carried out as round cutting of steel with a carbon content of %.

実施例 4 焼結炭化物合金体を2μmの窒化ハフニウムの
中間層および1μmのカツパ酸化アルミニウムの
表面層で被覆した。二つの層CVD法で付与し
た。中間層は通常の方法で付与したが、表面層は
下記条件で付与した。
Example 4 A sintered carbide alloy body was coated with a 2 μm intermediate layer of hafnium nitride and a 1 μm surface layer of Katsupa aluminum oxide. It was applied using a two-layer CVD method. The intermediate layer was applied by a conventional method, but the surface layer was applied under the following conditions.

反応成分ガス混合物 H2 89 % AlCl3 2 % CO2 7 % ZrCl4 0.05% CO 1.95% ガス流速 2.5 m/s ガス混合物の圧力 55 トル 温 度 1015 ℃ 付着時間 1 時間 結果として少なくとも90%カツパ相からなる良
く接着した酸化アルミニウム層が得られた。
Reactant gas mixture H 2 89% AlCl 3 2% CO 2 7% ZrCl 4 0.05% CO 1.95% Gas flow rate 2.5 m/s Pressure of gas mixture 55 Torr temperature 1015 °C Deposition time 1 hour Resulting in at least 90% Katsupa phase A well-adhered aluminum oxide layer consisting of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は化学的蒸着によつて炭化チタン被覆焼
結炭化物合金基体上に付着した酸化アルミニウム
被覆中のアルフア酸化アルミニウムスポツトの大
きさと面積被覆率の関係を示す図であり、第2図
は炭化チタン被覆焼結炭化物合金基体上への酸化
アルミニウムの化学的蒸着中の四塩化チタンの添
加効果を示すグラフである。
Figure 1 shows the relationship between the size and area coverage of alpha aluminum oxide spots in the aluminum oxide coating deposited on the titanium carbide-coated sintered carbide alloy substrate by chemical vapor deposition, and Figure 2 1 is a graph showing the effect of adding titanium tetrachloride during chemical vapor deposition of aluminum oxide onto a titanium-coated sintered carbide alloy substrate.

Claims (1)

