JPH03179672A - Fuel gas supply unit for fuel cell - Google Patents

Fuel gas supply unit for fuel cell

Info

Publication number
JPH03179672A
JPH03179672A JP2051056A JP5105690A JPH03179672A JP H03179672 A JPH03179672 A JP H03179672A JP 2051056 A JP2051056 A JP 2051056A JP 5105690 A JP5105690 A JP 5105690A JP H03179672 A JPH03179672 A JP H03179672A
Authority
JP
Japan
Prior art keywords
pressure
reformed gas
fuel cell
fuel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2051056A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tajima
田島 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2051056A priority Critical patent/JPH03179672A/en
Publication of JPH03179672A publication Critical patent/JPH03179672A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase load following capability by installing a fuel reformer, a reformed gas supply passage, a hydrogen permeable membrane type purifier, a pure hydrogen storage tank, and a pure hydrogen supply passage. CONSTITUTION:A reformed gas supply system in which a high-pressure reformed gas produced in a steam reformer 6 is supplied to a fuel cell 20 after the reduction of the pressure to the operating pressure of the fuel cell 20 in a gas supply passage 14, and a pure hydrogen supply system in which part of high-pressure reformed gas produced in the steam reformer 6 is purified with a hydrogen permeable membrane purifier 12 and stored, and supplied to the fuel cell 20 after the reduction of the pressure to slightly lower pressure than the operating pressure in a supply passage 15 are installed. When the pressure of the reformed gas supplied to the fuel cell 20 is decreased by sharp increase of load current, the pure hydrogen stored is immediately supplied. Power generating obstruction caused by response delay of the reformer and accumulation of impurities in the reformed gas is removed and load following capability is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料改質装置と水素精製装置を組合わせた燃
料電池の燃料供給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel supply system for a fuel cell that combines a fuel reformer and a hydrogen purification system.

〔従来の技術〕[Conventional technology]

燃料電池は一般的に、水素ガスを燃料とし、空気を酸化
剤とする発電装置である。水素はボンベ充填ガス、液化
ガス、金属水素化物吸蔵水素ガス、炭化水素の水蒸気改
質などより得た水素ガスを利用する。前二者は純水素で
不純ガスを含まないが、容器内に充填されている水素が
一旦消費され尽くすと再充填する必要がある。一方、改
質水素は−般に水素以外に炭酸ガス、水蒸気などの不純
ガスを含む欠点はあるが、炭化水素燃料と水の補給のみ
で連続して水素を得る事ができる。第2図は燃料電池発
電システムの概略構成図である。燃料供給系30より供
給した水素りと空気供給系40から供給された酸素02
が燃料電池20で電気化学的に反応して直流電力を発生
する。この電力は一般に直交変換器26で交流に変換し
て電気機器等の負荷50に給電する。
A fuel cell is generally a power generation device that uses hydrogen gas as a fuel and air as an oxidant. The hydrogen gas used is cylinder filling gas, liquefied gas, hydrogen gas stored in metal hydrides, hydrogen gas obtained from steam reforming of hydrocarbons, etc. The first two are pure hydrogen and do not contain impure gases, but once the hydrogen filled in the container is consumed, it needs to be refilled. On the other hand, although reformed hydrogen generally has the disadvantage of containing impurity gases such as carbon dioxide and water vapor in addition to hydrogen, it is possible to continuously obtain hydrogen by simply replenishing hydrocarbon fuel and water. FIG. 2 is a schematic diagram of the fuel cell power generation system. Hydrogen supplied from the fuel supply system 30 and oxygen 02 supplied from the air supply system 40
reacts electrochemically in the fuel cell 20 to generate DC power. This power is generally converted into alternating current by an orthogonal converter 26 and then supplied to a load 50 such as an electrical device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

