JPS61110701A - Finish heat treatment of iron and steel powder - Google Patents

Finish heat treatment of iron and steel powder

Info

Publication number
JPS61110701A
JPS61110701A JP59231035A JP23103584A JPS61110701A JP S61110701 A JPS61110701 A JP S61110701A JP 59231035 A JP59231035 A JP 59231035A JP 23103584 A JP23103584 A JP 23103584A JP S61110701 A JPS61110701 A JP S61110701A
Authority
JP
Japan
Prior art keywords
chamber
gas
decarburization
denitrification
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59231035A
Other languages
Japanese (ja)
Other versions
JPH0140881B2 (en
Inventor
Kazuya Endo
一哉 遠藤
Ritsuo Okabe
岡部 律男
Kotaro Okawa
大川 浩太郎
Eiji Hatsuya
初谷 栄治
Hiroyuki Yamasoto
山外 博幸
Shinichiro Muto
武藤 振一郎
Makoto Arai
新井 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59231035A priority Critical patent/JPS61110701A/en
Publication of JPS61110701A publication Critical patent/JPS61110701A/en
Publication of JPH0140881B2 publication Critical patent/JPH0140881B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To execute continuously and efficiently decarburization, deoxidation and denitrification treatments of iron and steel powder by partitioning a moving hearth furnace to a decarburization chamber, deoxidation chamber and denitrification chamber, controlling these treating chambers respectively to specific temps. and stirring an atmosphere gas. CONSTITUTION:The moving hearth furnace is segmented to the decarburization chamber 2, deoxidation chamber 3 and denitrification chamber 4 by partition walls 1 each made into a hollow construction. Gaseous AX having about <=40 deg.C dew point is introduced through an introducing port 14a into the chamber 4, is passed through the chamber 3 and is taken out of a discharge port 15a and after the gas is once cooled, the gas is humidified to about 30-60 deg.C dew point in a humidifier 7 and is introduced through an introducing port 14b into the chamber 2. The iron and steel powder 8 is supplied from a hopper 9 into a belt 11 and is leveled off flat by a metallic plate 10 and thereafter the powder is fed into the furnace. The temp. in the chamber 2 is controlled to 600-1,100 deg.C, the temp. in the chamber 3 to 700-1,100 deg.C and the temp. in the chamber 4 to 450-750 deg.C, respectively. Fans 6 are run by motors 5 to stir the atmosphere gas after the position where the powder 8 on the moving hearth is sintered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉末冶金用または粉末のままで利用する用途
に適する鉄鋼粉の仕上熱処理に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to finishing heat treatment of iron and steel powder suitable for powder metallurgy or applications in which the powder is used as a powder.

〔従来の技術〕[Conventional technology]

一般に、工業的な鉄鋼粉の製造法として、鉄鉱石粉やミ
ルスケール粉の還元法、水、ガス、油などの高圧流体を
溶湯に噴射するアトマイズ法、鋼材の切削加工で発生す
るダライコやショットを粉砕する粉砕法、高炉スラグや
鉄鋼粉を含むダスト類の粉砕と1IaJ2!とを組み合
せた製法などがある。
In general, industrial methods for manufacturing steel powder include reduction of iron ore powder and mill scale powder, atomization method in which high-pressure fluids such as water, gas, and oil are injected into the molten metal, and shavings and shot produced during cutting of steel materials. Grinding method, grinding of dust including blast furnace slag and steel powder and 1IaJ2! There are manufacturing methods that combine these.

これら製法では、いずれもます炭素、酸素、窒素などの
不純物が目標とする値より相当高い粗製鉄鋼粉(以下粗
製粉と略す)を製造し1次に適切な仕上熱処理により粗
製粉の脱炭、脱酸、脱窒を行う、しかし、粉末冶金用鉄
鋼粉を得ようとする場合、仕上熱処理における脱炭、脱
酸、脱窒が不充分な場合、鉄鋼粉の圧縮性やその焼結体
の機械的特性が向上しないし、鉄鋼粉を粉末のままで使
用する場合、金属鉄が所望の値より低くなって、目的と
する用途に合致しない、したがって、粗製粉の仕上熱処
理につき種々研究されている。
In all of these manufacturing methods, crude iron and steel powder (hereinafter referred to as coarse powder) with impurities such as carbon, oxygen, and nitrogen considerably higher than the target value is produced, and the first step is to decarburize the coarse powder through appropriate finishing heat treatment. However, when trying to obtain steel powder for powder metallurgy, if decarburization, deoxidation, and denitrification in the finishing heat treatment are insufficient, the compressibility of the steel powder and its sintered body may be affected. Mechanical properties do not improve, and if iron and steel powder is used as a powder, the value of metallic iron will be lower than the desired value and will not meet the intended use.Therefore, various studies have been conducted on finishing heat treatment of crude powder. There is.

例えば、特開昭58−19401では、油アトマイズ粗
製粉を連続式移動床炉の移動床上に供給し、移動床上の
粗製粉を非酸化性ガス雰囲気に保った予熱工程内で予熱
したのち、脱炭性ガス雰囲気を保った脱炭工程内で55
0〜1200℃に加熱し、ついで非酸化性ガス雰囲気を
保った冷却工程内で冷却することによって、脱炭を能率
よく行う仕上熱処理法を開示している。また、その際に
使用すべき炉構造としては、前記移動床炉・の上流側の
上方に粗製粉を供給する供給装置と、その供給装置の下
流側に設は非酸化性ガス供給系に接続した予熱室と、そ
の予熱室の下流側に設は脱炭性ガス供給系に接続した脱
炭室と、その脱炭室の下流側に設は非酸化性ガス供給系
に接続した冷却室とから構成した装置であることと、予
熱室と脱炭室との境界、あるいは、脱炭室と冷却室との
境界、あるいはその両方に脱、炭室のガスが予熱室ある
いは冷却室に混入することを防ぐ中空構造のカス流出壁
を設けた装置としている。さらに、脱皮性ガス中に混入
した脱炭反応阻害成分を除去しながら、脱炭性ガスを循
環使用する装置と熱処理方法とについても記載されてい
る。
For example, in JP-A-58-19401, oil atomized crude powder is supplied onto the moving bed of a continuous moving bed furnace, the crude powder on the moving bed is preheated in a preheating process in which a non-oxidizing gas atmosphere is maintained, and then decomposed. 55 in a decarburization process that maintains a carbonaceous gas atmosphere.
A finishing heat treatment method is disclosed in which decarburization is efficiently carried out by heating to 0 to 1200° C. and then cooling in a cooling step in which a non-oxidizing gas atmosphere is maintained. In addition, the furnace structure that should be used in this case includes a feeding device that supplies coarse powder above the upstream side of the moving bed furnace, and a device connected to a non-oxidizing gas supply system downstream of the feeding device. A decarburizing chamber connected to a decarburizing gas supply system is installed downstream of the preheating chamber, and a cooling chamber connected to a non-oxidizing gas supply system downstream of the decarburizing chamber. The decarburization chamber gas may enter the preheating chamber or the cooling chamber at the boundary between the preheating chamber and the decarburization chamber, or the boundary between the decarburization chamber and the cooling chamber, or both. The device is equipped with a hollow wall that prevents waste from flowing out. Furthermore, the document also describes an apparatus and a heat treatment method for circulating decarburizing gas while removing decarburizing reaction inhibiting components mixed in the decarburizing gas.