【特許請求の範囲】 1 酸化アルミニウムより本質的になる少なくと
も一つの薄い耐摩耗性表面層を付与した、結合剤
金属以外に少なくとも一種の炭化物を含有する焼
結炭化物合金体において、酸化アルミニウムの少
なくとも85%がカツパ相からなり、存在するとき
には主としてアルフア相を構成する残余が、大き
くても10μmの大きさを有する表面部分またはス
ポツトとして形成され、表面部の大きさおよび発
生をそれらが第1図の区域AOB好ましくは区域
A′OB′内にあるように規制したことを特徴とする
焼結炭化物合金体。 2 酸化アルミニウム層の厚さが0.1〜20μmで
ある特許請求の範囲第1項記載の焼結炭化物合金
体。 3 元素Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、
W、Siおよび/またはBで形成した、耐摩耗性の
炭化物、窒化物、炭化窒化物および/または硼化
物の薄い中間層を、酸化アルミニウム層および焼
結炭化物合金体の間に付与する特許請求の範囲第
1項または第2項記載の焼結炭化物合金体。 4 中間層の厚さが1〜8μmである特許請求の
範囲第3項記載の焼結炭化物合金体。 5 中間層がチタンの炭化物、窒化物および/ま
たは炭化窒化物からなる特許請求の範囲第3項ま
たは第4項記載の焼結炭化物合金体。 6 酸化アルミニウム層がチタン、ジルコニウム
および/またはハフニウムの添加物を含有する特
許請求の範囲第1項〜第5項の何れか一つに記載
の焼結炭化物合金体。 7 アルミニウムのハロゲン化物の1種以上を含
有するガスを高温で焼結体または基体上にもたら
し焼結炭化物合金体を製造する方法において、四
価チタン、ジルコニウムおよび/またはハフニウ
ムイオンのドーピング剤添加物をガス中に全供給
ガス量の0.03〜0.5%の量で加えることを特徴と
する酸化アルミニウムより本質的になる少なくと
も一つの薄い耐摩耗性表面層を付与した、結合剤
金属以外に少なくとも一種の炭化物を含有する焼
結炭化物合金体であつて、酸化アルミニウムの少
なくとも85%がカツパ相からなり、存在するとき
には主としてアルフア相を構成する残余が、大き
くても10μmの大きさを有する表面部分またはス
ポツトとして形成され、表面部の大きさおよび発
生をそれらが第1図の区域AOB内にあるように
規制した焼結炭化物合金体の製造法。 8 酸化アルミニウム層の厚さが0.1〜20μmで
ある特許請求の範囲第7項記載の焼結炭化物合金
体の製造法。 9 元素Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、
W、Siおよび/またはBで形成した、耐摩耗性の
炭化物、窒化物、炭化窒化物および/または硼化
物の薄い中間層を、酸化アルミニウム層および焼
結炭化物合金体の間に付与する特許請求の範囲第
7項または第8項記載の焼結炭化物合金体の製造
法。 10 中間層の厚さが1〜8μmである特許請求
の範囲第9項記載の焼結炭化物合金体の製造法。 11 中間層がチタンの炭化物、窒化物および/
または炭化窒化物からなる特許請求の範囲第9項
または第10項記載の焼結炭化物合金体の製造
法。 12 酸化アルミニウム層がチタン、ジルコニウ
ムおよび/またはハフニウムの添加物を含有する
特許請求の範囲第7項〜第11項の何れか一つに
記載の焼結炭化物合金体の製造法。
Claims: 1. A sintered carbide alloy body containing at least one carbide other than a binder metal, provided with at least one thin wear-resistant surface layer consisting essentially of aluminum oxide, 85% is composed of the Katsupa phase, and when present, the remainder, which mainly constitutes the alpha phase, is formed as a surface part or spot with a size of at most 10 μm, and the size and occurrence of the surface part are shown in Figure 1. area AOB preferably area
A sintered carbide alloy body characterized by being regulated to be within A′OB′. 2. The sintered carbide alloy body according to claim 1, wherein the aluminum oxide layer has a thickness of 0.1 to 20 μm. 3 elements Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
Claims providing a thin interlayer of wear-resistant carbides, nitrides, carbonitrides and/or borides formed of W, Si and/or B between the aluminum oxide layer and the sintered carbide alloy body The sintered carbide alloy body according to the range 1 or 2. 4. The sintered carbide alloy body according to claim 3, wherein the intermediate layer has a thickness of 1 to 8 μm. 5. The sintered carbide alloy body according to claim 3 or 4, wherein the intermediate layer is made of titanium carbide, nitride and/or carbonitride. 6. The sintered carbide alloy body according to any one of claims 1 to 5, wherein the aluminum oxide layer contains an additive of titanium, zirconium, and/or hafnium. 7. A method for producing a sintered carbide alloy body in which a gas containing one or more halides of aluminum is brought onto a sintered body or substrate at high temperature, in which a doping agent additive of tetravalent titanium, zirconium and/or hafnium ions is added. is added to the gas in an amount of 0.03 to 0.5% of the total gas supplied, at least one other than the binder metal, imparted with at least one thin wear-resistant surface layer consisting essentially of aluminum oxide. A sintered carbide alloy body containing carbides, in which at least 85% of the aluminum oxide consists of a katupah phase, and when present, the remainder, which mainly constitutes an alpha phase, has a surface portion or spot having a size of at most 10 μm. A method for manufacturing a sintered carbide alloy body in which the size and occurrence of the surface portions are controlled so that they are within the area AOB of FIG. 8. The method for producing a sintered carbide alloy body according to claim 7, wherein the aluminum oxide layer has a thickness of 0.1 to 20 μm. 9 Elements Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
Claims providing a thin interlayer of wear-resistant carbides, nitrides, carbonitrides and/or borides formed of W, Si and/or B between the aluminum oxide layer and the sintered carbide alloy body A method for producing a sintered carbide alloy body according to item 7 or 8. 10. The method for producing a sintered carbide alloy body according to claim 9, wherein the intermediate layer has a thickness of 1 to 8 μm. 11 The intermediate layer is titanium carbide, nitride and/or
or a method for producing a sintered carbide alloy body according to claim 9 or 10, which is made of carbonitride. 12. The method for producing a sintered carbide alloy body according to any one of claims 7 to 11, wherein the aluminum oxide layer contains an additive of titanium, zirconium, and/or hafnium.
JP6822278A 1977-06-09 1978-06-06 Coated sintered carbide body and method of making same Granted JPS5410314A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7706706A SE406090B (en) 1977-06-09 1977-06-09 COATED HARD METAL BODY AND WAY TO PRODUCE A SUITABLE BODY

