JPS6342301A - Production of decarburized iron powder - Google Patents

Production of decarburized iron powder

Info

Publication number
JPS6342301A
JPS6342301A JP61185692A JP18569286A JPS6342301A JP S6342301 A JPS6342301 A JP S6342301A JP 61185692 A JP61185692 A JP 61185692A JP 18569286 A JP18569286 A JP 18569286A JP S6342301 A JPS6342301 A JP S6342301A
Authority
JP
Japan
Prior art keywords
iron powder
carbon
carbon iron
low
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61185692A
Other languages
Japanese (ja)
Inventor
Hiroshi Horiguchi
浩 堀口
Toshiro Terakawa
寺川 敏郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Kogyo Co Ltd
Original Assignee
Yoshikawa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Kogyo Co Ltd filed Critical Yoshikawa Kogyo Co Ltd
Priority to JP61185692A priority Critical patent/JPS6342301A/en
Publication of JPS6342301A publication Critical patent/JPS6342301A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce low-carbon iron powder by subjecting a powdery mixture of high-carbon iron powder with an oxidizing source to carburization treatment at a low temp. under a high partial pressure of gaseous CO+CO2 and by immediately reducing the resulting decarburized low-carbon iron powder with hydrogen. CONSTITUTION:A powdery mixture of high-carbon iron powder with an oxidizing source such as iron oxide powder is subjected to decarburization treatment at <=950 deg.C in an atmosphere contg. gaseous CO and CO2 under >= about 40% partial pressure. The resulting decarburized low-carbon iron powder is immediately reduced with hydrogen in an atmosphere contg. hydrogen and nitrogen. By this method, the high-carbon iron powder can be decarburized without sintering and the resulting low-carbon iron powder can be fed to the reducing stage in a hot state, so the quantity of energy required to produce low-carbon iron powder can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高炭素鉄粉を脱炭して低炭素鉄粉を製造する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing low carbon iron powder by decarburizing high carbon iron powder.

〔従来の技術〕[Conventional technology]

低炭素鉄粉の製造法は、例えば社団法人日本鉄鋼協会発
行 門出記念技術講座 第82巻第83:?!5合併号
p、11−42に記載されているように、鉄鉱石。
For example, the manufacturing method of low carbon iron powder can be found in the Kadde Memorial Technology Course, Vol. 82, No. 83, published by the Japan Iron and Steel Institute. ! Iron ore, as described in No. 5, p. 11-42.

ミルスケール等の酸化鉄をコークス等で還元し得られた
スポンジ状の純鉄を粉砕する還元法と、溶解炉で得られ
た溶鉄に高圧水を吹付け、そのエネルギーで微粉末を直
接得るアトマイズ法とに大別される。
The reduction method involves reducing iron oxide such as mill scale with coke and pulverizing the resulting spongy pure iron, and the atomization method involves spraying high-pressure water onto the molten iron obtained in a melting furnace and using the energy to directly obtain fine powder. It is broadly divided into law.

しかし、前者の還元法は固体反応なので原料中のシリカ
等の不純物の除去は不可能で品質的には必ずしも満足す
べきものが得られず、また反応時間も長くかかり、数1
0時間の処理が必要となり、エネルギー消費の点からも
問題があった。
However, since the former reduction method is a solid reaction, it is impossible to remove impurities such as silica from the raw materials, so it is not always possible to obtain a satisfactory product in terms of quality, and the reaction time is long.
The process required 0 hours of processing, and there was also a problem in terms of energy consumption.

また、アトマイズ法では一般には炭素含有油の低い溶鉄
が対象となるが、その場合、溶融温度が1500℃を上
回るので、溶解及びアトマイズする間の温度保持に多大
のエネルギーを必要とし、さらに高温の溶鉄に耐える耐
火物も必要となるため、これらのコスト負担は大きい。
In addition, the atomization method generally targets molten iron with low carbon content, but in that case, the melting temperature exceeds 1500°C, so a large amount of energy is required to maintain the temperature during melting and atomization, and even higher temperatures Since refractories that can withstand molten iron are also required, these costs are high.