しかし、前記特開昭58−19401は脱炭のみを行う
ものであり、脱炭、脱酸、脱窒のうち二種以上の仕上熱
処理を連続的に行う方法ではない、また、使用すべき雰
囲気ガスの露点については何も記載されておらず、予熱
室、脱炭室、冷却室での雰囲気ガスの流れは、各室の圧
力差のみで制御しており、各室内でのガス流速を増大さ
せる工夫がされていない、従って、この技術は脱炭。
However, the above-mentioned JP-A-58-19401 only performs decarburization, and is not a method for successively performing two or more finishing heat treatments among decarburization, deoxidation, and denitrification. Nothing is written about the dew point of the gas, and the flow of atmospheric gas in the preheating chamber, decarburization chamber, and cooling chamber is controlled only by the pressure difference between each chamber, increasing the gas flow rate in each chamber. Therefore, this technology is decarbonized.

脱酸、脱窒の二種以上を効率的に進める仕上熱処理法で
はない。
This is not a finishing heat treatment method that efficiently promotes two or more types of deoxidation and denitrification.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで、鉄鋼粉において、脱炭、脱酸、脱窒の二種以上
の処理を連続式移動床炉で連続的に効率よく行うための
仕上熱処理法を提供することが本発明の目的である。
Therefore, it is an object of the present invention to provide a finishing heat treatment method for continuously and efficiently performing two or more treatments of decarburization, deoxidation, and denitrification on steel powder in a continuous moving bed furnace.

本発明は、粗製粉の脱炭、脱酸、脱窒の各処理がもっと
も効率的に進む各条件を組み合せ、さらに雰囲気ガスの
流れの速度を増大させる方法を加味することにより、連
続式移動床炉を利用する方法とした。
The present invention combines conditions for the most efficient decarburization, deoxidization, and denitrification of coarse powder, and also incorporates a method of increasing the flow rate of atmospheric gas, thereby creating a continuous moving bed. The method was to use a furnace.

C問題点を解決するための手段〕 上記目的を達成するため、本発明は、鉄鋼粉の仕上熱処
理方法において、移動床炉の処理空間をその長手方向に
分割して各処理工程を独立させ。
Means for Solving Problem C] To achieve the above object, the present invention provides a finishing heat treatment method for iron and steel powder, in which the processing space of a moving bed furnace is divided in its longitudinal direction to make each processing step independent.

脱炭工程では600〜1100℃、脱酸工程では700
〜1100℃、脱窒工程では450〜750℃に独立に
温度制御すると共に、移動床上の鉄鋼粉が焼結する位置
以降で雰囲気ガスを撹拌することを特徴とする。
600-1100℃ in the decarburization process, 700℃ in the deoxidation process
The denitrification process is characterized by independently controlling the temperature to 450 to 750°C and stirring the atmospheric gas after the position where the steel powder on the moving bed is sintered.

さらに本発明は前記各処理に使用した雰囲気カスを純化
して循環再使用する。
Furthermore, the present invention purifies the atmosphere waste used in each of the above-mentioned treatments and recycles and reuses it.

本発明者らは、第一に脱炭、脱酸、脱窒のうち二種以上
の連続的熱処理方法、第二に脱炭、脱酸、脱窒の各過程
での加熱温度 71囲気ガスなどの条件、第三に脱炭、
脱酸、脱窒の各ゾーン内の雰囲気カス流れ速度の増大方
法、第四に前記各ゾーンの雰囲気ガスの仕切方法、第五
に炉内への雰囲気ガスの吹き込み位置などを種々検討し
た結果、第一から第五までを合理的に組合せることによ
って、連続式移動床炉でのもっとも効果的な仕上熱処理
方法を確立した。すなわち、前記粗製粉の脱炭、脱酸、
脱窒のうち二種以上の処理を連続式移動床炉によって連
続的に行う仕を熱処理において、脱炭ゾーンと脱酸ゾー
ンとの境界、または脱酸ゾーンと脱窒ゾーンとの境界ま
たは脱炭ゾーンとの境界に、雰囲気カスの混入を防ぐた
めのガス仕切壁を設置し、さらに脱炭、脱酸、脱窒速度
を増加させるために前記移動床上の鉄鋼粉が焼結する位
置以降で炉内雰囲気ガスをファン等で攪拌するとともに
、脱炭、脱酸、脱窒処理にそれぞれ適した雰囲気ガスを
移動床炉上の粗製粉の移動方向と逆向きに流し、しかも
、脱炭ソー7では露点30〜60℃のN2.Ar等の不
活性ガスもしくはH2、AXガス等の還元性ガスを導き
、600〜1100℃に加熱し、脱酸ゾーンでは露点4
0°C以下、望ましくは室温以下の前記還元性ガスを導
き、700〜1100℃に加熱し、脱窒ゾーンでは′I
一点40℃以下、望ましくは室温以下のH2を主体とす
るガスを導き、450〜750℃に加熱するように各ゾ
ーンを独立に制御する。このことtこよって、脱炭、脱
酸、脱窒の各速度を増大させることができる。また、脱
炭、脱酸、脱窒に一度使用した雰囲気排ガスを純化しな
がらリサイクルして有効利用する。
The present inventors firstly conducted a continuous heat treatment method of two or more of decarburization, deoxidation, and denitrification, and secondly, the heating temperature in each process of decarburization, deoxidation, and denitrification, 71 ambient gas, etc. conditions, thirdly decarburization,
As a result of various studies, including methods for increasing the flow rate of atmospheric gas in each zone for deoxidation and denitrification, fourthly, methods for partitioning the atmospheric gas in each zone, and fifthly, the position at which atmospheric gas is blown into the furnace, we found that: By rationally combining steps 1 to 5, we have established the most effective finishing heat treatment method using a continuous moving bed furnace. That is, decarburization and deoxidation of the coarse powder,
In heat treatment, two or more types of denitrification are carried out continuously in a continuous moving bed furnace. A gas partition wall is installed at the boundary with the zone to prevent atmospheric scum from getting mixed in, and a furnace is installed after the position where the steel powder on the moving bed is sintered to increase the rate of decarburization, deoxidation, and denitrification. The internal atmosphere gas is stirred by a fan, etc., and the atmosphere gases suitable for decarburization, deoxidation, and denitrification are flowed in the opposite direction to the movement direction of the coarse powder on the moving bed furnace. N2. with a dew point of 30-60°C. Inert gas such as Ar or reducing gas such as H2 or AX gas is introduced and heated to 600-1100℃, and the deoxidization zone has a dew point of 4.
The reducing gas at a temperature below 0°C, preferably below room temperature, is introduced and heated to 700-1100°C, and in the denitrification zone it is
Each zone is independently controlled so that a gas mainly composed of H2 at a temperature of 40° C. or lower, preferably room temperature or lower, is introduced at one point and heated to 450 to 750° C. This makes it possible to increase the rates of decarburization, deoxidation, and denitrification. In addition, atmospheric exhaust gas once used for decarburization, deoxidation, and denitrification is purified and recycled for effective use.