Publications (2)

Publication Number Publication Date
JPS5410314A JPS5410314A (en) 1979-01-25
JPS6115149B2 true JPS6115149B2 (en) 1986-04-22

Family

ID=20331555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6822278A Granted JPS5410314A (en) 1977-06-09 1978-06-06 Coated sintered carbide body and method of making same

Country Status (13)

Country Link
US (2) US4180400A (en)
JP (1) JPS5410314A (en)
AT (1) AT366721B (en)
BR (1) BR7803700A (en)
CA (1) CA1133524A (en)
CH (1) CH640274A5 (en)
DE (1) DE2825009C2 (en)
ES (1) ES470609A1 (en)
FR (1) FR2393852A1 (en)
GB (1) GB2006727B (en)
IT (1) IT1096522B (en)
MX (1) MX149305A (en)
SE (1) SE406090B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436273Y2 (en) * 1986-04-04 1992-08-27

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE417618B (en) * 1979-01-22 1981-03-30 Sandvik Ab HARD METAL BODY WITH DURABLE LAYER
US4268569A (en) * 1979-02-07 1981-05-19 General Electric Company Coating underlayers
JPS5624134A (en) * 1979-08-03 1981-03-07 Soodanitsuka Kk Cutting method for high molecular compound foamed material
IL58548A (en) * 1979-10-24 1983-07-31 Iscar Ltd Sintered hard metal products having a multi-layer wearresistant coating
JPS5716161A (en) * 1980-07-02 1982-01-27 Ngk Spark Plug Co Ltd Preparation of coating tip for cutting
SE430261B (en) * 1982-01-26 1983-10-31 Santrade Ltd SET TO MAKE COATED HARD MATERIAL BODY
SE425978B (en) * 1980-07-28 1982-11-29 Sandvik Ab SET TO MAKE A FORMULA CONSISTING OF A SUBSTRATE AND AT LEAST ONE THIN Durable Surface
US4619866A (en) * 1980-07-28 1986-10-28 Santrade Limited Method of making a coated cemented carbide body and resulting body
USRE32111E (en) * 1980-11-06 1986-04-15 Fansteel Inc. Coated cemented carbide bodies
US4357382A (en) * 1980-11-06 1982-11-02 Fansteel Inc. Coated cemented carbide bodies
US4490191A (en) * 1981-12-16 1984-12-25 General Electric Company Coated product and process
US4440547A (en) * 1982-05-20 1984-04-03 Gte Laboratories Incorporated Alumina coated silicon nitride cutting tools
SE8205274L (en) * 1982-09-15 1984-03-16 Santrade Ltd HAPPENS AND METHOD FOR MANUFACTURING THE SAME
JPS59162270A (en) * 1983-03-04 1984-09-13 Sumitomo Electric Ind Ltd Surface coating method
JPS59219463A (en) * 1983-05-27 1984-12-10 Sumitomo Electric Ind Ltd Manufacture of al2o3 coating film
JPS6011288A (en) * 1983-06-30 1985-01-21 三菱マテリアル株式会社 Surface coated sialon-base ceramic tool member
JPS60238481A (en) * 1984-05-14 1985-11-27 Sumitomo Electric Ind Ltd Multilayered coated hard metal
JPS61221369A (en) * 1985-03-27 1986-10-01 Sumitomo Electric Ind Ltd Coated sintered hard alloy member
US4708037A (en) 1985-11-18 1987-11-24 Gte Laboratories Incorporated Coated cemented carbide tool for steel roughing applications and methods for machining
US4698266A (en) 1985-11-18 1987-10-06 Gte Laboratories Incorporated Coated cemented carbide tool for steel roughing applications and methods for machining
DE3544975C1 (en) * 1985-12-19 1992-09-24 Krupp Gmbh Process for producing a coated molded body
US4943450A (en) 1987-01-20 1990-07-24 Gte Laboratories Incorporated Method for depositing nitride-based composite coatings by CVD
US4988564A (en) * 1986-08-25 1991-01-29 Gte Laboratories Incorporated Metal carbide, nitride, or carbonitride whiskers coated with metal carbides, nitrides, carbonitrides, or oxides
US4810530A (en) * 1986-08-25 1989-03-07 Gte Laboratories Incorporated Method of coating metal carbide nitride, and carbonitride whiskers with metal carbides, nitrides, carbonitrides, or oxides
US5401694A (en) * 1987-01-13 1995-03-28 Lanxide Technology Company, Lp Production of metal carbide articles
US5254509A (en) * 1987-01-13 1993-10-19 Lanxide Technology Company, Lp Production of metal carbide articles
US4745010A (en) 1987-01-20 1988-05-17 Gte Laboratories Incorporated Process for depositing a composite ceramic coating on a cemented carbide substrate
US4751109A (en) 1987-01-20 1988-06-14 Gte Laboratories Incorporated A process for depositing a composite ceramic coating on a hard ceramic substrate
US4749629A (en) 1987-01-20 1988-06-07 Gte Laboratories Ultrathin laminated oxide coatings and methods
CA1329067C (en) * 1987-01-20 1994-05-03 Vinod K. Sarin Method for depositing composite coatings
AU1026588A (en) * 1987-01-20 1988-07-21 Gte Laboratories Incorporated Composite coatings
US4950558A (en) 1987-10-01 1990-08-21 Gte Laboratories Incorporated Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof
US4892792A (en) * 1987-10-01 1990-01-09 Gte Laboratories Incorporated A1N coated silicon nitride based cutting tools
US5079089A (en) * 1988-07-28 1992-01-07 Nippon Steel Corporation Multi ceramic layer-coated metal plate and process for manufacturing same
US5192410A (en) * 1988-07-28 1993-03-09 Nippon Steel Corporation Process for manufacturing multi ceramic layer-coated metal plate
US4984940A (en) * 1989-03-17 1991-01-15 Kennametal Inc. Multilayer coated cemented carbide cutting insert
US5304417A (en) * 1989-06-02 1994-04-19 Air Products And Chemicals, Inc. Graphite/carbon articles for elevated temperature service and method of manufacture
SE464818B (en) * 1989-06-16 1991-06-17 Sandvik Ab COVERED SHOULD BE CUTTING
EP0408535B1 (en) * 1989-07-13 1994-04-06 Seco Tools Ab Multi-oxide coated carbide body and method of producing the same
US5310607A (en) * 1991-05-16 1994-05-10 Balzers Aktiengesellschaft Hard coating; a workpiece coated by such hard coating and a method of coating such workpiece by such hard coating
