JPS61112389A - High speed axial flow type gas laser device - Google Patents

High speed axial flow type gas laser device

Info

Publication number
JPS61112389A
JPS61112389A JP23444684A JP23444684A JPS61112389A JP S61112389 A JPS61112389 A JP S61112389A JP 23444684 A JP23444684 A JP 23444684A JP 23444684 A JP23444684 A JP 23444684A JP S61112389 A JPS61112389 A JP S61112389A
Authority
JP
Japan
Prior art keywords
discharge tube
mode
discharge
axial flow
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23444684A
Other languages
Japanese (ja)
Inventor
Katsumi Kiriyama
桐山 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23444684A priority Critical patent/JPS61112389A/en
Publication of JPS61112389A publication Critical patent/JPS61112389A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To suppress the higher mode effectively without substantially increasing fluid resistance, by adding a ridge part to a cylindrical discharge electrode. CONSTITUTION:A cathode electrode 21c is composed of the following parts: a cylinder part, which is fixed to the outer wall of an insulating discharge tube 10 made of glass and the like; and a concentric disk shaped ridge part, which penetrates the tube wall of the discharge tube 10 from the inner surface of said cylinder part and is protruded into the central part of the tube. The inner diameter (d) of the ridge part is set at the value smaller than the inner diameter D of the discharge tube. As a result, diffraction losses are yielded with respect to both lower mode and higher mode at the ridge part. The diffraction loss becomes especially large at the higher mode. The ridge part is formed so that the output is lowered by 10%-20% with respect to the lower order mode of TM00 mode. Then it is possible to suppress all the higher modes to begin with the TM01 mode to the degree, which does not pose a practical problem.

Description

【発明の詳細な説明】 発明の目的 産業上の利用分野 本発明は、高速軸流形ガスレーザー装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high-speed axial gas laser device.

従来の技術 レーザー加工用の炭酸ガスレーザー等高出力ガスレーザ
ー装置では、一層の高出力化を図るため高速軸流形のも
のが開発されている。
BACKGROUND ART High-speed axial flow type high-power gas laser devices such as carbon dioxide lasers for laser processing have been developed in order to achieve even higher output.

この高速軸流形ガスレーザー装置は、冷却したレーザー
ガス流を円筒形状の電気絶縁性放電管の軸線方向に高速
で流動させつつレーザー発振を行わせるものであり1発
振光学系の光軸、放電々流の方向及びレーザーガス流の
方向のいずれもが放電管の軸線方向と一致する。
This high-speed axial flow gas laser device performs laser oscillation while flowing a cooled laser gas flow at high speed in the axial direction of a cylindrical electrically insulating discharge tube. Both the direction of the direct flow and the direction of the laser gas flow coincide with the axial direction of the discharge tube.

上記高速軸流形ガスレーザー装置では、放電領域の拡大
による高出力化を図るうえで放電管の管路長を長くする
ことが望ましいが、管路長の増大に伴って放電々圧が上
昇し、電気的絶縁が一層困難になる。また、管路長の増
大に伴ってレーザーガス流の流動抵抗が増大し、高吐出
圧の流動発生機構が必要になり、装置のコストが上昇す
ると共にエネルギー変換効率も低下する。そこで、複数
個の放電領域を電気的及び流体力学的には16列動作さ
せると共に、光学的には直列動作させる構成の高出力ガ
スレーザー装置が開発されている。
In the above-mentioned high-speed axial flow gas laser device, it is desirable to increase the length of the discharge tube in order to increase the output by expanding the discharge area, but as the length of the discharge tube increases, the discharge pressure increases. , electrical isolation becomes more difficult. Furthermore, as the pipe length increases, the flow resistance of the laser gas flow increases, necessitating a flow generation mechanism with a high discharge pressure, which increases the cost of the device and lowers the energy conversion efficiency. Therefore, a high-power gas laser device has been developed in which a plurality of discharge regions are electrically and fluid-dynamically operated in 16 rows, and optically operated in series.

