JPS61140172A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS61140172A
JPS61140172A JP59263306A JP26330684A JPS61140172A JP S61140172 A JPS61140172 A JP S61140172A JP 59263306 A JP59263306 A JP 59263306A JP 26330684 A JP26330684 A JP 26330684A JP S61140172 A JPS61140172 A JP S61140172A
Authority
JP
Japan
Prior art keywords
mosfet
type layer
electrode
conductivity type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59263306A
Other languages
Japanese (ja)
Inventor
Masaki Momotomi
正樹 百冨
Isao Ogura
庸 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59263306A priority Critical patent/JPS61140172A/en
Publication of JPS61140172A publication Critical patent/JPS61140172A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To contrive to increase integration and capacitance without damaging the reliability by a method wherein the titled device is constructed by integrating memory cells made up of MOS capacitors formed in stack on a MOSFET. CONSTITUTION:Memory cells are formed by integration in a P-type strate 11 having the three-layer structure, and an N<+> layer 112 serves as the drain region of a MOSFET common to all the memory cells. V-grooves 12 deep enough to reach the N<+> type are formed, and a gate electrode 14 made of the first layer polycrystalline Si film is formed on the side wall of this V-groove 12 via gate insulation film 13. An N<+> type layer 15 serving as the source region of the MOSFET is formed in the top of the V-groove 12. The MOS capacitor is composed of the first electrode 17 made of the second layer polycrystalline Si film stacked on the gate electrode 14 in contact with the N<+> type layer which is two source regions of the MOSFET in every memory cell, and of the second electrode 19 made of the third layer polycrystalline Si film formed thereon via insulation film 18.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、−個のMOSFETと一個のMOSキャパシ
タを用いてメモリセルを構成する半導体記憶装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device in which a memory cell is configured using - MOSFETs and one MOS capacitor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体記憶装置は、高集積化、大容量化の一途を辿って
いる。特に−個のMOSFETと一個のMOSキャパシ
タによりメモリセルを構成するMOSダイナミックRA
M (dRAM)は、そのメモリセル形式から最も集積
化が進んでおり、既に256にビットのものが実用化さ
れ、研究段階では1Mピットのものができている。
Semiconductor memory devices are becoming more highly integrated and larger in capacity. In particular, a MOS dynamic RA in which a memory cell is configured by - MOSFETs and one MOS capacitor.
M (dRAM) has the most advanced integration due to its memory cell format, and a 256-bit type has already been put into practical use, and a 1M-pit type is currently available at the research stage.

第8図は従来のメモリセルの断面である。21はp−型
S1基板、22.23はn”y−ス+ ドレイン、24
.25は多結晶シリコン膜により形成されたそれぞれゲ
ート電極、キャパシタ電極、26はA2線(ピット線)
である。このようなMOS−dRAMを今後更に高集積
化、大容量化するためにはいくつかの問題がある。例え
ば上記セルでは、平面的にMOSFET、MOSキャパ
シタ、ピット線とのコンタクトを有するため、メモリセ
ル寸法は縮小し難く高集積化できない。また、セル寸法
縮小によりキャパシタ面積が小さくなるにつれ、α線に
よるソフトエラーが起り易くなる。
FIG. 8 is a cross section of a conventional memory cell. 21 is p-type S1 substrate, 22.23 is n"y-s+ drain, 24
.. 25 is a gate electrode and a capacitor electrode formed of a polycrystalline silicon film, and 26 is an A2 line (pit line).
It is. There are several problems in increasing the integration and capacity of such MOS-dRAMs in the future. For example, since the above cell has contact with the MOSFET, MOS capacitor, and pit line in a plan view, it is difficult to reduce the memory cell size and high integration is not possible. Furthermore, as the capacitor area becomes smaller due to cell size reduction, soft errors due to alpha rays become more likely to occur.

即ち、パッケージ材料に含まれるU、Thなどの放射性
元素から放射されるα粒子は、基板に電子−正孔対を発
生させ、このうち電子がメモリセルのノードに達して記
憶情報を破壊する。一方、ピット線に達した電子はその
電位を変化させ、誤動作の原因となる。このようなソフ
トエラーは1Mビットレベルで既に重大な問題となって
いる。
That is, α particles emitted from radioactive elements such as U and Th contained in the package material generate electron-hole pairs in the substrate, and the electrons reach the nodes of the memory cells and destroy stored information. On the other hand, electrons that reach the pit line change its potential, causing malfunction. Such soft errors have already become a serious problem at the 1M bit level.