このアトマイズ法における欠点を解消するために、溶鉄
中の炭素含有量を上げる試みも行われているが、後処理
として脱炭工程を採らず仕上ぶ元のみで処理する限り、
炭素含有量が0.03重置局以下の低炭素鉄粉を得るた
めには、アトマイズするための)容鉄中の炭素含有量は
0.2重量%が限度と思われる。
In order to overcome the drawbacks of this atomization method, attempts have been made to increase the carbon content in the molten iron, but as long as the finishing process is done without a decarburization process as a post-treatment,
In order to obtain low carbon iron powder with a carbon content of 0.03 or less, the carbon content in the iron volume (to be atomized) is considered to be at most 0.2% by weight.

このような低炭素鉄粉の製造に際しての問題を解決する
ため、溶融温度の低い高炭素鉄をアトマイズした後、後
工程で脱炭処理を行なう例として、アメリカン・ソサイ
アティ・フォー・メタルス発行メタルス・ハンドブック
・9編 第7巻 粉末冶金p、86.ρ、89に記載さ
れている。
In order to solve these problems in producing low carbon iron powder, the Metals and Steel Powder published by the American Society for Metals provides an example of decarburizing in the post-process after atomizing high carbon iron with a low melting temperature. Handbook, Volume 9, Volume 7, Powder Metallurgy p, 86. ρ, 89.

この方法は、チタン滓を得た後の溶鉄、又は屑鉄と黒鉛
を溶解した溶鉄を利用する。アトマイズの原料として炭
素含有量が約3重量%の低融点の)容器が使用できる他
に、凝固した鉄粉は硬く脆いため機械的粉砕が容易であ
るという利点があり、通常は粉砕工程を併用してアトマ
イズ工程の生産性を上げている。脱炭工程としては、ア
トマイズの際に空気を吹付は一部を酸化させた鉄粉又は
鉄粉にミルスケール等の酸化鉄粉末を混合したものを1
000℃前後にJJI+熱し、鉄粉中の炭素と酸化鉄の
酸素を反応させ、COガスとして分離する方法である(
以下これを脱炭法と呼ぶ)。
This method utilizes molten iron after obtaining titanium slag, or molten iron obtained by melting scrap iron and graphite. In addition to being able to use a container with a low melting point (with a carbon content of approximately 3% by weight) as a raw material for atomization, the solidified iron powder is hard and brittle, so it has the advantage of being easy to mechanically crush, and a crushing process is usually used in combination. This increases the productivity of the atomization process. In the decarburization process, air is blown during atomization to partially oxidize iron powder or iron powder mixed with iron oxide powder such as mill scale.
This is a method of heating JJI+ to around 000℃, causing the carbon in the iron powder to react with the oxygen in the iron oxide, and separating it as CO gas (
(hereinafter referred to as the decarburization method).

こうして得られた鉄粉は炭素量0.1重量%、酸素約1
重置%が残留し、低炭素鋼を直接アトマイズした鉄わ)
とほぼ同じレベルにある。
The iron powder thus obtained has a carbon content of 0.1% by weight and an oxygen content of about 1%.
Iron that is directly atomized from low carbon steel with overlapping percentage remaining)
is at almost the same level.

還元法、アトマイズ法更に脱炭法は、いずれも鉄粉中に
1重量%前後の酸素を含有しており、仕上処理として7
50℃〜950℃の水素雰囲気中にて還元し、酸素含有
量を0.1〜0.3重量%に低減する。この際、残留す
る炭素の一部も除かれ、Ql的には炭素0.03重置局
以下の低炭素鉄粉が得られる。
The reduction method, atomization method, and decarburization method all contain around 1% by weight of oxygen in the iron powder, and as a finishing treatment,
Reduction is performed in a hydrogen atmosphere at 50°C to 950°C to reduce the oxygen content to 0.1 to 0.3% by weight. At this time, a portion of the remaining carbon is also removed, and a low carbon iron powder having a Ql of 0.03 or less carbon is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記高炭素鉄粉の脱炭工程は、基本的にはFeO+ [
C]  Fe+CO (但し、[C]は鉄粉中の炭素量) の反応式で表される固体反応ではないかともいわれてい
るが、以下のような問題が存在する。
The decarburization process of the above-mentioned high carbon iron powder is basically FeO+ [
C] Fe+CO (where [C] is the amount of carbon in the iron powder) It is said that this is a solid reaction represented by the reaction formula, but there are the following problems.

