JPS61107668A - Fuel cell power generation equipment - Google Patents

Fuel cell power generation equipment

Info

Publication number
JPS61107668A
JPS61107668A JP59229154A JP22915484A JPS61107668A JP S61107668 A JPS61107668 A JP S61107668A JP 59229154 A JP59229154 A JP 59229154A JP 22915484 A JP22915484 A JP 22915484A JP S61107668 A JPS61107668 A JP S61107668A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
power generation
buffer tanks
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59229154A
Other languages
Japanese (ja)
Inventor
Hayamizu Ito
伊東 速水
Yoshiaki Takatani
高谷 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP59229154A priority Critical patent/JPS61107668A/en
Publication of JPS61107668A publication Critical patent/JPS61107668A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the controllability of a fuel cell power generation system by connecting by-pass lines and linking buffer tanks to these lines. CONSTITUTION:At the time of start-up, heated medium such as reformer-heated exhaust gas is introduced to heating tubes 9, 10, thereby generating hydrogen through the heating of hydrogen occluded alloy 8 and starting the equipment with the hydrogen. In the even that the required hydrogen volume is bigger than the generated hydrogen volume, the shortage is supplemented by making buffer tanks 6, 7 release hydrogen through their heating. In the case that the required hydrogen volume is smaller than the generated hydrogen volume (at the time of usual stoppage and that of emergency stoppage included), buffer tanks 6, 7 are cooled, and the excessive portion of hydrogen is occluded. In the case that the required hydrogen volume and the generated hydrogen volume are equal, the buffer tanks are by-passed through 4, 5, and hydrogen generated at a reformer 1 is directly supplied to the main body 2 of a fuel cell. Thus, occlusion and release are enforced through 2 or 3 buffer tanks installed. As for its output, load variation of electric power is information-processed by means of a controller 14, and flow of hydrogen is adjusted through respective controlling equipments to an appropriate level.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素吸蔵合金を充填したバッファタンクを設
けて、スタートアップ時、停止時、電力負荷変動時、緊
急時などに用いるようにした燃料電池発電装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a fuel cell power generation system that is equipped with a buffer tank filled with a hydrogen storage alloy and is used during startup, shutdown, power load fluctuations, emergencies, etc. It is related to the device.

従来の技術 従来、電力負荷の変動に追従するための方法として、燃
料電池本体入口の前にバッファタンクを設置し水素を貯
蔵して、微少な負荷変動に対応するようにすることが公
知である。
BACKGROUND ART Conventionally, as a method for following fluctuations in power load, it has been known to install a buffer tank in front of the inlet of the fuel cell main body to store hydrogen in order to respond to minute fluctuations in load. .

発明が解決しようとする問題点 しかしながら、上記従来の方式は、水素をガス状で貯蔵
するので、バッファタンクが大型化するという問題点が
あった。また燃料電池の燃料ガスとして用いられる水素
を発生する燃料改質器(リフオーマ−)は、そのスター
トアップ時の装置の予熱、反応の定常化、あるいは停止
時には完全に反応が停止するまで降温するまで時間がか
かり、この過渡状態で発生する不安定な組成の改質ガス
の処理が問題となる。また電力の負荷変動に対応して、
す7オーマーから発生する水素量を迅速に変化させる必
要がある。
Problems to be Solved by the Invention However, the conventional system described above has a problem in that the buffer tank becomes large because hydrogen is stored in a gaseous state. In addition, the fuel reformer (reformer), which generates hydrogen used as fuel gas in fuel cells, requires preheating of the device at startup, stabilization of the reaction, and time required for the temperature to drop until the reaction completely stops when the device is stopped. Therefore, processing of the reformed gas having an unstable composition generated in this transient state becomes a problem. In addition, in response to power load fluctuations,
It is necessary to quickly change the amount of hydrogen generated from the 7 ohmer.