(発明の目的) 本発明の目的は、信頼性を損うことなく、高集積化、大
容量化を図った半導体記憶装置を提供することにある。
(Object of the Invention) An object of the present invention is to provide a semiconductor memory device that achieves high integration and large capacity without impairing reliability.

〔発明の概要〕[Summary of the invention]

本発明にかかる半導体記憶装置は、半導体基板に形成さ
れた溝の側壁を利用して縦方向にソース領域とドレイン
領域を形成してなるMOSFETと、このMOSFET
上に重ねて形成されたMOSキャパシタとからなるメモ
リセルを集積して構成する。ここでMOSFETは、溝
の底部に複数のメモリセルに共通のドレイン領域が形成
され、溝の上部に各メモリセル毎にソース領域が形成さ
れ、溝の側壁にゲート絶縁膜を介してゲート電極が形成
される。そし’rMOsキャパシタは、各メモリセル毎
にMOSFETのソース領域に接続してゲート電極上に
重ねられる第1の電極を形成し、この第1の電極上に絶
縁膜を介して第2の電極を形成して構成する。
A semiconductor memory device according to the present invention includes a MOSFET in which a source region and a drain region are vertically formed using the sidewalls of a trench formed in a semiconductor substrate, and
It is configured by integrating a memory cell consisting of a MOS capacitor formed on top of the memory cell. Here, in a MOSFET, a drain region common to multiple memory cells is formed at the bottom of the trench, a source region is formed for each memory cell at the top of the trench, and a gate electrode is formed on the sidewall of the trench via a gate insulating film. It is formed. In the 'rMOs capacitor, a first electrode is connected to the source region of the MOSFET for each memory cell and overlapped on the gate electrode, and a second electrode is formed on this first electrode via an insulating film. Form and compose.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、メモリセルは縦型MOSFET上にM
OSキャパシタが積層された構造となり、゛高密度化、
高集積化dRAMが得られる。また溝の対向する少なく
とも二つの側壁を利用してこれらの側壁の上部に二つの
ソース領域を設け、これら二つのソース領域間を接続す
るようにキャパシタの第1の電極を設けることにより、
メモリセルは小さい占有面積で大きい蓄積容量を持った
ものとすることができる。更に溝をV字溝とすれば、技
術的に確立された湿式のテーパエツチングを用いること
ができ、製造プロセス的にも有利である。
According to the present invention, the memory cell is arranged on the vertical MOSFET.
OS capacitors have a stacked structure, resulting in higher density,
A highly integrated dRAM can be obtained. Further, by using at least two opposing side walls of the trench to provide two source regions on top of these side walls, and providing the first electrode of the capacitor so as to connect between these two source regions,
A memory cell can have a large storage capacity with a small footprint. Furthermore, if the groove is a V-shaped groove, the technically established wet taper etching can be used, which is advantageous in terms of the manufacturing process.

また、ドレイン領域を全メモリセルに共通とし、キャパ
シタの第2の電極をピット線とすれば、溝底部に設けら
れたドレイン領域を動作中、所望の電位2例えばVcc
 (+5V)に固定することができる。このドレイン領
域はα線により生じた電子を吸収するので、セルモード
でのソフトエラーを緩和することができる。更にキャパ
シタ電極をピット線とすることにより、ピット線モード
でのソフトエラーは、センスアンプにおける基板接続部
に起因するものだけになるのでソフトエラーに関与する
基板面積が小さくなり、その改善を図ることができる。
Furthermore, if the drain region is common to all memory cells and the second electrode of the capacitor is a pit line, the drain region provided at the bottom of the groove can be set to a desired potential 2, for example, Vcc, during operation.
(+5V). Since this drain region absorbs electrons generated by α rays, soft errors in cell mode can be alleviated. Furthermore, by using the pit line as the capacitor electrode, soft errors in the pit line mode are only caused by the board connections in the sense amplifier, so the board area involved in soft errors is reduced, which can be improved. I can do it.