この固体反応は650℃程度の低温でも炭素と酸素源の
接触部分での反応が始まるが各原子の粒内の移動が追い
つかず、反応が途絶え脱炭は止まってしまう。この反応
を持続させるには1000℃以上に反応系を加熱して、
炭素及び酸素原子の固体内の移動を活発化することが必
要である。
This solid-state reaction starts even at a low temperature of about 650°C at the contact area between the carbon and oxygen source, but the movement of each atom within the grains cannot keep up, and the reaction stops and decarburization stops. To sustain this reaction, the reaction system must be heated to over 1000°C.
It is necessary to activate the movement of carbon and oxygen atoms within the solid.

しかしながら、このような高温の処理は鉄粉を焼結せし
め、後工程の水素還元処理には一旦冷却して機械的な粉
砕を必要とする。このように、脱炭及び仕上還元の工程
毎に加熱冷却を繰返すため、多量のエネルギーを消費す
る。
However, such high-temperature treatment causes the iron powder to sinter, and the subsequent hydrogen reduction treatment requires cooling and mechanical pulverization. In this way, heating and cooling are repeated for each step of decarburization and final reduction, consuming a large amount of energy.

更に脱炭後の鉄粉は、焼結塊の状態でしか得られないの
で、鉄粉を乗せたトレイ (容器)又はスチールヘルド
を移動させるマンフル炉による効率の悪い操業に頼らざ
るを得ない。
Furthermore, since the iron powder after decarburization can only be obtained in the form of sintered lumps, it is necessary to rely on the inefficient operation of a manful furnace in which the tray (container) carrying the iron powder or the steel heald is moved.

若し、高炭素鉄粉からの脱炭鉄粉が焼結せずに粉状のま
まで得られれば、赤熱状態で仕上還元工程に送り込むこ
とができ、脱炭後の冷却、$n伜、更に仕上還元時の加
熱が不要となる。
If decarburized iron powder from high carbon iron powder is obtained in powder form without sintering, it can be sent to the finishing reduction process in a red-hot state, and the cooling after decarburization, $n$$, Furthermore, heating during final reduction becomes unnecessary.

本発明の目的は、高炭素鉄粉を脱炭して仕上還元前の相
似炭素鉄粉を得るための脱炭工程における上記焼結の問
題を解消し、効率良く低炭素鉄粉を得ることにある。
The purpose of the present invention is to solve the above-mentioned sintering problem in the decarburization process for decarburizing high carbon iron powder to obtain similar carbon iron powder before final reduction, and to efficiently obtain low carbon iron powder. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記固体反応による高炭素鉄粉の脱炭は粒子
間の直接反応ではな(Go + CO2ガスを媒体とし
た間接反応であり、雰囲気中のCOガスの分圧を高く維
持すれば鉄粉の焼結が起こらない比較的低温下で脱炭が
進むという知見に基づく。
In the present invention, the decarburization of high carbon iron powder by the above-mentioned solid-state reaction is not a direct reaction between particles (it is an indirect reaction using Go + CO2 gas as a medium, and if the partial pressure of CO gas in the atmosphere is maintained high). This is based on the knowledge that decarburization progresses at relatively low temperatures where iron powder sintering does not occur.

すなわち、高炭素鉄粉の脱炭過程において、雰囲気中の
COガスは酸化鉄と接触して002ガスを生じ、さらに
C02ガスは鉄粉中の炭素と反応してCOガスを発生し
なから脱炭は進行する。換言すれば脱炭反応は次の2条
件が必要である。
That is, during the decarburization process of high-carbon iron powder, CO gas in the atmosphere comes into contact with iron oxide to generate 002 gas, and the CO2 gas further reacts with carbon in the iron powder to generate CO gas and is decarburized. Charcoal progresses. In other words, the following two conditions are required for the decarburization reaction.

+11  発生するCOガスを逃さず装入物との接触を
良くする。
+11 Make good contact with the charge without letting the generated CO gas escape.

(2)装入物中に酸化鉄が存在する。(2) Iron oxide is present in the charge.

酸化鉄は直ちにぷ元されco2を作るが、酸化鉄が不足
すれば脱炭に必要なC02ができず、脱炭反応は終息す
る。
Iron oxide is immediately converted into CO2 to produce CO2, but if iron oxide is insufficient, CO2 required for decarburization cannot be produced, and the decarburization reaction ends.

従って脱炭反応が持続する条件、即ち成品の炭素含有量
はCOガス及び酸化鉄の存在、即ちco + co2ガ
ス分圧によって決定される。
Therefore, the conditions under which the decarburization reaction continues, ie, the carbon content of the product, are determined by the presence of CO gas and iron oxide, ie, the co + co2 gas partial pressure.