以下、この発明法についてさらに詳細に説明する。This invention method will be explained in more detail below.

本発明者らは、連続的かつ効率的に、脱炭、脱酸、脱窒
処理する方法につき検討した結果1M続的に動く移動床
を採用した。移動床としてはベルト式、またはプッシャ
ーやローラー上でトレイをa統帥に移動する形式のもの
も含まれる。移動床との粗製粉をまず脱炭し、次に脱酸
して、最後に脱窒する工程順序とし、脱炭、脱酸、脱窒
の各ゾーンでの各処理に適した雰囲気ガスを粉末の移動
方向と逆の方向すなわち向流式に流すこととすれば、各
処理を連続かつ効率的に行なうことが出来ることを見出
した。ただし、前記の各種粗製粉のうち、脱炭が不必要
な場合には、脱酸、脱窒の順で、脱酸が不必要な場合に
は、脱炭、脱窒の願で、脱窒が不必要な場合には、説度
、脱酸の順でそれぞれ仕上熱処理すればよい、このよう
な処理工程順序とする根拠は次のようなことからである
。つまり。
The present inventors studied a method for continuously and efficiently decarburizing, deoxidizing, and denitrifying, and as a result, adopted a 1M continuously moving moving bed. The movable bed includes a belt type or a type in which the tray is moved in a direction on a pusher or roller. The process sequence is to first decarburize the coarse powder with a moving bed, then deoxidize it, and finally denitrify it, and provide the powder with an atmosphere gas suitable for each process in each zone of decarburization, deoxidation, and denitrification. It has been found that each treatment can be carried out continuously and efficiently by flowing in a direction opposite to the direction of movement, that is, in a countercurrent manner. However, among the above various coarse powders, if decarburization is not necessary, deoxidation and denitrification are performed in that order; If this is not necessary, finishing heat treatment may be performed in the order of deoxidation and deoxidation.The reason for this order of treatment steps is as follows. In other words.

a)脱炭、脱酸、脱窒に好適な加熱温度はそれぞれ60
0〜1100℃、700〜1100℃。
a) Suitable heating temperatures for decarburization, deoxidation, and denitrification are each 60°C.
0-1100°C, 700-1100°C.

450〜750℃である b)連続式の移動床炉で最も採用しゃすい熱処理パター
ンが非対称台形型のパターンであるC)高温処理が必要
な脱炭、脱酸を加熱の前半に 低温処理が必要でかつ冷
却をかねて処理できる脱窒を後半にすべきである。
450 to 750℃ b) The most commonly adopted heat treatment pattern for continuous moving bed furnaces is an asymmetrical trapezoidal pattern.C) Decarburization and deoxidation that require high temperature treatment are performed in the first half of heating, and low temperature treatment is required. Denitrification should be carried out in the latter half of the process, since it can also be treated with cooling.

一方、各ゾーンIIに、仕+/JOを設置しても、粗製
粉の通過部は開口を設は中空とするので、ゾーン間での
雰囲気ガスの流出、流入が不完全であるか−ら、高露点
での処理と低露点での処理と区別す・る方が望ましい。
On the other hand, even if a JO is installed in each zone II, the rough powder passage section is hollow and the outflow and inflow of atmospheric gas between zones is incomplete. It is desirable to distinguish between high dew point processing and low dew point processing.

以上の理由から移動床を採用する仕上熱処理においては
脱炭、脱酸、脱窒の順序とすべきである。
For the above reasons, the order of decarburization, deoxidation, and denitrification should be used in finishing heat treatment using a moving bed.

移動床に供給した粗製粉は移動床の移動にともなって脱
炭ゾーンに入る。この脱炭ゾーンでの必要条件としては
、露点30〜60℃のN2.Ar等の不活性ガスもしく
はH2,AXガス等の還元性カス中で、600〜110
0℃に加熱する必要がある。露点が60℃を越えると、
後工程で脱酸すべき粗製粉が600°Cの加熱下の脱炭
ゾーンでさらに酸化するので不可であり、一方、露点が
30°C未満では、1100℃の加熱下でも脱炭速度が
著しく低下して、効率的に脱炭、脱酸することに矛盾す
る。したがって、脱炭ゾーンでの条件としては600〜
1100℃加熱下で、雰囲気ガスの露点を30〜60℃
とすべさである。また、脱炭ゾーンにおける雰囲気ガス
としては湿潤したカスであれば、目的は達成されるため
、非酸化性ガスでよ(、N2.Ar等の不活性ガスもし
くは、H2,AXガス等の還元性ガスが適している。
The coarse powder supplied to the moving bed enters the decarburization zone as the moving bed moves. The necessary conditions for this decarburization zone are N2. 600 to 110 in inert gas such as Ar or reducing gas such as H2, AX gas, etc.
It is necessary to heat it to 0°C. When the dew point exceeds 60℃,
This is not possible because the coarse powder to be deoxidized in the post-process will be further oxidized in the decarburization zone heated at 600°C.On the other hand, if the dew point is less than 30°C, the decarburization rate will be significant even under heating at 1100°C. This is inconsistent with efficient decarburization and deoxidation. Therefore, the conditions in the decarburization zone are 600~
Under heating at 1100℃, the dew point of the atmospheric gas is set to 30 to 60℃.
It's amazing. In addition, as the atmospheric gas in the decarburization zone, the purpose can be achieved as long as it is moist scum, so non-oxidizing gas is recommended (inert gas such as N2, Ar, or reducing gas such as H2, AX gas, etc.). Gas is suitable.