SE9101953D0 (en) * 1991-06-25 1991-06-25 Sandvik Ab A1203 COATED SINTERED BODY
SE502223C2 (en) 1994-01-14 1995-09-18 Sandvik Ab Methods and articles when coating a cutting tool with an alumina layer
CA2149567C (en) * 1994-05-31 2000-12-05 William C. Russell Coated cutting tool and method of making same
US5545490A (en) * 1994-06-21 1996-08-13 Mitsubishi Materials Corporation Surface coated cutting tool
SE509201C2 (en) 1994-07-20 1998-12-14 Sandvik Ab Aluminum oxide coated tool
SE514181C2 (en) * 1995-04-05 2001-01-15 Sandvik Ab Coated carbide inserts for milling cast iron
US5693417A (en) * 1995-05-22 1997-12-02 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Vacuum-coated compound body and process for its production
SE514177C2 (en) * 1995-07-14 2001-01-15 Sandvik Ab Coated cemented carbide inserts for intermittent machining in low alloy steel
SE514695C2 (en) * 1995-07-14 2001-04-02 Sandvik Ab Cutting tool coated with alumina and method for its manufacture
US5786069A (en) * 1995-09-01 1998-07-28 Sandvik Ab Coated turning insert
EP0786536B1 (en) * 1996-01-24 2003-05-07 Mitsubishi Materials Corporation Coated cutting tool
DE19942303A1 (en) * 1998-09-24 2000-03-30 Widia Gmbh Coated hard metal or cermet, especially for wear protected cutter inserts, has an aluminum oxide and zirconium and/or hafnium oxide layer containing finely dispersed titanium oxide, oxycarbide, oxy nitride or oxy carbonitride
DE60012850T2 (en) * 1999-11-25 2005-02-03 Seco Tools Ab Coated cutting insert for milling and turning applications
US6472060B1 (en) 2000-01-19 2002-10-29 Seco Tools Ab Coated body with nanocrystalline CVD coating for enhanced edge toughness and reduced friction
US6863925B1 (en) * 2000-09-26 2005-03-08 General Electric Company Method for vapor phase aluminiding including a modifying element
SE522736C2 (en) * 2001-02-16 2004-03-02 Sandvik Ab Aluminum-coated cutting tool and method for making the same
SE522735C2 (en) * 2001-05-30 2004-03-02 Sandvik Ab Aluminum oxide coated cutting tool
DE10141696A1 (en) * 2001-08-25 2003-03-13 Bosch Gmbh Robert Process for producing a nanostructured functional coating and coating that can be produced with it
WO2003064718A2 (en) * 2002-01-29 2003-08-07 Sulzer Metco (Us) Inc. Method for selectively coating a portion of a substrate with a gas-carried substance
EP2848712B1 (en) * 2002-08-08 2018-05-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for producing alumina coating composed mainly of alpha-type crystal structure, alumina coating composed mainly of alpha-type crystal structure, laminate coating including the alumina coating , member clad with the alumina coating or laminate coating, process for producing the member, and physical vapor deposition apparatus
AU2003273745A1 (en) * 2002-10-07 2004-05-04 Kennametal Widia Gmbh And Co. Kg Composite material
SE526526C3 (en) * 2003-04-01 2005-10-26 Sandvik Intellectual Property Ways of coating cutting with A1203 and a cutting tool with A1203
SE527346C2 (en) 2003-04-24 2006-02-14 Seco Tools Ab Cutter with coating of layers of MTCVD-Ti (C, N) with controlled grain size and morphology and method of coating the cutter
SE527349C2 (en) * 2003-04-24 2006-02-14 Seco Tools Ab Cutter with coating of layers of MTCVD-Ti (C, N) with controlled grain size and morphology and method of coating the cutter
EP1536041B1 (en) * 2003-11-25 2008-05-21 Mitsubishi Materials Corporation Coated cermet cutting tool with a chipping resistant, hard coating layer
ATE503038T1 (en) * 2003-12-22 2011-04-15 Mitsubishi Materials Corp COATED CERMET CUTTING TOOL WITH HARD COATING LAYER WITH EXCELLENT IMPACT RESISTANCE.
US7160578B2 (en) * 2004-03-10 2007-01-09 Pilkington North America Method for depositing aluminum oxide coatings on flat glass
CN100496824C (en) * 2004-10-29 2009-06-10 住友电工硬质合金株式会社 Surface-coated cutting tool
SE529144C2 (en) * 2005-04-18 2007-05-15 Sandvik Intellectual Property Cut coated with composite oxide layer
WO2007121954A1 (en) * 2006-04-21 2007-11-01 Cemecon Ag Coated body
JP5029825B2 (en) * 2007-09-28 2012-09-19 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5234925B2 (en) * 2008-04-03 2013-07-10 株式会社神戸製鋼所 Hard film, method for forming the same, and hard film coated member
TWI493060B (en) * 2010-08-19 2015-07-21 Hon Hai Prec Ind Co Ltd Silvery white film structure and method manufacturing same
US9371580B2 (en) 2013-03-21 2016-06-21 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
DE112014001562B4 (en) 2013-03-21 2019-08-08 Kennametal Inc. Coatings for cutting tools
DE112014001520B4 (en) 2013-03-21 2023-06-15 Kennametal Inc. Coatings for cutting tools
US9427808B2 (en) 2013-08-30 2016-08-30 Kennametal Inc. Refractory coatings for cutting tools
US9719175B2 (en) 2014-09-30 2017-08-01 Kennametal Inc. Multilayer structured coatings for cutting tools
US9650712B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Inter-anchored multilayer refractory coatings
US9650714B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Nanocomposite refractory coatings and applications thereof
EP3263738B1 (en) * 2016-07-01 2018-12-05 Walter Ag Cutting tool with textured alumina layer
CN111201634B (en) * 2017-08-17 2023-04-04 应用材料公司 Lithium ion battery without olefin separator
JP6866970B2 (en) * 2019-01-30 2021-04-28 住友電工ハードメタル株式会社 Cutting tools and their manufacturing methods
US11371150B2 (en) * 2020-01-04 2022-06-28 Kennametal Inc. Coating and coated cutting tool comprising the coating
WO2023242370A1 (en) 2022-06-15 2023-12-21 Oerlikon Surface Solutions Ag, Pfäffikon Forming tools coated with kappa-alumina