しかし、従来の工程では発生したCOガスをN2ガス等
の不活性ガスで置換したり、減圧除去する例があり、こ
れらの操作はco 士co2ガス分圧を下げるので脱炭
反応の面からは不利な条件と言える。
However, in conventional processes, there are examples in which the generated CO gas is replaced with an inert gas such as N2 gas or removed under reduced pressure.These operations lower the partial pressure of the CO2 gas, so they are not effective in terms of the decarburization reaction. This can be said to be a disadvantageous condition.

その結果、脱炭を進めるには鉄粉の焼結が進行する10
00℃程度の高温処理を行なわせざるを得なかった。
As a result, in order to advance decarburization, sintering of iron powder must proceed10
There was no choice but to perform high-temperature treatment at around 00°C.

本発明における雰囲気中のCo + CO2ガス分圧を
、40%以上とくに、低温操業で低炭素鉄粉を得る点か
らは、60%以上に維持することが望ましい。
In the present invention, it is desirable to maintain the partial pressure of Co + CO2 gas in the atmosphere at 40% or more, particularly at 60% or more from the viewpoint of obtaining low carbon iron powder at low temperature operation.

かかる分圧は、装入物から発生するCOガスを逃さず、
外部からの窒素の混入を許さぬ炉によって得ることがで
きる。
Such a partial pressure prevents CO gas generated from the charge from escaping,
It can be obtained in a furnace that does not allow nitrogen to enter from the outside.

驚くべきことに、このような謂いco + co2濃度
の雰囲気を保てば700℃程度の低温でも脱炭反応は長
時間継続し、低炭素鉄粉が得られる。しかし、処理温度
が低いと反応速度が下がり生産性の点で得策でなく、鉄
粉が焼結しない範囲での高温、即ち950℃〜800℃
の温度域が適切である。
Surprisingly, if an atmosphere with such a so-called co + co2 concentration is maintained, the decarburization reaction will continue for a long time even at a low temperature of about 700°C, and a low carbon iron powder can be obtained. However, if the processing temperature is low, the reaction rate decreases and it is not a good idea in terms of productivity.
The temperature range is appropriate.

本発明の場合のように、脱炭がわ〕体の焼結が起きない
条件で行われれば、粉体に下からガスを送り1g動させ
る流動層型の炉等、高効率な粉体反応炉が考えられる。
As in the case of the present invention, if the decarburization is carried out under conditions that do not cause sintering of the powder, a highly efficient powder reaction can be achieved, such as in a fluidized bed furnace in which gas is fed from below to the powder and the powder is moved by 1 g. A furnace can be considered.

しかしながら、実際の適用に際しては保守の容易さ、操
業性の点からロータリーキルンが最適である。
However, for actual application, rotary kilns are most suitable from the viewpoint of ease of maintenance and operability.

ロータリーキルンによる酸化鉄の還元法として、5Ll
RN法と呼ばれる方法がある。
As a method for reducing iron oxide using a rotary kiln, 5Ll
There is a method called the RN method.

これは炉内に空気を吹き込み炉内で石炭の一部を燃焼し
、残りの炭素で酸化鉄を還元する方法であって、エクス
トラクション・メタラジ−(ExtrMetall) 
81 (p193−201  ’81)によると、炉内
のガス成分は装入物層内ではco + co2は90%
以上になるが、フリーボード部では約70%が空気から
の窒素でco + co2は25%程度に過ぎない。
This is a method in which air is blown into the furnace, part of the coal is burned in the furnace, and the remaining carbon is used to reduce iron oxide.
81 (p193-201 '81), the gas composition in the furnace is 90% CO + CO2 in the charge layer.
As mentioned above, in the freeboard part, about 70% is nitrogen from the air, and CO + CO2 is only about 25%.

これは、装入物内から発生したco + co2はフリ
ーボードを通り炉外へ排出されていることを示している
This indicates that the CO + CO2 generated from inside the charge is discharged to the outside of the furnace through the freeboard.

この条件で低炭素域まで脱炭を進行させるには、成品に
残留する酸素含有量を5重量%前後と高くしなければな
らない。
In order to progress decarburization to the low carbon range under these conditions, the oxygen content remaining in the product must be as high as around 5% by weight.