脱炭ゾーンを通過した粉末は脱酸ゾーンに入る。この脱
酸ゾーンの条件としては露点40℃以下、望ましくは室
温以下のH2,AXガス等の還元性カスを使用し、70
0〜1100℃に加熱すべきである。露点40℃を越え
て700℃未満で加熱すると脱酸速度は非常に小さく、
効率的な脱酸処理ができない、また、脱炭でも同様であ
るが、脱酸温度が1100℃を越えると仕上熱処理終了
後の鉄鋼粉ケーキが粉砕できない程硬くな −り、それ
を無理して粉末化すると1通常使用される粒度の粉砕歩
留が低下する上に、鉄鋼粉の成形性が著しく低下してし
まう、したがって、脱酸ゾーンでの条件としては露点4
0℃以下、望ましくは室・温以下のH2,AXガス等の
還元性ガスを使用し、700〜1100℃加熱とすべき
である。
The powder that has passed through the decarburization zone enters the deoxidation zone. The conditions for this deoxidizing zone are to use reducing gas such as H2, AX gas, etc. with a dew point of 40°C or lower, preferably room temperature or lower, and to
It should be heated to 0-1100°C. When heated above the dew point of 40°C and below 700°C, the deoxidation rate is very low;
Efficient deoxidation treatment is not possible, and the same is true for decarburization, but if the deoxidation temperature exceeds 1100℃, the steel powder cake after finishing heat treatment will become so hard that it cannot be crushed. When powdered, the pulverization yield of the normally used particle size is reduced, and the formability of the steel powder is also significantly reduced.
A reducing gas such as H2 or AX gas at a temperature of 0°C or lower, preferably room temperature or lower, should be used, and heating should be from 700 to 1100°C.

次に脱窒ゾーンでの条件としては露点40°C以下、望
ましくは室温以下のH2を主体とするガス中で450〜
750℃の加熱とする。鉄鋼粉の脱窒では鉄鋼粉中の窒
素と雰囲気中のH2とが反応し、NH3となり粉末から
除去されるため、 H2分圧が高いほど脱窒速度が大き
い、脱窒速度が最大となる温度は550〜650℃の範
囲にあり、その前後の100℃を加えた450〜750
℃でも十分に脱窒する。露点40℃を越えると水蒸気分
圧は急激に上昇してH2分圧が低下して脱窒速度が小さ
くなる。H2分圧低下は脱酸においても不利である。
Next, the conditions in the denitrification zone are 450°C to
Heating is performed at 750°C. During denitrification of steel powder, nitrogen in the steel powder reacts with H2 in the atmosphere to form NH3, which is removed from the powder. Therefore, the higher the H2 partial pressure, the higher the denitrification rate, and the temperature at which the denitrification rate is maximum. is in the range of 550-650℃, and 450-750℃ including 100℃ before and after that.
Denitrification is sufficient even at ℃. When the dew point exceeds 40° C., the water vapor partial pressure increases rapidly, the H2 partial pressure decreases, and the denitrification rate decreases. A decrease in H2 partial pressure is also disadvantageous in deoxidation.

以上の条件下で粗製粉を仕上熱処理すると、脱炭、脱酸
、脱窒は比較的効率よく進行するが、さらに効率を上げ
るためには、各ゾーンの境界に中空構造の仕切壁を設置
し、かつ仕切壁間で淀んだ雰囲気ガスをファン、ブロワ
−等で攪拌することである1次にその詳細を説明する。
When crude powder is subjected to final heat treatment under the above conditions, decarburization, deoxidation, and denitrification proceed relatively efficiently, but in order to further increase efficiency, it is necessary to install hollow partition walls at the boundaries of each zone. , and the atmospheric gas stagnant between the partition walls is stirred using a fan, blower, etc. First, the details will be explained.

+tff記したように使用すべき脱炭ゾーンでの雰囲気
ガスとしては露点30〜60℃のN2.Ar等の不活性
ガスもしくはH2,AXカス等の還元性ガス、脱酸ゾー
ンでのそれは露点40℃以下、望ましくは室温以下のH
2,AXガス等の還元性ガス、脱窒ゾーンのそれは露点
が脱酸ゾーンの場合と同じくしたH2を主体とする還元
性ガスである。
+tff As mentioned above, the atmospheric gas in the decarburization zone that should be used is N2. Inert gas such as Ar or reducing gas such as H2 or AX scum;
2. Reducing gas such as AX gas in the denitrification zone is a reducing gas mainly composed of H2 with the same dew point as in the deoxidation zone.

しかし、後述するように各ゾーンへのガス導入位置、各
ゾーンからのガス排出位置を適切に決めても、各ゾーン
で使用するガスの種類と雰囲気ガス露点が異なるため、
ゾーン間での雰囲気ガスの混入がさけられない、したが
って、混入を最小限にするためには、各ゾーンの境界に
仕切壁を設δする必要がある。その仕切壁の設計指針と
じては、第一に使用する炉は移動床であり、移動床に供
給した粉末は連続的に雰囲気ガス導入口側に向って移動
するがために、粉末が通過する部分を除いて、移動床天
井と底部とからの上下の仕切壁すなわち中空構造の仕切
壁を設けるへきである。
However, as will be explained later, even if the gas introduction position into each zone and the gas discharge position from each zone are determined appropriately, the type of gas used in each zone and the atmospheric gas dew point are different.
Contamination of atmospheric gas between zones is unavoidable. Therefore, in order to minimize contamination, it is necessary to provide partition walls at the boundaries of each zone. The design guidelines for the partition wall are that the furnace used is a moving bed, and the powder supplied to the moving bed continuously moves toward the atmospheric gas inlet, so the powder passes through. Except for some parts, upper and lower partition walls from the movable floor ceiling and the bottom part, that is, partition walls of hollow structure, are provided.