本発明は上記の諸点に鑑みなされたもので、水素吸蔵合
金を用いたバッファタンクを燃料電池発電装置に設置す
ることにより、スタートアンプ時には、バッファタンク
から発生する水素で迅速に立上げ、負荷変動時には、バ
ッファタンクで水素の必要量を調整し、また通常の停止
あるいは燃料電池本体に事故が発生した場合の緊急停止
までに発生する水素の貯蔵にも用いることができるよう
にした燃料電池発電装置の提供を目的とするものである
The present invention has been made in view of the above points, and by installing a buffer tank using a hydrogen storage alloy in a fuel cell power generation system, at the time of start-up, the hydrogen generated from the buffer tank can be used to quickly start up the power generation system, and load fluctuations can be achieved. In some cases, a buffer tank can be used to adjust the required amount of hydrogen and also to store the hydrogen generated until a normal shutdown or an emergency shutdown in the event of an accident in the fuel cell itself. The purpose is to provide the following.

問題点を解決するための手段 本発明の燃料電池発電装置は、図面の番号を用いて説明
すれば、炭化水素化合物をスチームと反応させるかまた
は熱分解して水素を発生させるリフオーマ−1と、この
リフオーマ−1に水素11 ’f6を介して接続された
燃料電池本体2とからなる燃料電池発電装置において、
水素導管乙にバイパスライン4.5を接続し、このバイ
パスライン4.5に水素吸蔵合金8を充填したバッファ
タンク6.7を接続し、このバッファタンク6.7内に
加熱管9.10および冷却管11.12を設けたことを
特徴としている。
Means for Solving the Problems The fuel cell power generation device of the present invention will be described using the numbers in the drawings. The fuel cell power generation device of the present invention will be explained using the numbers in the drawings. In a fuel cell power generation device consisting of a fuel cell main body 2 connected to this reformer 1 via hydrogen 11'f6,
A bypass line 4.5 is connected to the hydrogen conduit B, a buffer tank 6.7 filled with hydrogen storage alloy 8 is connected to this bypass line 4.5, and a heating pipe 9.10 and a It is characterized by the provision of cooling pipes 11 and 12.

作用 燃料電池発電装置が停止した後、バッファタンク6、Z
内の冷却管11.12に冷却媒体を導入し水素吸蔵合金
8を冷却してスタートアップ用の水素を金属水素化物の
形で貯蔵する。アラートアップ時は、加熱管9.10に
加熱媒体を導入し水素吸蔵合金8を加熱して水素を発生
させ、この水素で装置を起動する。
After the operation fuel cell power generation device is stopped, the buffer tank 6, Z
A cooling medium is introduced into the cooling pipes 11 and 12 inside to cool the hydrogen storage alloy 8 and store hydrogen for startup in the form of metal hydride. When the alert is activated, a heating medium is introduced into the heating tube 9.10 to heat the hydrogen storage alloy 8 to generate hydrogen, and the device is started with this hydrogen.

実施例 以下、本発明の実施例を図面に基づいて説明する。1は
メタノールなどの炭化水素化合物をスチームと反応させ
て水素を発生させるためのリフオーマ−12はリフオー
マ−1に水素導管3を介して接続された燃料電池本体で
ある。水素導管乙に2系統のバイパスライン4.5が接
続され、これらのバイパスライン4.5に夫々水素吸蔵
合金8を充填したバッファタンク6.7が接続されてい
る。バッファタンク内には、リフオーマ−加熱排ガスな
どの加熱媒体を導入する加熱管?、10が設けられると
ともに、燃料電池冷却水などの冷却  □媒体を導入す
る冷却管11.12が設けられている。13はAD/A
C変換器、14はコントローラ、15.16は水素発生
量・温度検知器、17.18.20,21.22.26
は制御弁、24.25はバージラインである。
Embodiments Hereinafter, embodiments of the present invention will be described based on the drawings. Reference numeral 1 denotes a fuel cell main body, which is connected to the reformer 1 via a hydrogen conduit 3, and a reformer 12 for generating hydrogen by reacting a hydrocarbon compound such as methanol with steam. Two bypass lines 4.5 are connected to hydrogen conduit B, and buffer tanks 6.7 filled with hydrogen storage alloy 8 are connected to each of these bypass lines 4.5. Inside the buffer tank is a heating tube that introduces a heating medium such as reheater heated exhaust gas? , 10 are provided, and cooling pipes 11 and 12 for introducing a cooling medium such as fuel cell cooling water are provided. 13 is AD/A
C converter, 14 is the controller, 15.16 is the hydrogen generation amount/temperature detector, 17.18.20, 21.22.26
is a control valve, and 24.25 is a barge line.