またMOSFETの寸法をそれ程小さくすることなく高
集積化できるため、平面に形成したMOSFETに比べ
てホットエレクトロンによるしきい値変動に強くなり、
dRAMの信頼性向上が図られる。
In addition, because MOSFETs can be highly integrated without reducing their dimensions, they are more resistant to threshold fluctuations caused by hot electrons than MOSFETs formed on a flat surface.
The reliability of dRAM is improved.

(発明の実施例〕 本発明の実施例を図面を参照して説明する。(Example of the invention) Embodiments of the present invention will be described with reference to the drawings.

第1図は一実施例のメモリセル配列部の模式的平面図で
あり、第2図はそのA−A−断面図である。第1図の斜
線部が各メモリセルのMOSキャパシタ領域となってい
る。第2図に示すように、p型3i出発基板11t l
cn+型層112.1)−型層113が積層された三層
構造を有するρ−型基板11にメモリセルが集積形成さ
れている。
FIG. 1 is a schematic plan view of a memory cell arrangement section of one embodiment, and FIG. 2 is a cross-sectional view taken along line AA. The shaded area in FIG. 1 is the MOS capacitor area of each memory cell. As shown in FIG. 2, p-type 3i starting substrate 11t l
Memory cells are integrated and formed on a ρ- type substrate 11 having a three-layer structure in which a cn+ type layer 112.1)- type layer 113 is laminated.

n+型層112は全メモリセルに共通のMOSFETの
ドレイン領域となる層である。このような基板11に、
n+型層に達する深さのV字溝12が形成され、このV
字溝12の側壁にゲート絶縁膜13を介して第1層多結
晶シリコン膜によるゲート電極14が形成されている。
The n+ type layer 112 is a layer that becomes a drain region of a MOSFET common to all memory cells. On such a substrate 11,
A V-shaped groove 12 with a depth reaching the n+ type layer is formed, and this V-shaped groove 12 is
A gate electrode 14 made of a first layer polycrystalline silicon film is formed on the side wall of the groove 12 with a gate insulating film 13 interposed therebetween.

V字溝12の上部にはMOSFETのソース領域となる
n+型層15が形成されている。このn+型層15は各
メモリセル毎に溝12を挟んで対向するように二つずつ
設けられている。ゲート電極14は、第1図に示すよう
に列方向のメモリセルに共通に配設されてワード線を構
成している。MOSキャパシタは、各メモリセル毎にM
OSFETの二つのソース領域であるn+型層にコンタ
クトしてゲート電極14上に重ねられた。第2層多結晶
シリコン膜からなる第1の電極17と、この上に絶縁膜
18を介して形成された第3層多結晶シリコン膜からな
る第2の電極19により構成されている。第2の電極1
9は行方向に連続的に配設されてビット線を構成してい
る。16.20は層間絶縁膜である。
An n+ type layer 15 is formed above the V-shaped groove 12 to serve as a source region of the MOSFET. Two n+ type layers 15 are provided for each memory cell so as to face each other with the trench 12 in between. As shown in FIG. 1, the gate electrode 14 is commonly disposed in the memory cells in the column direction and forms a word line. The MOS capacitor is M for each memory cell.
It was overlaid on the gate electrode 14 in contact with the n+ type layer, which is the two source regions of the OSFET. It consists of a first electrode 17 made of a second layer polycrystalline silicon film, and a second electrode 19 made of a third layer polycrystalline silicon film formed thereon with an insulating film 18 interposed therebetween. second electrode 1
The bit lines 9 are arranged continuously in the row direction. 16.20 is an interlayer insulating film.

第3図(a)はメモリセルの等価回路を示している。M
OSFET−Qのドレインは第2図で説明したように全
ビットに共通のn+型層112であり、これがVcc(
例えば、5V)に接続される。そのためにはチップ周辺
でVcc線とn+型層112のコンタクトをとることが
行われる。MOSFET−Qのゲート電極兼ワード線W
Lは第1層多結晶シリコン膜により、MOSキャパシタ
Cの第2の電極兼ビット線BLは第3層多結晶シリコン
膜により形成されることは前述の通りである。
FIG. 3(a) shows an equivalent circuit of a memory cell. M
The drain of OSFET-Q is the n+ type layer 112 common to all bits as explained in FIG.
For example, it is connected to 5V). For this purpose, contact is made between the Vcc line and the n+ type layer 112 around the chip. Gate electrode and word line W of MOSFET-Q
As described above, L is formed of the first layer polycrystalline silicon film, and the second electrode/bit line BL of the MOS capacitor C is formed of the third layer polycrystalline silicon film.