換言すればこの様な高酸素の成品ならば空気を使用した
内燃式のロータリーキルンで充分と言える。
In other words, for such high oxygen products, an internal combustion type rotary kiln using air is sufficient.

然るに成品の酸素を1N量%以下に押え、炭素を0.1
重量%以下にするには、フリーボード内の雰囲気のCo
 + CO2ガス分圧を40%、好ましくは60%以上
に保つ必要があり、外部から加熱する外熱式か、燃焼用
に窒素ガスの少ない燃料および酸素ガスを用いる内燃式
にしなければならない。
However, the oxygen content in the finished product is kept below 1N%, and the carbon content is kept at 0.1%.
To reduce the amount of Co in the freeboard atmosphere to below % by weight,
+ It is necessary to maintain the partial pressure of CO2 gas at 40%, preferably 60% or more, and it is necessary to use either an external heating type that is heated from the outside, or an internal combustion type that uses fuel with little nitrogen gas and oxygen gas for combustion.

酸化鉄の還元反応においては、石炭等の固型炭素源に較
べると、鉄粉中の固溶炭素はco2との反応性が極めて
良好で、100℃〜200℃も操業温度を下げられ、且
つ還元鉄粉製造の場合に比して高炭素鉄粉の脱炭には酸
化鉄の還元量はほぼ10分の1と少なくて済み、従って
設備もコンパクトになるので外熱式又は酸素および低窒
素燃料の吹込みによる内燃式のロータリーキルンの使用
が工業的に可能となった。
In the reduction reaction of iron oxide, compared to solid carbon sources such as coal, the solid solution carbon in iron powder has extremely good reactivity with CO2, and the operating temperature can be lowered by 100 to 200 °C. Compared to the production of reduced iron powder, decarburization of high carbon iron powder requires approximately one-tenth the reduction amount of iron oxide, and the equipment is therefore compact, so external heating or oxygen and low nitrogen is required. The use of internal combustion rotary kilns with fuel injection became industrially possible.

〔実施例〕〔Example〕

直径200關、長さ3mの外熱式ロータリーキルンを用
い、第1表に示す高炭素鉄粉とミルスケールを高炭素鉄
粉に対する比率を重量比で0.18とした混合粉を作り
原料とした。
Using an externally heated rotary kiln with a diameter of 200 cm and a length of 3 m, a mixed powder was prepared using the high carbon iron powder shown in Table 1 and mill scale at a weight ratio of 0.18 to the high carbon iron powder and used as the raw material. .

5 rpvaで回転する該キルンに120 g / 分
の84合で原料を供給し、約1..5 mに渡り400
℃〜9oo′cに加熱され、最終末端部500 amは
外部より冷却している。
The kiln, rotating at 5 rpva, was fed with 120 g/min of feedstock at a rate of about 1. .. 400 over 5 m
℃~9oo'C, and the final end 500 am is cooled from the outside.

その間フリーボードの雰囲気はco + CO2ガス分
圧を65%に保持した。
During this period, the atmosphere in the freeboard was maintained at a co+CO2 gas partial pressure of 65%.

装入後、140分後に脱炭された低炭素鉄粉は粉末の状
態で排出され、直ちに後続の水素75暇星%、窒素25
重量%の雰囲気を有する前記と同一条件のロータリーキ
ルンに連続的に送り込み、900 ’Cで30分処理し
た後冷却すると、第1表に示す低炭素鉄粉が得られた。
After 140 minutes of charging, the decarburized low carbon iron powder is discharged in powder form, immediately followed by 75% hydrogen and 25% nitrogen.
When the powder was continuously fed into a rotary kiln under the same conditions as above and having an atmosphere of % by weight, treated at 900'C for 30 minutes, and then cooled, the low carbon iron powder shown in Table 1 was obtained.

第1表 原料及び成品の分析 ※単位−重世% 〔発明の効果〕 本発明の方法によって、高炭素鉄粉は何等焼結を生しる
ことなく脱炭が可能になり、しかも後の還元工程に熱間
状態での供給が可能となるために、製造のためのエネル
ギーが大幅に節減できる。
Table 1 Analysis of raw materials and finished products *Unit: % [Effects of the invention] By the method of the present invention, high carbon iron powder can be decarburized without any sintering, and furthermore, it can be reduced afterward. Since the process can be supplied in a hot state, energy for manufacturing can be significantly reduced.