燃料電池発電装置は機器の要求する電力に即応して発電
することが要求されるので、燃料となる水素と、酸化剤
となる酸素がそれに即応して供給されなければならない
、酸化剤となる空気の負荷に即応した供給は比較的容易
であるが、水素の供給はケースバイケースである。すな
わち、燃料が純水素の場合には、容器内の水素量が十分
なときには問題なく、不十分な時に備えて水素充填容器
を複数個用意し交互に水素の放出と充填を繰返しながら
使用する方法を取る。しかしながら、複数個の容器が必
要な事と、水素の再充填が必要となる欠点が有る。一方
、燃料が不純物を含む改質水素の場合には化学プラント
である燃料改質装置の応答が遅く、かつ電気化学的に反
応しない不純物が蓄積し機器の要求に即応した発電が出
来ない場合がある。
Since a fuel cell power generation device is required to generate electricity in response to the power required by the equipment, hydrogen as a fuel and oxygen as an oxidizer must be supplied immediately, and air as an oxidizer must be supplied immediately. It is relatively easy to supply hydrogen in response to the load, but hydrogen supply is handled on a case-by-case basis. In other words, when the fuel is pure hydrogen, there is no problem when the amount of hydrogen in the container is sufficient, but in case there is insufficient hydrogen, multiple hydrogen-filled containers are prepared and used by alternately releasing and filling hydrogen. I take the. However, it has the disadvantages of requiring multiple containers and refilling with hydrogen. On the other hand, when the fuel is reformed hydrogen that contains impurities, the response of the fuel reformer, which is a chemical plant, is slow, and impurities that do not react electrochemically accumulate, making it impossible to generate electricity in a timely manner that meets the demands of the equipment. be.

本発明の目的は負荷即応性のよい燃料の供給装置を提供
することにある。
An object of the present invention is to provide a fuel supply device with good load responsiveness.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば、 1)原燃料を水蒸気改質して高圧の改質ガスを生成する
燃料改質装置と、この改質装置により生成された高圧の
改質ガスを燃料電池の運転圧力に降圧して燃料電池に供
給する改質ガスの供給通路と、前記生成された高圧の改
質ガスの一部を受け高圧の純水素を生成する水素透過膜
式精製装置と、この水素透過膜式精製装置を包囲し、こ
の精製装置により生成された純水素を貯蔵する貯蔵タン
クと、この貯蔵タンクに貯蔵した純水素を前記運転圧力
より僅かに低い圧力に降圧し、前記改質ガス圧の降下時
に燃料電池に供給する純水素の供給通路とを備えてなり
、または 2)原燃料を水蒸気改質して高圧の改質ガスを生成する
燃料改質装置と、この改質装置により生成された高圧の
改質ガスを燃料電池の運転圧力に降圧して燃料電池に供
給する改質ガスの供給通路と、前記生成された高圧の改
質ガスの一部を受け高圧の純水素を生成する水素透i!
il膜式精製装置と、この精製装置により生成された純
水素を貯蔵する貯蔵タンクと、この貯蔵タンクに貯蔵し
た純水素を前記運転圧力より僅かに低い圧力に降圧し、
前記改質ガス圧の降下時に燃料電池に供給する純水素の
供給通路とを備えてなるとすることにより達成される。
According to the present invention, the above-mentioned objects include: 1) a fuel reformer that steam-reforms raw fuel to produce high-pressure reformed gas; and a fuel cell that uses the high-pressure reformed gas produced by this reformer. a hydrogen permeable membrane purification device that receives a portion of the generated high-pressure reformed gas and generates high-pressure pure hydrogen; A storage tank surrounds the hydrogen permeable membrane purification device and stores the pure hydrogen produced by this purification device, and the pure hydrogen stored in this storage tank is depressurized to a pressure slightly lower than the operating pressure, and the reforming 2) a fuel reformer that steam-reforms raw fuel to generate high-pressure reformed gas; and the reformer. A reformed gas supply passage that reduces the pressure of the high-pressure reformed gas generated by the above to the operating pressure of the fuel cell and supplies it to the fuel cell, and a high-pressure pure hydrogen that receives a portion of the generated high-pressure reformed gas. Hydrogen transparent i!
an il membrane purification device, a storage tank for storing pure hydrogen produced by the purification device, and reducing the pressure of the pure hydrogen stored in the storage tank to a pressure slightly lower than the operating pressure,
This is achieved by including a supply passage for supplying pure hydrogen to the fuel cell when the reformed gas pressure drops.