第一、に、各ゾーンで異種の霧点、異姓の雰囲気ガスを
使用するとすれば、仕切壁の中空部分を小さくシ、・各
ゾーンでほぼ等しい露点、はぼ等しい組成のガスを使用
するとすれば、中空部分は大きくすべきである。中空に
する寸法は使用するガスの露点とガスの組成によって適
宜選択すべぎである。第三に中空構造の仕切壁の設置位
置は各ゾーンの境界とし、各ゾーン内へのillは不要
である。ゾーン内に設置すれば導入ガスの圧力負荷をい
たずらに増し、強力なブロワ−等の送風機が必要となり
好ましくない、したがって、二つのゾーンであれば一箇
所の仕切壁、三つのゾーンであれば三箇所の仕v′J壁
を設置すべきである。脱炭、脱酸、脱窒の各ゾーン間で
熱処理温度にギャップがある場合は、必要に応じて各ゾ
ーンの境界内に冷却ゾーンを設置してもよい・ 各ゾーンで使用する雰囲気ガスの露点または種類が異な
れば、当然独立に各ゾーンへガスを導入せねばならない
が、その導入位置としては各ゾーンでの粉末出口付近と
して向流式とする。排カス出口は各ゾーンの粉末出口付
近とすべきである。
First, if different fog points and different atmosphere gases are used in each zone, the hollow part of the partition wall should be made smaller.・If each zone uses gases with approximately the same dew point and approximately the same composition. For example, the hollow part should be large. The dimensions of the hollow should be selected appropriately depending on the dew point of the gas used and the composition of the gas. Thirdly, the hollow structure partition wall is installed at the boundary of each zone, and there is no need to install illumination inside each zone. If installed in one zone, the pressure load of the introduced gas will increase unnecessarily, and a powerful blower or other blower will be required, which is undesirable. Partial walls should be installed. If there is a gap in heat treatment temperature between decarburization, deoxidation, and denitrification zones, a cooling zone may be installed within the boundaries of each zone as necessary.・Dew point of the atmospheric gas used in each zone Alternatively, if the types are different, it is naturally necessary to introduce gas into each zone independently, but the introduction position is near the powder outlet in each zone and is of a countercurrent type. The waste outlet should be near the powder outlet of each zone.

向流式とすれば、出口付近に近ずくほど、説j^脱酸ま
たは脱窒に最適のフレッシュなガスが接触し、各反応は
促進するからである。しかし、H2またはAXガスの一
種類のガスを使用する場合のように、脱窒、脱酸ゾーン
は同一種類、同一露点のガスで処理でき、脱炭ゾーンで
は脱酸ゾーンで使用したガスを加湿して使用することに
なる。したがって、この場合、脱窒ゾーンからの排カス
出口と脱酸ゾーンへのガス導入口は不要であり、かつ脱
酸と脱窒ゾーンとの境界における仕切壁の中空部分は太
きくすべきである。
This is because if a countercurrent type is used, the closer the outlet is, the more fresh gas, which is ideal for deoxidation or denitrification, will come into contact with it, and each reaction will be accelerated. However, as in the case of using one type of gas, H2 or AX gas, the denitrification and deoxidation zones can be treated with the same type of gas and the same dew point, and the decarburization zone humidifies the gas used in the deoxidation zone. and then use it. Therefore, in this case, the exhaust gas outlet from the denitrification zone and the gas inlet to the deoxidation zone are unnecessary, and the hollow portion of the partition wall at the boundary between the deoxidation and denitrification zones should be made thicker.

しかし、炉内に中空構造の仕切壁を設置すると、大きな
問題となる点は、雰囲気ガスの流れと対流が欠しいこと
である。すなわち、中空構造の仕切壁のみを設置し、ゾ
ーン間のガス圧力差を利用して雰囲気ガスの流れをつけ
ても、移動床−Hの     −粉末充填層表面だけで
あり、仕切壁の中空部やガス導入口およびガス排出口よ
り比較的離れた、仕切望根元と炉内壁付近ではカスが淀
む、この淀みをなくすために、各ゾーン内の炉天井にフ
ァンやブロワ−等を設置する必要がある。すなわち強制
的にガスを撹拌し、粉末充填層表面に新鮮なカスを送る
と同時に、粉末充填層表面付近に滞留した脱炭、脱酸、
脱窒によって生成したC01H20,NH3を一掃する
必要がある。ファンの設置位置としては粉末が固着する
温度領域以降とし、各ゾーンにつき1f11以上とすべ
きである。記すまでもなく、粉体が固着する前の位置で
ファン等を回転すれば、移動床上の粉末の一部を吹き上
げるなどの欠点があるからである。また各ゾーンに一部
以上の設置が適しているとしたが、その筒数は加熱パタ
ーン、ファンの形状、回転数。
However, when a hollow partition wall is installed in a furnace, a major problem arises in that atmospheric gas flow and convection are lacking. In other words, even if only a partition wall with a hollow structure is installed and the flow of atmospheric gas is applied using the gas pressure difference between zones, the flow will only reach the surface of the -powder packed bed of the moving bed -H, and the hollow part of the partition wall will be affected. In order to eliminate this stagnation, it is necessary to install fans, blowers, etc. on the furnace ceiling in each zone. be. In other words, by forcibly stirring the gas, fresh scum is sent to the surface of the powder packed bed, and at the same time, decarburization, deoxidation, and
It is necessary to wipe out CO1H20 and NH3 generated by denitrification. The fan should be installed at a temperature below the temperature range where the powder sticks, and should be at least 1f11 for each zone. Needless to say, if a fan or the like is rotated at a position before the powder is fixed, there is a drawback that part of the powder on the moving bed will be blown up. It is also said that it is suitable to install more than one cylinder in each zone, but the number of cylinders depends on the heating pattern, fan shape, and rotation speed.