上記のように構成された燃料電池発電装置において、燃
料電池発電停止後、バッファタンク6.7内の冷却管1
1.12に燃料電池冷却水などの冷却媒体を導入し、水
素吸蔵合金8を冷却してスタートアップ用の水素を貯蔵
する。スタートアップ時は加熱管9.10にリフオーマ
−加熱排ガスなどの加熱媒体を導入し、水素吸蔵合金8
を加熱して水素を発生させ、この水素で装置を起動する
In the fuel cell power generation device configured as described above, after the fuel cell power generation is stopped, the cooling pipe 1 in the buffer tank 6.
At step 1.12, a cooling medium such as fuel cell cooling water is introduced to cool the hydrogen storage alloy 8 and store hydrogen for startup. At startup, a heating medium such as reheater-heated exhaust gas is introduced into the heating tube 9.10, and the hydrogen storage alloy 8 is heated.
is heated to generate hydrogen, which is used to start the device.

水素必要量が水素発生量より大きい場合は、バッファタ
ンクを加熱して水素を放出させ、不足分を補うようにす
る。
If the required amount of hydrogen is greater than the amount of hydrogen generated, the buffer tank is heated to release hydrogen to make up for the shortage.

水素必要量が水素発生量より小さい場合(通常の停止時
および緊急停止時を含む)は、バッファタンクを冷却し
て余剰分の水素を吸蔵する。
When the required amount of hydrogen is smaller than the amount of hydrogen generated (including during normal shutdown and emergency shutdown), the buffer tank is cooled to store excess hydrogen.

水素必要量と水素発生量とが等しい場合は、バッファタ
ンクはバイパスして、直ちにリフオーマ−1で発生した
水素を燃料電池本体2へ供給する。
When the required amount of hydrogen and the amount of hydrogen generated are equal, the buffer tank is bypassed and the hydrogen generated in the reformer 1 is immediately supplied to the fuel cell main body 2.

このように水素吸蔵合金8の吸蔵・放出のサイクルとな
るため、バッファタンクを2基または5基以上設置して
吸蔵・放出を行う。その出力は電力の負荷変動をコント
ローラ14で情報処理して、適当な水素流量となるよう
に各制御機器でコントロールする。
In this way, the hydrogen storage alloy 8 is stored and released in a cycle, so two or five or more buffer tanks are installed to perform the storage and release. The output is processed by the controller 14 to process information on power load fluctuations, and controlled by each control device to provide an appropriate hydrogen flow rate.

発明の効果 本発明の燃料電池発電装置は上記のように構成されてい
るので、つぎのような効果を奏する。
Effects of the Invention Since the fuel cell power generation device of the present invention is configured as described above, it has the following effects.

(1)水素吸蔵合金を充填したバッファタンク内に、水
素を金属水素化物の形で貯蔵するので、水素をガス状で
貯蔵する従来のバッファタンクよりも、コンパクト(約
/7の容量となる)な燃料電池発電システムとなる。ま
た高圧カスボンベとの比較でも、H2、CO2の混合カ
スからH2を分離精製することができる。
(1) Hydrogen is stored in the form of metal hydride in a buffer tank filled with a hydrogen storage alloy, so it is more compact (about 7 times the capacity) than a conventional buffer tank that stores hydrogen in gaseous form. It becomes a fuel cell power generation system. Also, in comparison with a high-pressure gas cylinder, H2 can be separated and purified from a mixed gas of H2 and CO2.