〔作用〕[Effect]

一ヒ記手段において、水蒸気改質装置で生成した高圧(
例えば9気圧程度)の故買ガスを改質ガス供給通路で燃
料電池の運転圧力(例えば1ないし4気圧程度)に下げ
て供給する改質ガスの供給系と、水蒸気改質装置で生成
した高圧の改質ガスの一部を水素透iIA膜式精製装置
で精製して貯蔵し、供給通路で前記運転圧力より僅かに
低い圧力に減圧して燃料電池に供給する純水素の供給系
とを設けるよう構成したことにより、定常運転時には改
質ガスの供給系からの改質ガスの供給によって発電運転
が行われ、負荷の急増によって改質ガス供給通路出口側
の改質ガス圧が低下し、改質ガスの圧力と純水素の圧力
とが逆転すると、その差圧に基づいて純水素の供給系に
貯蔵された純水素が燃料電池に供給されるので、負荷変
動に対する即応性に優れた燃料ガスの供給装置が得られ
る。
In the above means, the high pressure (
A reformed gas supply system that lowers the waste gas (e.g., about 9 atm) to the operating pressure of the fuel cell (e.g., about 1 to 4 atm) in the reformed gas supply passage, and supplies the high pressure generated by the steam reformer. A part of the reformed gas is purified by a hydrogen-permeable iIA membrane purification device, stored, reduced in pressure to a pressure slightly lower than the operating pressure in a supply passage, and supplied to the fuel cell. With this configuration, during steady operation, power generation operation is performed by supplying reformed gas from the reformed gas supply system, and when the load suddenly increases, the reformed gas pressure at the exit of the reformed gas supply passage decreases, causing the reformed gas to When the pressure of the pure gas and the pressure of pure hydrogen are reversed, the pure hydrogen stored in the pure hydrogen supply system is supplied to the fuel cell based on the differential pressure, resulting in a fuel gas that is highly responsive to load fluctuations. A feeding device is obtained.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図は請求項2で定義された発明の実施例に係る燃料
電池の燃料ガス供給装置を示すシステムフロー図であり
、原燃料としてメタノールを用いた場合を例に示したも
のである0図において、メタノールタンク1のメタノー
ルポンプ3より同時に水タンク2の水が水ポンプ4より
蒸発器5を経由して改質器6に送られる。メタノールと
水の混合物は蒸発器5で気化された後、改質器6内のス
ーパーヒーター8を経て改質触媒管9に入り、改質触媒
の作用により水素と二酸化炭素に改質される。
FIG. 1 is a system flow diagram showing a fuel gas supply device for a fuel cell according to an embodiment of the invention defined in claim 2, and shows an example of the case where methanol is used as the raw fuel. At the same time, water from the water tank 2 is sent from the water pump 4 to the reformer 6 via the evaporator 5 by the methanol pump 3 of the methanol tank 1. After the mixture of methanol and water is vaporized in the evaporator 5, it passes through the super heater 8 in the reformer 6, enters the reforming catalyst tube 9, and is reformed into hydrogen and carbon dioxide by the action of the reforming catalyst.

この改質反応の温度は約250°Cであり、改質に必要
な反応熱は通常改質器バーナ7にファン10から空気と
燃料電池スタツク20の燃料室I7より排出するオフガ
スとを供給して燃焼させ反応温度を維持させる。改質器
で発生した改質ガスは絞り14Aを含む改質水素供給通
路14を経由して燃料電池スタック20の燃料室17へ
供給すると共に、燃料電池スタツク20にはファン21
より空気を空気室19に供給して直流電力を発電させる
。この直流電力は直交変換器26で交流電力に変換して
負荷50に供給する。
The temperature of this reforming reaction is approximately 250°C, and the reaction heat necessary for reforming is normally obtained by supplying air from a fan 10 to the reformer burner 7 and off-gas discharged from the fuel chamber I7 of the fuel cell stack 20. to maintain the reaction temperature. The reformed gas generated in the reformer is supplied to the fuel chamber 17 of the fuel cell stack 20 via the reformed hydrogen supply passage 14 including the throttle 14A.
More air is supplied to the air chamber 19 to generate DC power. This DC power is converted into AC power by the orthogonal converter 26 and supplied to the load 50.