発明が解決しようとする問題点 一ヒ記高速軸流形ガスレーザー装置では、放電管のアノ
ード又はカソードの一方又は双方は、電気絶縁性の放電
管の管壁に装着された円筒形状の電極から構成され、放
電領域の径は放電管の径とほぼ等しくなるように構成さ
れている。従って、さらに流動抵抗の低減化と高出力化
を図るためには。
Problems to be Solved by the Invention (1) In a high-speed axial flow gas laser device, one or both of the anode and cathode of the discharge tube is formed from a cylindrical electrode attached to the wall of the electrically insulating discharge tube. The diameter of the discharge region is configured to be approximately equal to the diameter of the discharge tube. Therefore, in order to further reduce flow resistance and increase output.

放電管の径を一層大きくすることが必要になる。It becomes necessary to further increase the diameter of the discharge tube.

しかしながら、放電管の径(電極の径)を大きくすると
9種々の高次モードの発振が生じ、このようなレーザー
ビームを穴あけや切断等の加工に使用する場合、低次モ
ードのみによるレーザービームを使用する場合に比べて
断面精度等の加工精度が数倍低下する。
However, when the diameter of the discharge tube (diameter of the electrode) is increased, 9 different higher-order modes of oscillation occur, and when such a laser beam is used for processing such as drilling or cutting, it is difficult to use a laser beam with only low-order modes. Machining accuracy such as cross-sectional accuracy will be reduced several times compared to when using this method.

従って、加工精度を高める上で放電管径を低次モードの
レーザービーム径よりも20%〜50%程度大きな値に
とどめることが望ましいが、従来は流動抵抗の低減と高
出力化を図る必要上、放電管径を低次モードのレーザー
ビーム径の2倍程度もの大きな値としていた。
Therefore, in order to improve machining accuracy, it is desirable to keep the diameter of the discharge tube at a value approximately 20% to 50% larger than the laser beam diameter of the low-order mode, but in the past, it was necessary to reduce flow resistance and increase output. The diameter of the discharge tube was set to be approximately twice the diameter of the low-order mode laser beam.

発明の構成 問題点を解決するための手段 上記従来技術の問題点を解決する本発明の高速軸流形ガ
スレーザー装置は、放電管の管壁に形成される円筒形状
の放電々極のうち少なくとも1個に、内面から中心部に
向けて突出する同心円板形状のリッジ部を形成し、この
リッジ部の内径を放電管の内径よりも小さくすることに
より、大きな管径のもとで高次モードの発生を抑圧する
ように構成されている。
Structure of the Invention Means for Solving the Problems The high-speed axial flow gas laser device of the present invention which solves the problems of the prior art described above has at least one of the cylindrical discharge electrodes formed on the wall of the discharge tube. By forming a concentric disk-shaped ridge part that protrudes from the inner surface toward the center in one piece, and making the inner diameter of this ridge part smaller than the inner diameter of the discharge tube, higher-order modes can be suppressed even under large tube diameters. It is designed to suppress the occurrence of

以下2本発明の作用を実施例によって詳細に説明する。The effects of the present invention will be explained in detail below using two examples.

実施例 第1図は、°本発明の高速軸流形ガスレーザー装置の一
実施例の要部の構成を示す断面図である。     ハ
図中、10は円筒形状の放電管、11はレーザーガス供
給部、12.13はレーザーガス排出部。
Embodiment FIG. 1 is a sectional view showing the structure of a main part of an embodiment of a high-speed axial flow type gas laser apparatus of the present invention. In the figure, 10 is a cylindrical discharge tube, 11 is a laser gas supply section, and 12.13 is a laser gas discharge section.

2Qa、21aはアノード電極、20c、21cはカソ
ード電極、30は出力ミラー、31は全反射ミラーであ
る。
2Qa and 21a are anode electrodes, 20c and 21c are cathode electrodes, 30 is an output mirror, and 31 is a total reflection mirror.