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261673A (en) * 1963-05-17 1966-07-19 Norton Co Oxide coated articles with metal undercoat
DE2265603C2 (en) * 1971-05-26 1983-02-03 General Electric Co., Schenectady, N.Y. Cutting insert with a non-metallic intermediate layer between the base body and the top coating and method for its manufacture
CH540990A (en) * 1971-07-07 1973-08-31 Battelle Memorial Institute Method for increasing the wear resistance of the surface of a cutting tool
SE357984B (en) * 1971-11-12 1973-07-16 Sandvik Ab
US3967035A (en) * 1973-03-12 1976-06-29 General Electric Company Coated cemented carbide product
DE2435989C2 (en) * 1974-07-26 1982-06-24 Fried. Krupp Gmbh, 4300 Essen Process for the production of a wear-resistant, coated hard metal body for machining purposes
US4018631A (en) * 1975-06-12 1977-04-19 General Electric Company Coated cemented carbide product
FR2357321A1 (en) * 1976-07-05 1978-02-03 Stellram Sa Wear resistant hard metal article - coated with adherent layers of carbide, nitride, oxide, etc.
US4052530A (en) * 1976-08-09 1977-10-04 Materials Technology Corporation Co-deposited coating of aluminum oxide and titanium oxide and method of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436273Y2 (en) * 1986-04-04 1992-08-27