燃料電池スタック20で消費されなかった燃料は改質器
バーナ7に供給する。また、改質器出口側の改質ガスは
逆止弁29を介して精製器12にも供給する。精製器1
2は水素透過膜から構成されており、この膜を透過した
純水素を精製器12を内包した貯蔵タンクll内に蓄え
る。透過膜を透過しなかった残りの水素、二酸化炭素を
含む残ガスは弁13を経てバーナ7へ供給する。
Fuel not consumed in the fuel cell stack 20 is supplied to the reformer burner 7. Further, the reformed gas on the exit side of the reformer is also supplied to the purifier 12 via the check valve 29 . Purifier 1
Reference numeral 2 is composed of a hydrogen permeable membrane, and pure hydrogen that has permeated through this membrane is stored in a storage tank 11 containing a purifier 12. The remaining gas containing hydrogen and carbon dioxide that has not passed through the permeable membrane is supplied to the burner 7 via the valve 13.

実施例では改質器は約9気圧の高圧力で運転する。改質
ガスは通常、負荷の必要とする電力に従って電池が発生
する直流電流量に比例して発生するようにポンプ3と4
を運転させ、発生した高圧の改質ガスは絞り14により
燃料電池に適した圧力に減圧して供給される。従って精
製器12を透過して水素クツク11に蓄えられる水素圧
力は、改質ガス内の水素分圧に平衡するまでの圧力の水
素が貯蔵される。この純水素は調圧器15^を有する精
製水素供給通路15により燃料電池の運転圧力より僅か
に低い圧力に調圧して供給するようにセントする。
In the exemplary embodiment, the reformer operates at a high pressure of about 9 atmospheres. The reformed gas is normally generated by pumps 3 and 4 in proportion to the amount of DC current generated by the battery according to the power required by the load.
is operated, and the generated high-pressure reformed gas is reduced to a pressure suitable for the fuel cell by the throttle 14 and then supplied. Therefore, the hydrogen pressure that passes through the purifier 12 and is stored in the hydrogen tank 11 is stored at a pressure equal to the hydrogen partial pressure in the reformed gas. This pure hydrogen is regulated to a pressure slightly lower than the operating pressure of the fuel cell and then supplied through a purified hydrogen supply passage 15 having a pressure regulator 15^.

負荷50が急激に高出力を要求すると、燃料電池は水素
をそれに即応して多量に消費するが、絞り14を通して
はそれに即応して改質ガスを供給出来ないので、燃料電
池内の改質ガス圧力が低下する。
When the load 50 suddenly requests high output, the fuel cell immediately consumes a large amount of hydrogen, but since the reformed gas cannot be immediately supplied through the throttle 14, the reformed gas inside the fuel cell is Pressure decreases.

その圧力が調圧器の調整圧力以下に低下すると調圧器1
5^を通して直ちに純水素が燃料電池に供給されるよう
になるので、燃料電池は負荷の急速高出力要求に即応出
来る。なお精製器12の前で並列経路分岐前または後に
逆止弁29を挿入して、改質ガスの圧力が低下しても貯
蔵ガスの圧力低下を防止する。
When the pressure drops below the adjusted pressure of the pressure regulator, the pressure regulator 1
Since pure hydrogen is immediately supplied to the fuel cell through 5^, the fuel cell can immediately respond to the rapid high output demands of the load. Note that a check valve 29 is inserted before or after the parallel path branch in front of the purifier 12 to prevent the pressure of the stored gas from decreasing even if the pressure of the reformed gas decreases.