この高速軸流形ガスレーザー装置は、高出力化を図るた
め、2個の電極対(20a、  20 c)と(21a
、  21 c)のそれぞれの間に形成される2個の放
電領域を電気的及び流体力学的には並列動作させると共
に、光学的には、2個のミラー30と31との間で直列
動作させる構成をとっている。
This high-speed axial flow gas laser device has two electrode pairs (20a, 20c) and (21a) in order to achieve high output.
, 21 c) are electrically and fluid-dynamically operated in parallel, and optically operated in series between the two mirrors 30 and 31. It is structured.

すなわち、接地されたピン形状のアノード電極20aと
2放電管10の外壁上に装着された円筒形状のカソード
電極20cとの間に1つの放電領域が形成され、同様に
、接地されたピン形状のアノード電極21aと、放電管
10の外壁上に装着された円筒形状のカソード電極21
Cとの間に他の1つの放電領域が形成される。
That is, one discharge region is formed between the grounded pin-shaped anode electrode 20a and the cylindrical cathode electrode 20c mounted on the outer wall of the two discharge tubes 10, and similarly, the grounded pin-shaped An anode electrode 21a and a cylindrical cathode electrode 21 mounted on the outer wall of the discharge tube 10
Another discharge region is formed between C and C.

また、これら各放電領域には、熱交換機で冷却されたC
O□、N2.Hez等のレーザーガスが高速ファンによ
ってレーザーガス供給部11から供給され、高速ガスジ
ェットとなって各放電領域を通過しレーザーガス排出部
12と13から排出される。
In addition, each of these discharge areas is equipped with C cooled by a heat exchanger.
O□, N2. A laser gas such as Hez is supplied from the laser gas supply section 11 by a high-speed fan, passes through each discharge region as a high-speed gas jet, and is discharged from the laser gas discharge sections 12 and 13.

出力ミラー30と全反射ミラー31との間を1本のレー
ザービームが往復することにより、2個の放T!l領域
が光学的に直列動作する。ガス流によって光路が乱され
9発振が不安定になるのを防1卜するため、必要に応じ
て9図示しないレーザー発振装置からのインジェクショ
ン・ロックが行われる。
By reciprocating one laser beam between the output mirror 30 and the total reflection mirror 31, two T! The l regions operate optically in series. In order to prevent the optical path from being disturbed by the gas flow and the 9 oscillation becoming unstable, injection locking from the laser oscillation device (not shown) is performed as necessary.

なお、ミラー30.31の位置を調整するためのジンバ
ルないしはベローズ等の装置については。
Regarding devices such as gimbals or bellows for adjusting the position of the mirrors 30 and 31.

従来例と同様であるため図示を省略している。Since it is the same as the conventional example, illustration is omitted.

カソード電極21Cは、ガラス等電気絶縁性の放電管1
0の外壁上に固着された円筒部と、この円筒部の内面か
ら放電管10の管壁を貫いて中心部に突出する同心円板
形状のりソジ部とから形成されている。リッジ部の内径
dは、放電管の内径りよりも小さな値に設定されている
The cathode electrode 21C is a discharge tube 1 made of electrically insulating material such as glass.
It is formed from a cylindrical part fixed on the outer wall of the discharge tube 10, and a concentric disk-shaped glue part that protrudes from the inner surface of the cylindrical part through the tube wall of the discharge tube 10 to the center. The inner diameter d of the ridge portion is set to a smaller value than the inner diameter of the discharge tube.

この結果、このリッジ部において低次モードと高次モー
ドの双方に対して回折損失が生ずるが。
As a result, diffraction loss occurs in both the low-order mode and the high-order mode in this ridge portion.

この回折m失は高次モードに対して一段と大きくなる。This diffraction m-loss becomes even larger for higher-order modes.