(2)従来のバッファタンクの使用目的は、燃料電池出
力の微小な負荷変動に対応し圧力変動を吸収することに
あるが、本発明ではスタートアップ時のH2不足分のフ
ォロー、電力負荷変動に対するリフオーマ−の応答性の
ずれのバックアップ、あるいは燃料電池本体側のトラブ
ル時に緊急停止する際に、完全にリフオーマ−が停止す
るまでに発生するH7を貯蔵する装置として用いるなど
、その利用範囲を拡大し、燃料電池発電システム全体の
制御性の向上に積極的に利用して行こうとするものであ
る。
(2) The purpose of conventional buffer tanks is to respond to minute load fluctuations in fuel cell output and absorb pressure fluctuations, but in the present invention, the purpose is to follow up on H2 shortages at startup, and to re-format against power load fluctuations. Expanding the scope of its use, such as using it as a backup for deviations in the response of the fuel cell, or as a device to store H7 generated until the reheater completely stops during an emergency stop in the event of trouble on the fuel cell side. The aim is to actively utilize this technology to improve the controllability of the entire fuel cell power generation system.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の燃料電池発電装置の一実施例を示すフロ
ーシートである。 1・・・す7オーマー、2・・・燃料電池本体、3・・
・水素導管、4.5・・−バイパスライン、6.7・・
・バッファタンク、8・・・水素吸蔵合金、9.10・
・・加熱管、11.12・・・冷却管、13・・・AD
/AC変換器、14・・・コントローラ、15.16・
・・水素発生量・温度検知器、17.18.20.21
.22.26・・・制御弁、24.25・・・パージラ
イン出 願 人 川崎重工業株式会社 代理人弁理士塩出真−ペパン′。 手続補正書 昭和59年12月270 特許庁長官 志賀  学 殿     適1、事件の表
示 昭和59°年   特許m第2291!M  号2、発
明の名称 燃料電池発電装置 3、 補正をする者 事件との関係特許出願人 4、代理人 (1)明細書6頁13行〜16行 「コンパクト・・・
・・・することができる。」を「コンパクトなく高庄ガ
スボンベとの比軟でも約/7の容11:となる)燃料電
池発電システムとなる。またH、、GO,の混合ガスか
らH7を分離精製することかできる。」に訂正する。 以  I・ ;
The drawing is a flow sheet showing one embodiment of the fuel cell power generation device of the present invention. 1...7 ohmer, 2...fuel cell body, 3...
・Hydrogen pipe, 4.5...-Bypass line, 6.7...
・Buffer tank, 8...Hydrogen storage alloy, 9.10・
...Heating tube, 11.12...Cooling pipe, 13...AD
/AC converter, 14...controller, 15.16.
・Hydrogen generation amount/temperature detector, 17.18.20.21
.. 22.26...Control valve, 24.25...Purge line Applicant: Kawasaki Heavy Industries Co., Ltd. Patent attorney Makoto Shiide-Pepin'. Procedural Amendment December 1980 270 Commissioner of the Patent Office Manabu Shiga Suit 1, Indication of Case 1982 Patent m No. 2291! M No. 2, Title of invention Fuel cell power generation device 3, Relation to the case of the person making the amendment Patent applicant 4, Attorney (1) Specification page 6, lines 13 to 16 “Compact...
···can do. ``This is a fuel cell power generation system that is not compact and has a capacity of approximately 11:7 compared to a Takasho gas cylinder.It is also possible to separate and purify H7 from a mixed gas of H, GO, and so on.'' Correct to. I;

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素化合物をスチームと反応させるかまたは熱
分解して水素を発生させるリフォーマーと、このリフォ
ーマーに水素導管を介して接続された燃料電池本体とか
らなる燃料電池発電装置において、水素導管にバイパス
ラインを接続し、このバイパスラインに水素吸蔵合金を
充填したバッファタンクを接続し、このバッファタンク
内に加熱管および冷却管を設けたことを特徴とする燃料
電池発電装置。
1. In a fuel cell power generation device consisting of a reformer that generates hydrogen by reacting a hydrocarbon compound with steam or thermally decomposing it, and a fuel cell main body connected to the reformer via a hydrogen conduit, a bypass line is connected to the hydrogen conduit. A fuel cell power generation device characterized in that a buffer tank filled with a hydrogen storage alloy is connected to the bypass line, and a heating pipe and a cooling pipe are provided in the buffer tank.
JP59229154A 1984-10-31 1984-10-31 Fuel cell power generation equipment Pending JPS61107668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229154A JPS61107668A (en) 1984-10-31 1984-10-31 Fuel cell power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229154A JPS61107668A (en) 1984-10-31 1984-10-31 Fuel cell power generation equipment

Publications (1)

Publication Number Publication Date
JPS61107668A true JPS61107668A (en) 1986-05-26

Family

ID=16887621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229154A Pending JPS61107668A (en) 1984-10-31 1984-10-31 Fuel cell power generation equipment

Country Status (1)