燃料電池スタック20は発電中に発熱するので、茅発器
5.起動/冷却熱交換器22.燃料電池スタック20内
の冷却板16.に熱媒体を循環させ、蒸発器5と熱交換
器で発熱分を除去する。熱交換器22にはファン24よ
り空気を供給して熱媒体を冷却すると共に、熱交換器付
属のバーナ25にメタノールポンプ23よりメタノール
とファン24より空気を供給、燃焼させて熱媒体を加熱
し燃料電池スタックの温度を上げる役割を果たす、一方
、改質器バーナ7にはメタノールポンプ28よりメタノ
ールを供給させて、これを燃焼させて改質の温度を室温
より起動時に上げる事が出来、かつ改質温度を維持させ
る事も出来る。水素透過膜弐の精製器12.水素タンク
11の容量は、燃料電池スタック20が要求される負荷
急増に即応出来るように設計する。即ち、最大負荷急増
に合わせて改質器が改質ガスの供給に応することが出来
ない分量だけの水素を少なくとも蓄えておき、かつ次回
急増に増えて、速やかに水素を精製出来るような精製器
とする。第1図に示すような燃料ガス供給装置において
は精製装置と貯蔵タンクを一体化し、かつ改質装置とと
もに高い圧力で運転することにより燃料ガス供給装置全
体を小型化し、かつ蓄積と供給を自動的に継続して行う
ことができる。
Since the fuel cell stack 20 generates heat during power generation, the grass generator 5. Start-up/cooling heat exchanger 22. Cooling plate 16 within fuel cell stack 20. The heat medium is circulated through the evaporator 5 and the heat exchanger to remove the generated heat. Air is supplied from a fan 24 to the heat exchanger 22 to cool the heat medium, and methanol from a methanol pump 23 and air from the fan 24 are supplied to a burner 25 attached to the heat exchanger, which is combusted to heat the heat medium. The methanol pump 28 supplies methanol to the reformer burner 7, which serves to raise the temperature of the fuel cell stack, and the methanol can be combusted to raise the reforming temperature from room temperature at startup, and It is also possible to maintain the reforming temperature. Hydrogen permeable membrane 2 purifier 12. The capacity of the hydrogen tank 11 is designed so that the fuel cell stack 20 can quickly respond to a sudden increase in load required. In other words, it is possible to store at least as much hydrogen as the reformer cannot meet the supply of reformed gas in response to a sudden increase in the maximum load, and to purify hydrogen quickly when the next sudden increase in load occurs. Use it as a vessel. In the fuel gas supply system shown in Figure 1, the refiner and storage tank are integrated and operated together with the reformer at high pressure, thereby making the entire fuel gas supply system compact and automatically storing and supplying the fuel gas. can be continued.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、水蒸気改質装置で生成した高
圧の改質ガスを改質ガス供給通路で燃料電池の運転圧力
に下げて供給する改質ガスの供給系と、水蒸気改質装置
で生成した高圧の改質ガスの一部を水素透過膜式精製装
置で精製して貯蔵し供給通路で前記運転圧力より僅かに
低い圧力に減圧して燃料電池に供給する純水素の供給系
、とを設けるよう構成した。その結果、負荷電流の急増
によって燃料電池に供給される改質ガスの圧力が低下す
ると、貯蔵された純水素が直ちに供給されるので、従来
の技術で問題となった改質器の応答遅れおよび改質ガス
中の不純物の蓄積による発電障害などが排除され、負荷
の2、増に対する即応性に優れた燃料ガスの供給装置を
備えた燃料電池発電システムを提供することができる。
As described above, this invention includes a reformed gas supply system that lowers the high pressure reformed gas generated in a steam reformer to the operating pressure of a fuel cell in a reformed gas supply passage, and a steam reformer. A pure hydrogen supply system that purifies and stores a part of the generated high-pressure reformed gas in a hydrogen permeable membrane purification device, reduces the pressure to a pressure slightly lower than the operating pressure in a supply passage, and supplies it to the fuel cell; The system was configured to provide the following. As a result, when the pressure of the reformed gas supplied to the fuel cell decreases due to a sudden increase in load current, the stored pure hydrogen is immediately supplied, thereby eliminating the delay in reformer response that was a problem with conventional technology. It is possible to provide a fuel cell power generation system equipped with a fuel gas supply device that eliminates power generation failures due to the accumulation of impurities in the reformed gas and is highly responsive to increases in load.

また、水素透過膜式の精製装置と純水素の貯蔵タンクを
一体化し、かつ改質器とともに高ガス圧で運転するよう
構成したことにより、純水素の精製能力および貯蔵能力
が高く、したがって即応性を継続して維持できる燃料ガ
スの供給装置を小型に形成できる利点が得られる。
In addition, by integrating the hydrogen permeable membrane purification equipment and the pure hydrogen storage tank, and configuring it to operate together with the reformer at high gas pressure, the purification and storage capacity for pure hydrogen is high, resulting in quick response. The advantage is that the fuel gas supply device that can continuously maintain the fuel gas can be made compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は請求項2で定義された発明の実施例に係る燃料
電池の燃料ガス供給装置を示すシステムフロー図、第2
図は一般的2(燃料電池発電システムの概略構成図であ
る。 1:メタノールタンク、2:水タンク、6:燃料改質器
、11;純水素の貯蔵タンク、12:水素透過膜式の精
製装置、14:改質ガス供給通路、14A:絞り、15
二純水素供給通路、15A:調圧器、20:燃料電池、
3,23.28  :メタノールポンプ、4:水ポンプ
、 10.21.24 :ファ ン (ブロワ) 26: 直交 変換装置、 30: 燃料供給系、 40 : 空気供給系、 50 : 負荷。 代J7人a1.c1− 山 口 巌
FIG. 1 is a system flow diagram showing a fuel gas supply device for a fuel cell according to an embodiment of the invention defined in claim 2;
The figure is a general configuration diagram of a fuel cell power generation system. 1: methanol tank, 2: water tank, 6: fuel reformer, 11: pure hydrogen storage tank, 12: hydrogen permeable membrane purification Device, 14: Reformed gas supply passage, 14A: Throttle, 15
Dual pure hydrogen supply passage, 15A: pressure regulator, 20: fuel cell,
3, 23.28: Methanol pump, 4: Water pump, 10.21.24: Fan (Blower) 26: Orthogonal conversion device, 30: Fuel supply system, 40: Air supply system, 50: Load. 7th grade J7 a1. c1- Iwao Yamaguchi