直径や、設置高さ、移動床上の粉末充填幅などにより異
なるため、適宜選択して設置すべきである。
Since it varies depending on the diameter, installation height, powder filling width on the moving bed, etc., it should be selected and installed appropriately.

同時に1本発明には、必要に応じて、各ゾーンから排出
する雰囲気ガスのそれぞれまたは全部を−85にして純
化しながら雰囲気ガスを循環して利用する場合も含む、
脱炭ゾーンから排出する雰囲気ガスには循環使用に有害
なCOガスが、脱酸ゾーンではH2Oが、脱窒ゾーンで
はNH3が混入し、これらのガスをそれぞれ、または全
体を一諸に循環使用すると、雰囲気ガス中には所定量よ
り多いG O、H20、N H3を含み、脱炭、脱酸、
脱窒に使用不可能となるからである。
At the same time, the present invention also includes a case in which each or all of the atmospheric gases discharged from each zone is purified to -85 and the atmospheric gases are circulated and utilized as necessary.
The atmospheric gas discharged from the decarburization zone contains CO gas, which is harmful to recycling, the deoxidation zone contains H2O, and the denitrification zone contains NH3. , the atmospheric gas contains more than the specified amount of G O, H20, N H3, and decarburization, deoxidation,
This is because it cannot be used for denitrification.

〔作用〕[Effect]

粗製物の脱炭、脱酸、脱窒にはそれぞれ醋も適切な温度
帯域、ガス雰囲気があり、本発明はこれらの処理工程を
仕切壁を設けて適切に組合わせかつ攪拌することにより
、これらの相乗効果を巧みに利用する作用により、M統
帥に最も効率よく1粗製粉の仕上熱処理を行うことがで
きる。
There are appropriate temperature ranges and gas atmospheres for decarburization, deoxidation, and denitrification of crude materials, and the present invention provides a partition wall to appropriately combine and stir these processing steps. By skillfully utilizing the synergistic effect of the above, it is possible to perform finishing heat treatment of one coarse powder most efficiently on M-master.

〔実施例〕   ・ 以下1本発明の実施例について説明する。〔Example〕 · An embodiment of the present invention will be described below.

従来法として使用した連続式ベルト炉を第2図に示す0
本発明法で使用した連続式ベルト炉は第2図の従来の炉
を第1図に示した。ように仕切壁を設け、ガス出入口を
変更して改造した。したがって1箇1図と第2図との炉
長は同じである。
The continuous belt furnace used in the conventional method is shown in Figure 2.
The continuous belt furnace used in the method of the present invention is a conventional furnace shown in FIG. 2 and is shown in FIG. The building was remodeled by installing partition walls and changing the gas inlet and outlet. Therefore, the furnace lengths in Figure 1 and Figure 2 are the same.

、11図に示したように、まず、中空構造の仕切IVl
によって、脱炭室2.脱酸室3、脱窒室4に分け 各室
にモーター9によって回転する雰囲気カス撹拌用ファン
6を設置し、次に雰囲気ガスを脱′ネ室4から入れ、脱
酸室3へ導き、脱酸室3から炉外に出して、一度冷却さ
れた後加湿器7を経て、脱炭室2に導くようにした。
, As shown in Fig. 11, first, the partition IVl of the hollow structure is
According to the decarburization chamber 2. It is divided into a deoxidizing chamber 3 and a denitrifying chamber 4. A fan 6 for stirring the atmosphere gas rotated by a motor 9 is installed in each chamber, and then the atmospheric gas is introduced from the deoxidizing chamber 4, guided to the deoxidizing chamber 3, and then denitrifying. After being taken out of the furnace from the acid chamber 3 and once cooled, it was led to the decarburization chamber 2 through a humidifier 7.

従来法(第2図)および本発明法(第1図)において、
粗製物8を、原料ホッパー9を介して、平滑用金属板1
0によりベルhllに平坦になるようにのせ、別に設け
た駆動装置により回転するホイール12によって連続的
に送り、炉内で脱炭 脱酸、脱窒して、ケーキ状塊をシ
ールロール13から排出した。
In the conventional method (Figure 2) and the method of the present invention (Figure 1),
The crude product 8 is passed through a raw material hopper 9 to a smoothing metal plate 1
0 so that it is flat on the bell hll, and it is continuously fed by a wheel 12 that is rotated by a separately provided drive device, decarburized, deoxidized, and denitrified in the furnace, and the cake-like mass is discharged from the seal roll 13. did.

力、雰囲気ガス(AXガス)はガス導入口14a、14
bから導入し、排ガス(AXガス)はカス出口15a、
15bから排出した。ガス出口15bから排出したガス
はバルブをへて、燃焼器17で燃焼した。ただし、第2
図のガス導入口14a、14bはパイプ製である。粗製
物の加熱はコークスガスをラジアントチューブ18内で
燃焼して行った・ 粗製物として、ミルスケール粗還元粉(炭素量0.28
重債務(以下%と略す)、酸素量0.77%、窒素M 
O,OL 4%)を使用する場合、従来法では、第3図
の熱処理パターン(イ)として、AXガスを露点51℃
に加湿し、合計5ONm”/hrをガス導入口14bか
ら炉内の昇温ゾーンに導入し、同時に、乾燥したAXガ
スの合計1100N’/hrをガス導入口14aから 
均熱ゾーンと冷却ゾーンに導入して、粗製物を仕上熱処
理した。その結果、炭素10,009%、酸素量0.2
4%、窒素10.0025%を含有するミルスケール還
元鉄粉1.3トン/時間を得た。
The gas and atmospheric gas (AX gas) are supplied through the gas inlet ports 14a and 14.
b, exhaust gas (AX gas) is introduced from waste outlet 15a,
It was discharged from 15b. The gas discharged from the gas outlet 15b passed through the valve and was burned in the combustor 17. However, the second
The gas inlet ports 14a and 14b shown in the figure are made of pipes. The crude product was heated by burning coke gas in the radiant tube 18. As the crude product, mill scale coarse reduced powder (carbon content 0.28
Heavy debt (hereinafter abbreviated as %), oxygen content 0.77%, nitrogen M
When using AX gas with a dew point of 51°C, the conventional method uses heat treatment pattern (A) in Figure 3 when using AX gas with a dew point of 51°C.
A total of 5ONm''/hr of dried AX gas is introduced into the heating zone in the furnace from the gas inlet 14b, and at the same time, a total of 1100N'/hr of dried AX gas is introduced from the gas inlet 14a.
The crude product was subjected to final heat treatment by introducing into a soaking zone and a cooling zone. As a result, carbon 10,009%, oxygen amount 0.2
1.3 tons/hour of mill scale reduced iron powder containing 4% nitrogen and 10.0025% nitrogen was obtained.