第3図(b)(c)にこのメモリセルの書込み。Writing to this memory cell is shown in FIGS. 3(b) and 3(c).

読み出し時の動作電圧例を示す。Vccは正電圧例えば
+5V、基板電位は例えば−3vとする。
An example of operating voltage during reading is shown. Vcc is a positive voltage, for example, +5V, and the substrate potential is, for example, -3V.

先ず第3(b)のように“0′°書込み、読み出しの時
は、そのセルのワード線WLを8VとしてMOSFET
をオンさせ、ピットIBLをOVとする。これにより、
ノードNsは5v程度になる。
First, as shown in 3rd (b), when writing and reading "0'°, the word line WL of the cell is set to 8V and the MOSFET is
is turned on, and the pit IBL is set to OV. This results in
The voltage at the node Ns is approximately 5V.

これにより書込みがなされる。次いでWLをOvとし、
BLをVccと同じ5vにするとノードNsの電位は上
昇し、9v程度になる。これがプリチャージである。そ
してこのセルを読み出す時はWLに8■を与える。これ
によりBLの電位は、5−5X4XCs / (Ca 
+Cs )[V]となる。ここで、Caはセル・キャパ
シタの容量。
Writing is thereby performed. Then, let WL be Ov,
When BL is set to 5V, which is the same as Vcc, the potential of node Ns increases to about 9V. This is precharge. When reading this cell, 8■ is given to WL. As a result, the potential of BL becomes 5-5X4XCs/(Ca
+Cs) [V]. Here, Ca is the capacitance of the cell capacitor.

CBはBLの附随容量である。従ってこのBLの電位を
センスアンプにより基準電位と比較すればよい。
CB is the associated capacity of BL. Therefore, the potential of this BL may be compared with a reference potential using a sense amplifier.

同様に、゛1″書込み、読み出しの時は第3図(c)に
示すように、WL=8V、BL−5Vと−し、Ns =
5Vとして書込みを行なう。プリチャージ時はWL−O
V、BL=5V、Ns−5Vとする。従ってWL−8V
とするとBLには5■が現われ、“1″読み出しがなさ
れる。
Similarly, when writing and reading "1", as shown in FIG. 3(c), WL=8V, BL-5V, and Ns=
Write as 5V. WL-O when precharging
V, BL=5V, Ns-5V. Therefore WL-8V
Then, 5■ appears in BL, and "1" is read out.

次に本実施例のClRAMの製造工程例を第4図を参照
して説明する。第4図(a)〜(C)は第2図の断面図
に対応する工程断面図である。
Next, an example of the manufacturing process of the ClRAM of this embodiment will be explained with reference to FIG. FIGS. 4(a) to 4(C) are process sectional views corresponding to the sectional view of FIG. 2.

先ず(a)に示すように、ρ型S1出発基板111上に
、高濃度にリンを拡散して全メモリセルに共通のドレイ
ン領域となるn“型層112を形成し、次いでこの上に
低濃度にボロンを含んだp−型層113をエピタキシャ
ル成長させる。このp−型層113の不純物濃度はMO
SFETのしきい値を決定するために重要であり、例え
ば1 X 10” /ex3とする。このような三層構
造の基板11にPEP工程を経て、n1型M!11−2
に達する深さのV字溝12をエツチング形成する。
First, as shown in (a), on a ρ-type S1 starting substrate 111, phosphorus is diffused at a high concentration to form an n''-type layer 112 which will become a common drain region for all memory cells, and then a low-concentration layer 112 is formed on this. A p-type layer 113 containing boron is epitaxially grown.The impurity concentration of this p-type layer 113 is MO
It is important to determine the threshold value of the SFET, for example, 1 x 10"/ex3. After the PEP process is performed on the substrate 11 with such a three-layer structure, an n1 type M!11-2 is formed.
A V-shaped groove 12 with a depth reaching 100 mm is formed by etching.