Claims (1)

【特許請求の範囲】 1)原燃料を水蒸気改質して高圧の改質ガスを生成する
燃料改質装置と、この改質装置により生成された高圧の
改質ガスを燃料電池の運転圧力に降圧して燃料電池に供
給する改質ガスの供給通路と、前記生成された高圧の改
質ガスの一部を受け高圧の純水素を生成する水素透過膜
式精製装置と、この水素透過膜式精製装置を包囲し、こ
の精製装置により生成された純水素を貯蔵する貯蔵タン
クと、この貯蔵タンクに貯蔵した純水素を前記運転圧力
より僅かに低い圧力に降圧し、前記改質ガス圧の降下時
に燃料電池に供給する純水素の供給通路とを備えてなる
ことを特徴とする燃料電池の燃料ガス供給装置。 2)原燃料を水蒸気改質して高圧の改質ガスを生成する
燃料改質装置と、この改質装置により生成された高圧の
改質ガスを燃料電池の運転圧力に降圧して燃料電池に供
給する改質ガスの供給通路と、前記生成された高圧の改
質ガスの一部を受け高圧の純水素を生成する水素透過膜
式精製装置と、この精製装置により生成された純水素を
貯蔵する貯蔵タンクと、この貯蔵タンクに貯蔵した純水
素を前記運転圧力より僅かに低い圧力に降圧し、前記改
質ガス圧の降下時に燃料電池に供給する純水素の供給通
路とを備えてなることを特徴とする燃料電池の燃料ガス
供給装置。
[Claims] 1) A fuel reformer that steam-reforms raw fuel to produce high-pressure reformed gas, and a fuel reformer that converts the high-pressure reformed gas produced by the reformer into the operating pressure of a fuel cell. a supply passage for reformed gas that is reduced in pressure and supplied to the fuel cell; a hydrogen permeable membrane type purifier that receives a portion of the generated high pressure reformed gas and generates high pressure pure hydrogen; and this hydrogen permeable membrane type purifier. A storage tank surrounding the purification device and storing pure hydrogen produced by the purification device, and reducing the pressure of the pure hydrogen stored in this storage tank to a pressure slightly lower than the operating pressure to lower the reformed gas pressure. What is claimed is: 1. A fuel gas supply device for a fuel cell, comprising: a supply passage for pure hydrogen that is sometimes supplied to the fuel cell. 2) A fuel reformer that steam-reforms raw fuel to generate high-pressure reformed gas, and a fuel reformer that reduces the pressure of the high-pressure reformed gas generated by this reformer to the operating pressure of the fuel cell and supplies it to the fuel cell. A supply passage for the reformed gas to be supplied, a hydrogen permeable membrane purification device that receives a portion of the generated high-pressure reformed gas and generates high-pressure pure hydrogen, and stores the pure hydrogen generated by this purification device. and a pure hydrogen supply passage for reducing the pressure of pure hydrogen stored in the storage tank to a pressure slightly lower than the operating pressure and supplying the pure hydrogen to the fuel cell when the reformed gas pressure decreases. A fuel gas supply device for a fuel cell characterized by:
JP2051056A 1989-09-01 1990-03-02 Fuel gas supply unit for fuel cell Pending JPH03179672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2051056A JPH03179672A (en) 1989-09-01 1990-03-02 Fuel gas supply unit for fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-226824 1989-09-01
JP22682489 1989-09-01
JP2051056A JPH03179672A (en) 1989-09-01 1990-03-02 Fuel gas supply unit for fuel cell