Country Link
JP (1) JPS61107668A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398967A (en) * 1986-10-16 1988-04-30 Sanyo Electric Co Ltd Fuel cell power generating system
JPH0233867A (en) * 1988-07-25 1990-02-05 Toshiaki Kabe Power generating system combined with heat pump and phosphoric acid fuel cell
JPH0676851A (en) * 1992-08-31 1994-03-18 Sanyo Electric Co Ltd Portable power source
JP2000012056A (en) * 1998-06-26 2000-01-14 Aqueous Reserch:Kk Fuel cell system
WO2000027951A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Power generation system based on gasification of combustible material
WO2002087730A3 (en) * 2001-04-30 2003-04-10 Battelle Memorial Institute Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
US6630012B2 (en) 2001-04-30 2003-10-07 Battelle Memorial Institute Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption
WO2004049486A3 (en) * 2002-11-27 2005-01-27 Hydrogenics Corp Reactant supply for a fuel cell power system
KR100675686B1 (en) * 2000-12-29 2007-02-01 주식회사 엘지이아이 Fuel supply apparatus for fuel cell
JP2007534108A (en) * 2003-08-06 2007-11-22 ユーティーシー パワー コーポレイション Hydrogen passivation shutdown system for fuel cell power generation facilities
JP2013196911A (en) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd Fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514717A (en) * 1974-06-28 1976-01-16 Nissan Motor
JPS57205972A (en) * 1981-06-15 1982-12-17 Toshiba Corp Fuel cell generating plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514717A (en) * 1974-06-28 1976-01-16 Nissan Motor
JPS57205972A (en) * 1981-06-15 1982-12-17 Toshiba Corp Fuel cell generating plant

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398967A (en) * 1986-10-16 1988-04-30 Sanyo Electric Co Ltd Fuel cell power generating system
JPH0233867A (en) * 1988-07-25 1990-02-05 Toshiaki Kabe Power generating system combined with heat pump and phosphoric acid fuel cell
JPH0676851A (en) * 1992-08-31 1994-03-18 Sanyo Electric Co Ltd Portable power source
JP2000012056A (en) * 1998-06-26 2000-01-14 Aqueous Reserch:Kk Fuel cell system
WO2000027951A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Power generation system based on gasification of combustible material
KR100675686B1 (en) * 2000-12-29 2007-02-01 주식회사 엘지이아이 Fuel supply apparatus for fuel cell
US6630012B2 (en) 2001-04-30 2003-10-07 Battelle Memorial Institute Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption
US6746515B2 (en) 2001-04-30 2004-06-08 Battelle Memorial Institute Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
US6974496B2 (en) 2001-04-30 2005-12-13 Battelle Memorial Institute Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
WO2002087730A3 (en) * 2001-04-30 2003-04-10 Battelle Memorial Institute Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
WO2004049486A3 (en) * 2002-11-27 2005-01-27 Hydrogenics Corp Reactant supply for a fuel cell power system
JP2007534108A (en) * 2003-08-06 2007-11-22 ユーティーシー パワー コーポレイション Hydrogen passivation shutdown system for fuel cell power generation facilities
JP2013196911A (en) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
JPS61107668A (en) Fuel cell power generation equipment
JPS59231140A (en) Steam power plant equipped with coal gasifying installation
JP2578522Y2 (en) Fuel cell generator
JP2004508675A (en) Fuel cell equipment and its operation method
GB1568374A (en) Hydrogen from a hydride material
JP2001065976A (en) Cogeneration system
JPS62190660A (en) Suspending method for fuel cell power generating plant
IL130541A (en) Method and apparatus for storing and supplying fuel to laser generators
JPH03179672A (en) Fuel gas supply unit for fuel cell
JP4780906B2 (en) Fuel cell system
JPH05296010A (en) Hydrogen oxygen combustion steam turbine engine
JP2018128201A (en) Co2 liquefying system and co2 liquefying method
JP2001213605A (en) Hydrogen supply system for device using hydrogen as fuel
JPS6110875A (en) Fuel cell system
JPH0845527A (en) Operating method of fuel cell power generation device
JP2002056867A (en) Fuel cell generating system
JPS60207256A (en) Fuel cell power generation system
JP2665547B2 (en) Molten carbonate fuel cell system and its control method
JPH0256866A (en) Fuel cell power generating system
JPH07169474A (en) Methanol switching type fuel cell system
JP4592937B2 (en) Hydrogen production equipment
JPH10106598A (en) Differential pressure control method for reformer of fuel cell
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
JP3349526B2 (en) Fuel cell power generation system
JPH01208302A (en) Hydrogen generator of on-site type