例えば(100)基板を用いた場合、KOI−1を用い
たウェットエツチングにより容易に7字溝が形成される
。この後(b)に示すように、ゲート絶縁膜13として
例えば熱酸化膜を形成し、第1層多結晶シリコン膜を堆
積し、これをv字溝12内に埋設するようにバターニン
グしてゲート電極14を形成する。そして各メモリセル
領域毎に独立にMOSFETのソース領域となるn+型
M15をイオン注入により形成する。第5図はこの状態
を示す斜視図である。V字溝12は基板11上に一方向
に連続的に形成され、谷溝12に連続的にゲート電極1
4が配設されて、このゲート電極14がワード線となる
。この後(C)に示すように、層間絶縁[16としてC
VD酸化膜を形成し、PEP工程を経てn+型層上にコ
ンタクト孔を形成して第2M多結晶シリコン膜によりM
OSキャパシタの第1の電極17を形成する。第1の電
極17は、各メモリセル領域の溝12を挟んで対向する
二つのソース領域であるn+型層15に同時にコンタク
トしてゲート電極14上を覆うように、各メモリセル毎
に独立に形成される。そしてこの第1の電極17上に、
第2図に示すように、キャパシタ絶縁膜18として例え
ば200人の熱酸化膜を形成し、第3層多結晶シリコン
膜の堆積、バターニングによりビット線を兼ねるキャパ
シタの第2の電極19を形成する。
For example, when a (100) substrate is used, a 7-shaped groove can be easily formed by wet etching using KOI-1. After that, as shown in (b), a thermal oxide film, for example, is formed as the gate insulating film 13, a first layer polycrystalline silicon film is deposited, and this is patterned so as to be buried in the V-groove 12. A gate electrode 14 is formed. Then, n+ type M15, which will become the source region of the MOSFET, is formed independently in each memory cell region by ion implantation. FIG. 5 is a perspective view showing this state. The V-shaped groove 12 is continuously formed in one direction on the substrate 11, and the gate electrode 1 is continuously formed in the valley groove 12.
4 is provided, and this gate electrode 14 becomes a word line. After this, as shown in (C), the interlayer insulation [16 is C
A VD oxide film is formed, a contact hole is formed on the n+ type layer through a PEP process, and a 2M polycrystalline silicon film is used to form an M
A first electrode 17 of the OS capacitor is formed. The first electrode 17 is provided independently for each memory cell so as to simultaneously contact two n+ type layers 15, which are two source regions facing each other across the trench 12 in each memory cell region, and cover the gate electrode 14. It is formed. And on this first electrode 17,
As shown in FIG. 2, a thermal oxide film of, for example, 200 layers is formed as the capacitor insulating film 18, and a second electrode 19 of the capacitor which also serves as a bit line is formed by depositing and buttering a third layer polycrystalline silicon film. do.

このようにして形成される本実施例のdRAMは、次の
ような利点を持つ。先ず■V字溝に縦型MOSFETを
構成し、このMOSFET上に重なるようにMOSキャ
パシタを構成しているため、メモリセル面積に対するキ
ャパシタ部の面積が大きく、従って小さいメモリセルの
占有面積で大きいキャパシタ容量を得ることができる。
The dRAM of this embodiment formed in this manner has the following advantages. First, a vertical MOSFET is configured in the V-shaped groove, and a MOS capacitor is configured to overlap this MOSFET, so the area of the capacitor part is large relative to the area of the memory cell. Therefore, a large capacitor can be formed with a small area occupied by a memory cell. capacity can be obtained.

また本実施例のメモリセルは、情報電荷を蓄積するキャ
パシタと出発基板111との間がpn接合障壁で隔てら
れているため、ソフトエラーに対して強いものとなって
いる。また一つのMOSFETは、溝の対向する側壁を
共にチャネル領域として利用しているため、チャネル幅
が大きくとれ、従って絶縁膜をさほど薄くする必要もな
く、ホットエレクトロンによるしきい値変動が少なくな
る。また7字溝の加工技術は既に確立されたものであっ
て、歩留り良く高集積化dRAMを得ることが可能であ
る。
Furthermore, the memory cell of this embodiment is resistant to soft errors because the capacitor that stores information charges and the starting substrate 111 are separated by a pn junction barrier. In addition, since one MOSFET uses both the opposing sidewalls of the trench as a channel region, the channel width can be increased, and therefore the insulating film does not need to be made very thin, and threshold fluctuations due to hot electrons are reduced. Further, the processing technology for the figure 7 groove has already been established, and it is possible to obtain highly integrated dRAMs with a high yield.