これに対し1本発明法では、第1図に示す炉を使用し、
乾燥したAXガスを合計150.Nrn’/時だけ導入
口14aから入れ、ガス出口15aから排出したガスを
露点51°Cに加湿して 導入口14’bから導き1回
時に5箇の攪拌ファンを1500rpmで回転しながら
、前記と同じ相製粉を前記した熱処理パターン(イ)の
条件で仕上熱処理した。その結果、炭素量0.007%
、酸素90、2 t%、窒素10.0018%を含有す
るミルスケール還元鉄粉1.3トン/時間を得た。
On the other hand, in the method of the present invention, a furnace shown in Fig. 1 is used,
A total of 150. The gas discharged from the gas outlet 15a is humidified to a dew point of 51°C, and is introduced from the inlet 14'b for a time of Nrn'/hour while rotating five stirring fans at 1500 rpm. The same phase milled powder was subjected to finishing heat treatment under the conditions of the heat treatment pattern (a) described above. As a result, the carbon content was 0.007%
, 1.3 tons/hour of mill scale reduced iron powder containing 90.2 t% oxygen and 10.0018% nitrogen was obtained.

j11製粉として、水アトマイズ生粉(炭素量0.18
%、酸素量0.82%、窒素量0. OO84%)を原
料とする場合、従来法では第3図の熱処理パターン(ロ
)として、ガス導入口14bから合計50 Nm’/ 
hr (7)AXガス(露点40℃)を、カス導入口1
4aから合計11ONm’/hrの乾燥AXガスをそれ
ぞれ導入し、仕上熱処理した。その結果、炭素i0.0
09%、醜素量0.18%、窒素量0.0043%を含
有した水アトマイズ純鉄粉を1.5トン/時間得た。
As j11 flour milling, water atomized raw flour (carbon content 0.18
%, oxygen amount 0.82%, nitrogen amount 0. In the conventional method, as shown in the heat treatment pattern (b) in Fig. 3, a total of 50 Nm'/
hr (7) AX gas (dew point 40℃) is introduced into the waste inlet port 1.
A total of 11 ONm'/hr of dry AX gas was introduced from No. 4a, respectively, and a final heat treatment was performed. As a result, carbon i0.0
1.5 tons/hour of water atomized pure iron powder containing 0.09%, ugly element content of 0.18%, and nitrogen content of 0.0043% was obtained.

これに対し、本発明法では第1図に示す炉を用い、乾燥
したAXガスを合計16ONm’/時だけ゛導入口14
aから入れ、ガス出口15bから排出したガスを露点4
0℃に加湿して、導入口14bから導き熱処理パターン
(ロ)で、ファンを撹拌しながら仕上熱処理した。その
結果、炭素に0.007%、酸素量0.15%、窒素量
0.0038%含む水アトマイズ鉄粉を1.5トン/時
間得た。
On the other hand, in the method of the present invention, the furnace shown in FIG.
The gas entered from a and discharged from the gas outlet 15b has a dew point of 4.
The sample was humidified to 0° C. and finished heat-treated while being agitated by a fan in accordance with the heat treatment pattern (b) guided through the inlet 14b. As a result, 1.5 tons/hour of water atomized iron powder containing 0.007% carbon, 0.15% oxygen, and 0.0038% nitrogen was obtained.

〔発明の効果〕〔Effect of the invention〕

以上の実施例からも明らかなように、炉内に中空構造の
仕切壁を設置したので各ンーンのi適条件の制御ができ
、ファン攪拌による、脱窒室の脱酸室側の隅や脱酸室の
脱窒室側の隅に滞留したAXガスの対流促進と鉄鋼粉ケ
ーキ表面でのガス流れの速度向上ができ、さらに全ガス
量を一方向から導く方法を採用し、ガスの流れる距離が
増加し、これらの相乗効果によって、本発明法では従来
法に比較して脱炭、脱酸、脱窒の速度が著しく向上した
As is clear from the above examples, since a hollow partition wall was installed in the furnace, it was possible to control the i-suitable conditions for each chamber. The convection of AX gas accumulated in the corner of the denitrification chamber side of the acid chamber can be promoted and the speed of gas flow on the surface of the steel powder cake can be increased.Furthermore, by adopting a method in which the total amount of gas is guided from one direction, the distance over which the gas flows can be increased. Due to these synergistic effects, the decarburization, deoxidation, and denitrification rates were significantly improved in the method of the present invention compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法の一実施態様を示す縦断側面図、第2
図は従来法を示す縦断側面図、第3図は熱処理温度パタ
ーン図である。 1・・・仕切壁     2・・・脱炭室3・・・脱酸
室     4・・・脱窒室5・・・モーター    
6・・・ファン7・・・加熱器     8・・・粗製
粉9・・・ホッパー   lO・・・平滑用金属板11
・・・ベル)     12・・・ホイール【3・・・
シールロール 14・・・ガス導入口15・・・ガス排
出口  16・・・バノσブ17・・・燃焼器 18・・・ラジアントチューブ
FIG. 1 is a vertical cross-sectional side view showing one embodiment of the method of the present invention, and FIG.
The figure is a longitudinal sectional side view showing a conventional method, and FIG. 3 is a heat treatment temperature pattern diagram. 1... Partition wall 2... Decarburization chamber 3... Deoxidation chamber 4... Denitrification chamber 5... Motor
6...Fan 7...Heater 8...Rough powder 9...Hopper lO...Metal plate for smoothing 11
...Bell) 12...Wheel [3...
Seal roll 14...Gas inlet 15...Gas discharge port 16...Bano σb 17...Combustor 18...Radiant tube

Claims (1)

