JPS6110875A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JPS6110875A
JPS6110875A JP59131028A JP13102884A JPS6110875A JP S6110875 A JPS6110875 A JP S6110875A JP 59131028 A JP59131028 A JP 59131028A JP 13102884 A JP13102884 A JP 13102884A JP S6110875 A JPS6110875 A JP S6110875A
Authority
JP
Japan
Prior art keywords
fuel
gas
fuel cell
water
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59131028A
Other languages
Japanese (ja)
Inventor
Yoshiaki Amano
天野 義明
Eiji Yokoyama
英二 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59131028A priority Critical patent/JPS6110875A/en
Publication of JPS6110875A publication Critical patent/JPS6110875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the load response of a fuel cell system by storing a hydrogen rich gas during regular operation and compulsorily supplying the gas to the fuel cell by the pressure of steam produced in the cell-cooling system during a load increase. CONSTITUTION:A fuel supplied 20 includes a gas container 21 in which a fuel gas is stored during regular operation, and a water container 22 which is connected to the gas container 21 by a communicating tube 23 and the upper part of which is connected through a stop valve 27 and an orifice 28 to a vapor piping 19 which connects an ejectror and a vapor producer 5 which is installed in the cooling system of a fuel cell 1. The fuel supplier 20 is connected to a piping 18, which connects the hydrogen electrode 1a of the fuel cell 1 and a shift converter 3, by a piping 25. During a load increase, the stop valve 27 is rapidly opened to decrease the liquid level of the water container 22 by high pressure vapor thereby supplying gas container in the gas container 21 to the hydrogen electrode 1a by the pressure of the high pressure vapor. Consequently, it is possible to remarkably improve the load response of the fuel cell system by enabling the fuel gas to be rapidly supplied.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、燃料電池系装置に係り、特に負荷応答性を高
めるめに好適な燃料補給装置を備えた燃料電池系装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell system, and particularly to a fuel cell system equipped with a fuel supply device suitable for improving load response.

〔発明の背景〕[Background of the invention]

まず、従来の湖料這池系装置を第4図を参照して説明す
る。
First, a conventional lake pond system device will be explained with reference to FIG.

第4図は、従来の燃料電池系装置の系統図で、太い実線
矢印は天然ガスおよび反応ガスの径路、一点鎖線矢印は
空気の径路、二点鎖線矢印は排ガスの径路、破線矢印は
水蒸気の径路、細い実線矢印は冷却水の径路を示してい
る。
Figure 4 is a system diagram of a conventional fuel cell system, where the thick solid line arrows are natural gas and reaction gas paths, the one-dot chain arrows are air paths, the two-dot chain arrows are exhaust gas paths, and the dashed line arrows are water vapor paths. The thin solid line arrow indicates the path of the cooling water.

第4図において、1は燃料電池本体で、水素極la、酸
素極1bおよび電池冷却装置ICからなっている。2は
、天然ガス等の燃料を改質するリフオーマで、反応部2
aと燃焼部2bからなっている。3はシフトコンバータ
、4はエゼクタ(または混合器)、13は主燃料調節弁
、14は補助燃料調節弁である。
In FIG. 4, 1 is a fuel cell main body, which is composed of a hydrogen electrode la, an oxygen electrode 1b, and a cell cooling device IC. 2 is a reformer for reforming fuel such as natural gas, and a reaction part 2
It consists of a combustion part 2b and a combustion part 2b. 3 is a shift converter, 4 is an ejector (or mixer), 13 is a main fuel control valve, and 14 is an auxiliary fuel control valve.

これら主燃料調節弁13、エゼクタ4、リフオーマ2、
シフトコンバータ3を接続し燃料電池本体1の水素極1
aへ燃料ガスを供給する配叶系と、補助燃料調節弁14
を具備してリフオーマ2の燃燃部2bへ天然ガスを供給
する配管系とで燃料供給系が構成されている。
These main fuel control valve 13, ejector 4, reflow generator 2,
Connect the shift converter 3 to the hydrogen electrode 1 of the fuel cell main body 1
A valve arrangement system that supplies fuel gas to a, and an auxiliary fuel control valve 14
A fuel supply system is constituted by a piping system that is equipped with a piping system that supplies natural gas to the combustion section 2b of the reheater 2.

12は、空気を供給するだめのブロワで、カソード空気
調節弁15を具備する配管が燃料電池本体1の酸素極1
bへ接続され、バーナ空気量調節弁16を具備する配け
がリフオーマ2の燃焼部2bへ接続されて、空気供給系
が構成されている。
12 is a blower for supplying air, and a pipe equipped with a cathode air control valve 15 connects to the oxygen electrode 1 of the fuel cell main body 1.
b, and an arrangement provided with a burner air amount control valve 16 is connected to the combustion section 2b of the reheater 2, thereby forming an air supply system.