典型的には、TM、。モードの低次モードに対して10
%乃至20%の出力低下を招く程度のリッジ部を形成し
てやれば、TMo、をはじめとする全ての高次モードを
実用上問題とならない程度の大きさまで抑圧することが
可能である。このようなりソジ部の光軸方向の長さは数
mmもあれば充分であるから、リッジ部の存在に伴う流
動抵抗の増加は実質的に無視できる。
Typically, TM. 10 for the lower mode of the mode
By forming a ridge portion that causes an output drop of 20% to 20%, all higher-order modes including TMo can be suppressed to a level that does not pose a practical problem. Since it is sufficient that the length of the solid portion in the optical axis direction is several mm, the increase in flow resistance due to the presence of the ridge portion can be substantially ignored.

なお、カソード電極20cにも同様のりソジ部を形成す
れば、高次モードを一層有効に抑圧することができる。
Note that if a similar glued portion is formed on the cathode electrode 20c, higher-order modes can be suppressed even more effectively.

また、放電々極の円筒形状部を放電管の外壁上に装着す
る代わりに、第2図の部分断面図に例示するように、放
電管10の内壁上に融着等により固着する構成としても
よい。
Alternatively, instead of mounting the cylindrical portion of the discharge pole on the outer wall of the discharge tube, it may be fixed on the inner wall of the discharge tube 10 by welding or the like, as illustrated in the partial sectional view of FIG. good.

以上、カソード電極をビン状電極とする構成を例示した
が、これもアノード電極と同様の円筒形状の電極で構成
してもよい。この場合、アノード電極とカソード電極の
いずれか一方又は双方にリッジ部を形成してやればよい
Although the configuration in which the cathode electrode is a bottle-shaped electrode has been exemplified above, this may also be configured with a cylindrical-shaped electrode similar to the anode electrode. In this case, a ridge portion may be formed on either or both of the anode electrode and the cathode electrode.

また、複数個の放電々極対を備えた高速軸流形ガスレー
ザー装置の構成を例示したが、1個の放電々対しか(J
tRえないような高速軸流形ガスレーザー装置にも本発
明を適用できることは明らかである。
In addition, although the configuration of a high-speed axial flow gas laser device equipped with a plurality of discharge pole pairs was illustrated, only one discharge pole pair (J
It is clear that the present invention can also be applied to a high-speed axial flow type gas laser device that does not have a tR.

発明の効果 以上詳細に説明したように1本発明は2円筒形状の放電
々極にリッジ部を付加することにより。
Effects of the Invention As explained in detail above, the present invention is achieved by adding a ridge portion to two cylindrical discharge electrodes.

流動抵抗を実質的に増加させることなく高次モードを有
効に抑圧する構成であるから、レーザーガス流を発生さ
せるための機械系の負世を増すことなく、高出力かつ高
精度のレーザー加工装置を実現できるという効果が奏さ
れる。
Since the configuration effectively suppresses higher-order modes without substantially increasing flow resistance, it is possible to achieve high-output, high-precision laser processing equipment without increasing the negative effects of the mechanical system for generating laser gas flow. This has the effect of realizing the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部の構成を示す断面図、
第2図は本発明の他の実施例の電極部分      )
鍼の構成を示す部分断面図である。 10・・放電管、11・・レーザーガス供給部。
FIG. 1 is a cross-sectional view showing the configuration of essential parts of an embodiment of the present invention;
Figure 2 shows the electrode portion of another embodiment of the present invention)
FIG. 2 is a partial cross-sectional view showing the configuration of an acupuncture needle. 10...discharge tube, 11...laser gas supply section.