【特許請求の範囲】 1 脱炭、脱酸または脱窒のうち2種以上の処理を連続
式移動床炉で連続的に行う鉄鋼粉の仕上熱処理方法にお
いて、前記移動床炉の処理空間をその長手方向に分割し
て各処理工程を独立させ、脱炭工程では600〜110
0℃、脱酸工程では700〜1100℃、脱窒工程では
450〜750℃に独立に温度制御すると共に、前記移
動床上の鉄鋼粉が焼結する位置以降で雰囲気ガスを攪拌
することを特徴とする鉄鋼粉の仕上熱処理方法。 2 脱炭、脱酸または脱窒のうち2種以上の処理を連続
式移動床炉で連続的に行う鉄鋼粉の仕上熱処理方法にお
いて、前記移動床炉の処理空間をその長手方向に分割し
て各処理工程を独立させ、脱炭工程では600〜110
0℃、脱酸工程では700〜1100℃、脱窒工程では
450〜750℃に独立に温度制御すると共に、前記各
処理に使用した雰囲気ガスを純化して循環使用し、かつ
前記移動床上の鉄鋼粉が焼結する位置以降で雰囲気ガス
を攪拌することを特徴とする鉄鋼粉の仕上熱処理方法。
[Scope of Claims] 1. A finishing heat treatment method for steel powder in which two or more of decarburization, deoxidation, and denitrification are performed continuously in a continuous moving bed furnace, in which the processing space of the moving bed furnace is Divided in the longitudinal direction to make each treatment process independent, in the decarburization process 600 to 110
The temperature is independently controlled to 0°C, 700 to 1100°C in the deoxidizing process, and 450 to 750°C in the denitrification process, and the atmospheric gas is stirred after the position where the steel powder on the moving bed is sintered. A finishing heat treatment method for steel powder. 2. A finishing heat treatment method for iron and steel powder in which two or more of decarburization, deoxidation, or denitrification are continuously carried out in a continuous moving bed furnace, wherein the processing space of the moving bed furnace is divided in its longitudinal direction. Each treatment process is made independent, and in the decarburization process 600 to 110
The temperature is independently controlled to 0°C, 700 to 1100°C in the deoxidation process, and 450 to 750°C in the denitrification process, and the atmospheric gas used in each of the above processes is purified and recycled, and the steel on the moving bed is A method for finishing heat treatment of steel powder, characterized by stirring an atmospheric gas after the point where the powder is sintered.
JP59231035A 1984-11-01 1984-11-01 Finish heat treatment of iron and steel powder Granted JPS61110701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59231035A JPS61110701A (en) 1984-11-01 1984-11-01 Finish heat treatment of iron and steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59231035A JPS61110701A (en) 1984-11-01 1984-11-01 Finish heat treatment of iron and steel powder

Publications (2)

Publication Number Publication Date
JPS61110701A true JPS61110701A (en) 1986-05-29
JPH0140881B2 JPH0140881B2 (en) 1989-09-01

Family

ID=16917248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59231035A Granted JPS61110701A (en) 1984-11-01 1984-11-01 Finish heat treatment of iron and steel powder

Country Status (1)

Country Link
JP (1) JPS61110701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270079A (en) * 1994-03-31 1995-10-20 Chugai Ro Co Ltd Belt type continuous heat treating furnace
CN103753968A (en) * 2014-01-07 2014-04-30 清华大学 Powder paving device for three-dimensional printing system and three-dimensional printing system
CN111526623A (en) * 2019-02-01 2020-08-11 株洲弗拉德科技有限公司 Horizontal continuous microwave powder heating equipment and heating method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923925B2 (en) 2011-03-23 2016-05-25 Jfeスチール株式会社 Finishing heat treatment method and finishing heat treatment apparatus for iron powder
CA2903399C (en) 2013-04-19 2018-05-22 Jfe Steel Corporation Iron powder for dust core and insulation-coated iron powder for dust core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270079A (en) * 1994-03-31 1995-10-20 Chugai Ro Co Ltd Belt type continuous heat treating furnace
CN103753968A (en) * 2014-01-07 2014-04-30 清华大学 Powder paving device for three-dimensional printing system and three-dimensional printing system
CN103753968B (en) * 2014-01-07 2015-10-28 清华大学 For powder paving device and the 3 D-printing system of 3 D-printing system
CN111526623A (en) * 2019-02-01 2020-08-11 株洲弗拉德科技有限公司 Horizontal continuous microwave powder heating equipment and heating method
CN111526623B (en) * 2019-02-01 2022-05-31 株洲弗拉德科技有限公司 Horizontal continuous microwave powder heating equipment and heating method

Also Published As

Publication number Publication date
JPH0140881B2 (en) 1989-09-01

Similar Documents

Publication Publication Date Title
JPS61110701A (en) Finish heat treatment of iron and steel powder
US4216011A (en) Method and apparatus for the secondary gaseous reduction of metal ores
AU735624B2 (en) Method and apparatus for sintering finely divided material
CA2465990A1 (en) Method for reducing a particulate material containing a metal, especially iron ore
JP5923925B2 (en) Finishing heat treatment method and finishing heat treatment apparatus for iron powder
JP2002097507A (en) Molten pig iron production process and equipment for the same
JP6112280B1 (en) Method for producing alloy steel powder for powder metallurgy
JP6112283B1 (en) Method for producing alloy steel powder for powder metallurgy
JP2002522642A (en) Heat treatment method of residue material containing heavy metal and iron oxide
JP6112281B1 (en) Method for producing alloy steel powder for powder metallurgy
US3689251A (en) Reduction of solid iron ore to hot metallic iron in a rotary kiln-flash heater-rotary reactor complex
JP6112282B1 (en) Method for producing alloy steel powder for powder metallurgy
JPS6364482B2 (en)
JP6112277B1 (en) Method for producing alloy steel powder for powder metallurgy
JP2014214327A (en) Iron dust finishing heat treatment method and finishing heat treatment device
JPS61284502A (en) Heat treatment device for finishing iron and steel powder
JPH09227958A (en) Operation of endless shifting type sintering machine and high-quality sintered ore
JP6112278B1 (en) Method for producing alloy steel powder for powder metallurgy
JPS6144101A (en) Finish heat treatment of iron and steel powder
US1358293A (en) Process for calcining ores
JPS58110601A (en) Belt type reducing furnace for metallic powder and operating method thereof
SU596627A1 (en) Method of manufacturing sponge iron
JPH09263801A (en) Finish heat treatment of iron and steel powder and finish heat treatment furnace
JPS6342301A (en) Production of decarburized iron powder
JPH09111301A (en) Finish heat treatment of iron powder and apparatus therefor