Claims (1)

【特許請求の範囲】 1、高炭素鉄粉と酸化鉄粉等の酸化源を高いCO+CO
_2ガス分圧の雰囲気下で950℃以下の温度で脱炭処
理した後、そのまま水素還元処理することを特徴とする
脱炭鉄粉の製造方法。 2、CO+CO_2ガス分圧が40%以上であることを
特徴とする特許請求の範囲第1項に記載の脱炭鉄粉の製
造方法。 3、脱炭処理を外部加熱型又は窒素の少ない燃料及び酸
素を用いた内燃型のロータリー炉内で行なうことを特徴
とする特許請求の範囲第1項に記載の脱炭鉄粉の製造方
法。
[Claims] 1. Oxidation sources such as high carbon iron powder and iron oxide powder are
A method for producing decarburized iron powder, which comprises decarburizing the iron powder at a temperature of 950° C. or lower in an atmosphere of _2 gas partial pressure, and then directly subjecting it to hydrogen reduction treatment. 2. The method for producing decarburized iron powder according to claim 1, wherein the CO+CO_2 gas partial pressure is 40% or more. 3. The method for producing decarburized iron powder according to claim 1, wherein the decarburization treatment is carried out in an externally heated rotary furnace or an internal combustion rotary furnace using nitrogen-poor fuel and oxygen.
JP61185692A 1986-08-06 1986-08-06 Production of decarburized iron powder Pending JPS6342301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185692A JPS6342301A (en) 1986-08-06 1986-08-06 Production of decarburized iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185692A JPS6342301A (en) 1986-08-06 1986-08-06 Production of decarburized iron powder

Publications (1)

Publication Number Publication Date
JPS6342301A true JPS6342301A (en) 1988-02-23

Family

ID=16175190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185692A Pending JPS6342301A (en) 1986-08-06 1986-08-06 Production of decarburized iron powder

Country Status (1)

Country Link
JP (1) JPS6342301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162153A (en) * 1986-12-27 1987-07-18 Fujitsu Ltd Data-replace control system for buffer memory device
US5234489A (en) * 1992-05-27 1993-08-10 L'air Liquide Process for reducing oxides contained in iron powder without substantial decarburization thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162153A (en) * 1986-12-27 1987-07-18 Fujitsu Ltd Data-replace control system for buffer memory device
US5234489A (en) * 1992-05-27 1993-08-10 L'air Liquide Process for reducing oxides contained in iron powder without substantial decarburization thereof

Similar Documents

Publication Publication Date Title
KR101135670B1 (en) A Method for Manufacturing Ferro Molybdenum Alloy Briquette from the Mixing Powder of Mill Scale and Molybdenum Oxide Powder by Solid-gas Reaction and the Briquette Producted by the Method
US3073695A (en) Method for producing iron powder having low carbon and oxygen contents
US3947267A (en) Process for making stainless steel
JPS6342301A (en) Production of decarburized iron powder
US3419383A (en) Producing pulverulent iron for powder metallurgy by multistage reduction
EP0680393B1 (en) Method of recycling scrap metal
JP2002522642A (en) Heat treatment method of residue material containing heavy metal and iron oxide
JPS6250544B2 (en)
US3427149A (en) Process for removing arsenic from iron ore
KR101552142B1 (en) Agent for dephosphorization and treatment method of molten metal using the same
JPH03183719A (en) Method for accelerating reduction of manganese ore in steel making stage
KR100399234B1 (en) Manufacturing of reduction iron in hot rolling mill oily sludge by addition of blast furnace slag
JP5825459B1 (en) Manufacturing method and manufacturing equipment of reduced iron
JPS624801A (en) Method and apparatus for finish heat treatment of iron and steel powder by making combination use of rotary kiln and moving bed furnace
US3418104A (en) Producing pulverulent iron for powder metallurgy by compacting feed stocks
JPH0471962B2 (en)
JPS62284001A (en) Production of low-carbon iron powder
JPH03503399A (en) Manufacture of SiC, MnC and ferroalloys
US3385694A (en) Method of producing iron powder from pig iron or such and iron oxides
CN116949236A (en) Method and system for producing steel by reducing non-blast furnace step by step
KR950012402B1 (en) Fe-mn smelting reduction process and equipment
JPH01176004A (en) Manufacture of decarbonized iron powder
JPH06100918A (en) Production of cementite
JPS59215414A (en) Treatment of product containing chromium oxide generated during production of stainless steel
JPS58482B2 (en) Heat treatment method for raw iron powder