Publications (1)

Publication Number Publication Date
JPH03179672A true JPH03179672A (en) 1991-08-05

Family

ID=26391578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2051056A Pending JPH03179672A (en) 1989-09-01 1990-03-02 Fuel gas supply unit for fuel cell

Country Status (1)

Country Link
JP (1) JPH03179672A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061039A1 (en) * 1999-06-09 2000-12-20 Mitsubishi Heavy Industries, Ltd. Apparatus for producing hydrogen
FR2816759A1 (en) * 2000-11-10 2002-05-17 Renault Utilisation of a palladium and/or polymer based membrane between the reformer and the hydrogen plug reservoir of a device for feeding hydrogen to a fuel cell for electric traction of a vehicle
EP0957063A4 (en) * 1996-11-07 2003-05-28 Toyota Motor Co Ltd Hydrogen manufacturing and supplying apparatus and electric motorcar
FR2880993A1 (en) * 2005-01-20 2006-07-21 Renault Sas Electricity producing installation for motor vehicle, has anode supplied with hydrogen by hydrogen reservoir and reforming device, and compressor coupled mechanically to primary turbine to compress air at pressure to increase air flow
JP2007131500A (en) * 2005-11-14 2007-05-31 Mitsubishi Gas Chem Co Inc Hydrogen production apparatus
JP2009179553A (en) * 2009-04-24 2009-08-13 Toshiba Corp Multiple fuel feeding system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0957063A4 (en) * 1996-11-07 2003-05-28 Toyota Motor Co Ltd Hydrogen manufacturing and supplying apparatus and electric motorcar
EP1061039A1 (en) * 1999-06-09 2000-12-20 Mitsubishi Heavy Industries, Ltd. Apparatus for producing hydrogen
US6802876B1 (en) 1999-06-09 2004-10-12 Mitsubishi Heavy Industries, Ltd. Apparatus for producing hydrogen
FR2816759A1 (en) * 2000-11-10 2002-05-17 Renault Utilisation of a palladium and/or polymer based membrane between the reformer and the hydrogen plug reservoir of a device for feeding hydrogen to a fuel cell for electric traction of a vehicle
FR2880993A1 (en) * 2005-01-20 2006-07-21 Renault Sas Electricity producing installation for motor vehicle, has anode supplied with hydrogen by hydrogen reservoir and reforming device, and compressor coupled mechanically to primary turbine to compress air at pressure to increase air flow
JP2007131500A (en) * 2005-11-14 2007-05-31 Mitsubishi Gas Chem Co Inc Hydrogen production apparatus
JP2009179553A (en) * 2009-04-24 2009-08-13 Toshiba Corp Multiple fuel feeding system

Similar Documents

Publication Publication Date Title
US6183895B1 (en) Fuel-cell power generating system
AU651150B2 (en) Application of fuel cells to power generation systems
US6994927B2 (en) Integrated fuel cell system
US6063515A (en) Integrated fuel cell electric power generation system for submarine applications
JP4297981B2 (en) Control system and control method for controlling gas generation system
WO2019216047A1 (en) Carbon dioxide supply system
US6805721B2 (en) Fuel processor thermal management system
KR102190939B1 (en) Ship
KR102238761B1 (en) Ship
RU2443040C2 (en) Fuel elements system
JP2002110207A (en) Fuel cell system and operation method therefor
JPH03179672A (en) Fuel gas supply unit for fuel cell
JPS61107668A (en) Fuel cell power generation equipment
JP2007165130A (en) Fuel cell system and control method of fuel cell system
JP4938299B2 (en) Operation method of fuel cell power generator
KR101696550B1 (en) Ship
KR102200361B1 (en) Ship
JP7065918B2 (en) Carbon dioxide supply system
KR20240055460A (en) Energy supply system and method for mobile
KR102190934B1 (en) Ship
JPH09190833A (en) Fuel gas supply device for fuel cell power generating device
KR101643103B1 (en) Ship
KR101704912B1 (en) Ship
KR101704913B1 (en) Ship
JP2005063883A (en) Fuel cell system