本発明は上記実施例に限られず、種々変形して実施する
ことができる。
The present invention is not limited to the above embodiments, and can be implemented with various modifications.

第6図および第7図は、エピタキシャル基板を用いず、
本発明のdRAMを実現した実施例である。第6図は平
面図、第7図はそのA−A”断面図である。先の実施例
と対応する部分には同じ符号を付して詳細な説明は省く
。即ちこの実施例では、p−型S1基板11を用いてV
字溝12を形成した後、イオン注入によりMOSFET
−Qのドレイン領域となるnゝ型層31を形成している
6 and 7 do not use an epitaxial substrate,
This is an embodiment of the dRAM of the present invention. FIG. 6 is a plan view, and FIG. 7 is a cross-sectional view taken along the line A-A''. Portions corresponding to those in the previous embodiment are given the same reference numerals and detailed explanations are omitted. That is, in this embodiment, p - V using type S1 substrate 11
After forming the groove 12, MOSFET is formed by ion implantation.
An n-type layer 31 is formed to serve as a -Q drain region.

n+型131は第6図に斜線で示すように全メモリセル
に共通になるように形成される。また7字溝形成の後、
全面にp型不純物をイオン注入してMOSFETのしき
い値制御用のp型層32を形成している。以上の他は先
の実施例と異なるところがない。
The n+ type 131 is formed to be common to all memory cells as shown by diagonal lines in FIG. After forming the 7-shaped groove,
A p-type layer 32 for controlling the threshold voltage of the MOSFET is formed by ion-implanting p-type impurities into the entire surface. Other than the above, there is no difference from the previous embodiment.

この実施例によればエピタキシャル層形成の工程を省略
することができる。エピタキシャル層は欠陥が多い。エ
ピタキシャル層を用いない本実施例は信頼性の点で有利
である。またMOSFETのしきい値制御のため全面に
形成するp型層は素子分離層としても役立つ。
According to this embodiment, the step of forming an epitaxial layer can be omitted. Epitaxial layers have many defects. This embodiment, which does not use an epitaxial layer, is advantageous in terms of reliability. Furthermore, the p-type layer formed over the entire surface to control the threshold value of the MOSFET also serves as an element isolation layer.

なお以上の実施例では、7字溝を一方向に連続的に形成
したが、必ずしも連続している必要はなく、各メモリセ
ル領域にのみ溝を形成することもできる。ざらに以上の
実施例では、MOSFETのドレイン領域となるn+型
層を全メモリセルに共通に設け、これを固定電位として
動作させるようにしたが、このn+型層を一方向につい
てのみ連続的に設けてこれをビット線とし、キャパシタ
の第2の電極を全面の設けてこれを固定電位として、通
常の動作モードとすることも可能である。
In the above embodiments, the 7-shaped grooves were formed continuously in one direction, but they do not necessarily have to be continuous, and the grooves may be formed only in each memory cell region. Roughly speaking, in the above embodiment, an n+ type layer serving as the drain region of the MOSFET was provided in common for all memory cells, and this layer was operated at a fixed potential. It is also possible to provide a bit line and provide the second electrode of the capacitor over the entire surface and set it at a fixed potential for normal operation mode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のdRAMの模式的平面図、
第2図はそのA−A−断面図、第3図(a)〜(C)は
メモリセルの等価回路図および動作電圧関係を示す図1
、第4図(a)〜(C)は本実施例のdRAMの製造工
程を示す断面図、第5図は第4図(1))の状態を示す
斜視図、第6図は本発明の他の実施例のdRAM構造を
示す平面図、第7図はそのA−A−断面図、第8図は従
来例のdRAMの断面図である。 11・・・3i基板、111・・・p型出元基板、11
2・・・n+型層くドレイン領域)、113・・・p−
型層、12・・・7字溝、13・・・ゲート絶縁膜、1
4・・・ゲート電極兼ワード線(第1層多結晶シリコン
膜)、15・・・n+型層(ソース領域)、16゜20
・・・層間絶縁謄、17・・・キャパシタの第1の電極
(第2層多結晶シリコン膜)、18・・・キャパシタ絶
縁膜、1つ・・・キャパシタの第2の電極兼ビット線(
第3層多結晶シリコン膜)。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第81Xi
FIG. 1 is a schematic plan view of a dRAM according to an embodiment of the present invention;
Figure 2 is a cross-sectional view taken along the line A-A, and Figures 3 (a) to (C) are equivalent circuit diagrams of the memory cell and Figure 1 showing the operating voltage relationships.
, FIGS. 4(a) to (C) are cross-sectional views showing the manufacturing process of the dRAM of this embodiment, FIG. 5 is a perspective view showing the state of FIG. 4(1)), and FIG. FIG. 7 is a plan view showing a dRAM structure of another embodiment, FIG. 7 is a sectional view taken along the line AA, and FIG. 8 is a sectional view of a conventional dRAM. 11...3i substrate, 111...p type source substrate, 11
2...n+ type drain region), 113...p-
Mold layer, 12...7-shaped groove, 13... Gate insulating film, 1
4... Gate electrode/word line (first layer polycrystalline silicon film), 15... n+ type layer (source region), 16°20
... Interlayer insulation, 17... Capacitor first electrode (second layer polycrystalline silicon film), 18... Capacitor insulating film, one... Capacitor second electrode and bit line (
3rd layer polycrystalline silicon film). Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 81Xi