Also Published As

Publication number Publication date
FR2393852B1 (en) 1980-10-31
AT366721B (en) 1982-05-10
CA1133524A (en) 1982-10-12
BR7803700A (en) 1979-03-13
US4180400A (en) 1979-12-25
GB2006727B (en) 1982-04-15
DE2825009C2 (en) 1986-09-25
SE7706706L (en) 1978-12-10
IT7824305A0 (en) 1978-06-07
MX149305A (en) 1983-10-14
DE2825009A1 (en) 1978-12-14
ES470609A1 (en) 1979-10-01
CH640274A5 (en) 1983-12-30
GB2006727A (en) 1979-05-10
SE406090B (en) 1979-01-22
USRE31526E (en) 1984-02-28
FR2393852A1 (en) 1979-01-05
IT1096522B (en) 1985-08-26
JPS5410314A (en) 1979-01-25
ATA419778A (en) 1979-11-15

Similar Documents

Publication Publication Date Title
JPS6115149B2 (en)
US3977061A (en) Cutting insert and method of making the same
US5674564A (en) Alumina-coated sintered body
US6156383A (en) Alumina coated tool and production method thereof
US5137774A (en) Multi-oxide coated carbide body and method of producing the same
US4619866A (en) Method of making a coated cemented carbide body and resulting body
US6080477A (en) Titanium carbonitride coated stratified substrate and cutting inserts made from the same
US6827975B2 (en) Method of coating cutting tools
US4525415A (en) Sintered hard metal products having a multi-layer wear-resistant coating
JP2717790B2 (en) Abrasion resistant article having an oxide coating and method of depositing an oxide coating
US4629661A (en) Cutting insert and method of making the same
US5436071A (en) Cermet cutting tool and process for producing the same
EP1157143B1 (en) Mt cvd process
JP2020507679A (en) Hard material coated body made of metal, cemented carbide, cermet, or ceramics, and method of manufacturing the object
JP3291775B2 (en) Surface coated cutting tool
EP0045291B1 (en) Method of making a coated cemented carbide body and body produced in such a manner
US6056999A (en) Titanium carbonitride coated cemented carbide and cutting inserts made from the same
JP2876132B2 (en) Coated cutting tool
JP3117978B2 (en) Wear-resistant article and manufacturing method
JP2626779B2 (en) Composite coating method
JPS5925968A (en) Multiply coated material and its manufacture
JPH10280148A (en) Coated hard member
US20240158909A1 (en) Aln-based hard material layer on bodies of metal, hard metal, cermet or ceramics, and method for the production thereof
JPH07108405A (en) Surface coated cutting tool
JPS6154872B2 (en)