Claims (1)

【特許請求の範囲】 円筒形状の電気絶縁性放電管と、 該放電管の軸線方向にレーザーガスを流動させる手段と
、 前記放電管の管壁に形成される1又は複数個の円筒形状
の放電々極を備えた高速軸流形ガスレーザー装置におい
て、 前記円筒形状の放電々極のうち少なくとも1個は、内面
から前記放電管の中心部に向けて突出する同心円板形状
のリッジ部を有し、該リッジ部の内径は前記放電管の内
径よりも小さいことを特徴とする高速軸流形ガスレーザ
ー装置。
[Scope of Claims] A cylindrical electrically insulating discharge tube, means for flowing laser gas in the axial direction of the discharge tube, and one or more cylindrical discharges formed on the wall of the discharge tube. In the high-speed axial flow gas laser device equipped with a plurality of cylindrical discharge poles, at least one of the cylindrical discharge poles has a concentric disk-shaped ridge portion protruding from an inner surface toward a center of the discharge tube. . A high-speed axial flow gas laser device, wherein the inner diameter of the ridge portion is smaller than the inner diameter of the discharge tube.
JP23444684A 1984-11-07 1984-11-07 High speed axial flow type gas laser device Pending JPS61112389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23444684A JPS61112389A (en) 1984-11-07 1984-11-07 High speed axial flow type gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23444684A JPS61112389A (en) 1984-11-07 1984-11-07 High speed axial flow type gas laser device

Publications (1)

Publication Number Publication Date
JPS61112389A true JPS61112389A (en) 1986-05-30

Family

ID=16971128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23444684A Pending JPS61112389A (en) 1984-11-07 1984-11-07 High speed axial flow type gas laser device

Country Status (1)

Country Link
JP (1) JPS61112389A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183581A (en) * 1986-02-07 1987-08-11 Shimada Phys & Chem Ind Co Ltd High-speed axial-flow gas laser oscillator
JPH0518049U (en) * 1991-08-09 1993-03-05 澁谷工業株式会社 Laser oscillator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917986A (en) * 1983-06-07 1984-01-30 Agency Of Ind Science & Technol Preparation of heat-resistant alpha-1,6-glucosidase a
JPS5918700U (en) * 1982-07-29 1984-02-04 ブラザー工業株式会社 Boat rudder plate attachment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918700U (en) * 1982-07-29 1984-02-04 ブラザー工業株式会社 Boat rudder plate attachment device
JPS5917986A (en) * 1983-06-07 1984-01-30 Agency Of Ind Science & Technol Preparation of heat-resistant alpha-1,6-glucosidase a

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183581A (en) * 1986-02-07 1987-08-11 Shimada Phys & Chem Ind Co Ltd High-speed axial-flow gas laser oscillator
JPH0347753B2 (en) * 1986-02-07 1991-07-22 Shimada Rika Kogyo Kk
JPH0518049U (en) * 1991-08-09 1993-03-05 澁谷工業株式会社 Laser oscillator

Similar Documents

Publication Publication Date Title
US4500998A (en) Gas laser
US4470144A (en) Coaxial-type carbon dioxide gas laser oscillator
EP0504652B1 (en) Gas laser oscillating device
JPS61112389A (en) High speed axial flow type gas laser device
US5151916A (en) Electric discharge tube for gas laser
US4907241A (en) Gas laser device
US4912719A (en) Ion laser tube
US4799231A (en) Laser gas orifice injection system
US4740980A (en) Gas laser device
JPS6310916B2 (en)
JPH06326379A (en) Gas laser oscillator
US4856016A (en) Gas laser tube having a slotted anode
JP2908808B2 (en) High-speed axial flow laser oscillator
JPS61236179A (en) Gas laser oscillating apparatus
JPH05121796A (en) Laser oscillator
JPH0437078A (en) Gas laser oscillator
JPS625675A (en) Gas laser device
JPH01286376A (en) Discharge tube for gas laser device
JPH02281671A (en) Gas laser oscillation device
JPH01108786A (en) Gas laser device
JPH0415974A (en) Laser oscillator
JPS63229875A (en) Excimer laser device
JPH0437174A (en) Laser oscillator
JPH088379B2 (en) CO 2 Lower laser device
JPH0240973A (en) Gas laser oscillator