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板に、MOSFETとMOSキャパシタ
からなるメモリセルを集積して構成される半導体記憶装
置において、前記MOSFETは、前記基板に形成され
た溝の底部に複数のメモリセルに共通に設けられたドレ
イン領域と、前記溝の上部に各メモリセル毎に設けられ
たソース領域と、前記溝の側壁に絶縁膜を介して形成さ
れたゲート電極とから構成され、前記MOSキャパシタ
は、各メモリセル毎の前記ソース領域に接続して前記ゲ
ート電極上に重ねられた第1の電極と、この第1の電極
上に絶縁膜を介して形成された第2の電極とから構成さ
れていることを特徴とする半導体記憶装置。
(1) In a semiconductor memory device configured by integrating memory cells each consisting of a MOSFET and a MOS capacitor on a semiconductor substrate, the MOSFET is provided commonly to a plurality of memory cells at the bottom of a groove formed in the substrate. The MOS capacitor includes a drain region provided for each memory cell in the upper part of the trench, a source region provided for each memory cell on the upper part of the trench, and a gate electrode formed on the side wall of the trench with an insulating film interposed therebetween. a first electrode connected to each source region and overlaid on the gate electrode; and a second electrode formed on the first electrode with an insulating film interposed therebetween. Characteristic semiconductor memory device.
(2)前記溝は、基板に一方向に沿つて連続的に形成さ
れたV字溝であり、このV字溝の側壁に形成される前記
MOSFETのゲート電極はV字溝に沿つて連続的に配
設されてワード線を構成し、MOSキャパシタの第2の
電極は前記V字溝と交差する方向に連続的に配設されて
ビット線を構成する特許請求の範囲第1項記載の半導体
記憶装置。
(2) The groove is a V-shaped groove continuously formed along one direction in the substrate, and the gate electrode of the MOSFET formed on the side wall of this V-shaped groove is continuously formed along the V-shaped groove. 2. The semiconductor according to claim 1, wherein the second electrode of the MOS capacitor is arranged continuously in a direction intersecting the V-shaped groove to form a bit line. Storage device.
(3)前記基板は、第1導電型の出発基板に高不純物濃
度の第2導電型層、この上に低不純物濃度の第1導電型
層が重ねられた三層構造であり、前記溝は、前記低不純
物濃度の第1導電型層表面から前記高不純物濃度の第2
導電型層に達する深さに形成され、前記第2導電型層が
全メモリセルに共通のMOSFETのドレイン領域とな
り、MOSFETのソース領域は前記溝の上部の前記低
不純物濃度の第1導電型層表面に形成される特許請求の
範囲第1項記載の半導体記憶装置。
(3) The substrate has a three-layer structure in which a starting substrate of a first conductivity type, a second conductivity type layer with a high impurity concentration, and a first conductivity type layer with a low impurity concentration are stacked thereon, and the groove is , from the surface of the first conductivity type layer with a low impurity concentration to the second conductivity type layer with a high impurity concentration.
The second conductivity type layer is formed to a depth that reaches the conductivity type layer, and the second conductivity type layer becomes a drain region of a MOSFET common to all memory cells, and the MOSFET source region is formed in the low impurity concentration first conductivity type layer above the trench. A semiconductor memory device according to claim 1, which is formed on a surface.
JP59263306A 1984-12-13 1984-12-13 Semiconductor memory device Pending JPS61140172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59263306A JPS61140172A (en) 1984-12-13 1984-12-13 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59263306A JPS61140172A (en) 1984-12-13 1984-12-13 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS61140172A true JPS61140172A (en) 1986-06-27

Family

ID=17387643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59263306A Pending JPS61140172A (en) 1984-12-13 1984-12-13 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS61140172A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234167A (en) * 1990-09-04 1992-08-21 Motorola Inc Dynamic random access memory cell and its manufacture
US5275965A (en) * 1992-11-25 1994-01-04 Micron Semiconductor, Inc. Trench isolation using gated sidewalls
JPH06232370A (en) * 1992-12-30 1994-08-19 Hyundai Electron Ind Co Ltd Dynamic ram cell
US5362665A (en) * 1994-02-14 1994-11-08 Industrial Technology Research Institute Method of making vertical DRAM cross point memory cell
FR2919112A1 (en) * 2007-07-16 2009-01-23 St Microelectronics Crolles 2 Integrated circuit e.g. Dynamic RAM cell, has bit line located under structure that acts as gate to control channel, and capacitor includes electrode that comprises common layer with part of source and/or drain region of transistor
JP2012252770A (en) * 2011-05-10 2012-12-20 Semiconductor Energy Lab Co Ltd Gain-cell type semiconductor memory device and driving method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234167A (en) * 1990-09-04 1992-08-21 Motorola Inc Dynamic random access memory cell and its manufacture
US5275965A (en) * 1992-11-25 1994-01-04 Micron Semiconductor, Inc. Trench isolation using gated sidewalls
JPH06232370A (en) * 1992-12-30 1994-08-19 Hyundai Electron Ind Co Ltd Dynamic ram cell
US5362665A (en) * 1994-02-14 1994-11-08 Industrial Technology Research Institute Method of making vertical DRAM cross point memory cell
FR2919112A1 (en) * 2007-07-16 2009-01-23 St Microelectronics Crolles 2 Integrated circuit e.g. Dynamic RAM cell, has bit line located under structure that acts as gate to control channel, and capacitor includes electrode that comprises common layer with part of source and/or drain region of transistor
JP2012252770A (en) * 2011-05-10 2012-12-20 Semiconductor Energy Lab Co Ltd Gain-cell type semiconductor memory device and driving method thereof
US9443844B2 (en) 2011-05-10 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Gain cell semiconductor memory device and driving method thereof

Similar Documents

Publication Publication Date Title
EP0175433B1 (en) Mos dynamic ram and manufacturing method thereof
US5220530A (en) Semiconductor memory element and method of fabricating the same
JP4559728B2 (en) Semiconductor memory device
US4855953A (en) Semiconductor memory device having stacked memory capacitors and method for manufacturing the same
US5243209A (en) Semiconductor memory device including junction field effect transistor and capacitor and method of manufacturing the same
JPS602784B2 (en) semiconductor storage device
US6048767A (en) Method of forming a semiconductor memory device
JPS61140170A (en) Semiconductor memory device
JPH0637269A (en) Junction-type field effect transistor, memory device equipped therewith, and manufacture thereof
US5250458A (en) Method for manufacturing semiconductor memory device having stacked memory capacitors
US5010379A (en) Semiconductor memory device with two storage nodes
US5258321A (en) Manufacturing method for semiconductor memory device having stacked trench capacitors and improved intercell isolation
JPS61140172A (en) Semiconductor memory device
JPH0640573B2 (en) Semiconductor integrated circuit device
JPH0576785B2 (en)
JPS6136384B2 (en)
US6034390A (en) Multi-bit trench capacitor
JPH0642534B2 (en) Method of forming a contact on a wall extending to a substrate
JP2574231B2 (en) Semiconductor memory device
JPS62137863A (en) Semiconductor memory device
JPS60109265A (en) Semiconductor ic device
JP2554332B2 (en) 1-transistor type dynamic memory cell
JPH0691216B2 (en) Semiconductor memory device
JPS62208662A (en) Semiconductor memory
JPS6240868B2 (en)