5は蒸気発生器、7は冷却水用熱交換器、1゜は冷却水
ポンプで、これらを接続する冷却水配管が燃料電池本体
10電池冷却装置1cに接続されて電池冷却系のサイク
ルが構成されている。
5 is a steam generator, 7 is a cooling water heat exchanger, 1° is a cooling water pump, and the cooling water pipes connecting these are connected to the fuel cell main body 10 and the battery cooling device 1c, forming a battery cooling system cycle. has been done.

8は排ガス用熱交換器で、燃料電池本体1の酸素極1b
からの排空気およびリフオーマ2の燃焼部2bからの排
ガスを循環水等で熱交換して2シ、排ガス、水分回収系
が構成されている。9は、その回収された水を貯める水
タンク、11は、水をd池冷却系に補給する給水ポンプ
である。
8 is a heat exchanger for exhaust gas, and the oxygen electrode 1b of the fuel cell main body 1
An exhaust gas and water recovery system is constructed by exchanging heat between the exhaust air from the combustion chamber 2b and the exhaust gas from the combustion section 2b of the re-former 2 using circulating water or the like. 9 is a water tank that stores the collected water, and 11 is a water supply pump that supplies water to the d pond cooling system.

6は、燃料電池本体1の出力側に設けたインバータであ
る。
6 is an inverter provided on the output side of the fuel cell main body 1.

このような構成の燃料電池系装置の主要な作用を次に説
明する。
The main functions of the fuel cell system having such a configuration will be explained next.

天然ガス等の燃料は、太い実線で示すように、エゼクタ
4によシ水蒸気と混合され、リフオーマ2の反応部2a
に供給され、ここで水素を44に含む、いわゆる水素リ
ッチガスに改質される。続いてシフトコンバータ3に導
かれ、ガス中の一酸化炭素が水と反応し、二酸化炭素と
水素に変換される。次いで、ガス中に余分の水分がある
場合は、これを除去したのち、燃料電池本体1の水素極
1aに導かれ、ここで約80%の水素が消費され、残9
20%の水素を含む水素極排ガスはリフオーマ2の燃焼
部2bに戻され、改成反応に必要な燃焼熱の一部に用い
られる。
Fuel such as natural gas is mixed with steam in the ejector 4, as shown by the thick solid line, and is then mixed with steam in the reaction section 2a of the reformer 2.
The hydrogen gas is supplied to the gas tank, where it is reformed into a so-called hydrogen-rich gas containing hydrogen. Subsequently, the gas is guided to the shift converter 3, where carbon monoxide in the gas reacts with water and is converted into carbon dioxide and hydrogen. Next, if there is excess moisture in the gas, it is removed and then led to the hydrogen electrode 1a of the fuel cell main body 1, where about 80% of the hydrogen is consumed and the remaining 9.
The hydrogen electrode exhaust gas containing 20% hydrogen is returned to the combustion section 2b of the reformer 2 and is used as part of the combustion heat required for the reforming reaction.

空気は、プロワ12によシ昇圧され、一点鎖線の矢印で
示すように燃料電池本体1の酸素極1bおよびリフオー
マ2の燃焼部2bに供給される。
The air is pressurized by the blower 12, and is supplied to the oxygen electrode 1b of the fuel cell main body 1 and the combustion section 2b of the re-boomer 2, as shown by the dashed-dotted arrow.

燃料電池本体1の酸素極1bからの排空気およびリフオ
ーマ2の燃焼部2bからの排ガスは、2点鎖線の矢印の
ように合流して排ガス用熱交換器8に導かれ、循環水等
によって排ガス中の水分が凝縮するまで冷却することに
より排熱回収および水分回収が行われる。回収された水
分は水タンク9に導かれ再利用される。
The exhaust air from the oxygen electrode 1b of the fuel cell main body 1 and the exhaust gas from the combustion part 2b of the re-former 2 join together as shown by the two-dot chain arrow and are guided to the exhaust gas heat exchanger 8, where the exhaust gas is Exhaust heat recovery and moisture recovery are performed by cooling until the moisture inside condenses. The collected moisture is led to the water tank 9 and reused.

冷却水は、冷却水ポンプ10により昇圧され、細い実線
矢印のように燃料電池本体1の疏池冷却装dlcに供給
され、燃料電池本体1からの発生熱を奪ったのち、蒸気
発生器5でフラッンユされる。ここで冷却水の一部は水
蒸気となシ、蒸気量調節弁17で流量を調節され、破線
矢印のようにエゼクタ4に導かれる。残りの冷却水は、
給水ポンプ11からの補給水と合流し、再び冷却水ポン
プ10に導かれる。
The cooling water is pressurized by the cooling water pump 10 and is supplied to the canal cooling device DLC of the fuel cell main body 1 as shown by the thin solid line arrow, and after removing the generated heat from the fuel cell main body 1, it is sent to the steam generator 5. Be flunched. Here, a part of the cooling water is converted into water vapor, the flow rate of which is adjusted by a steam amount control valve 17, and guided to the ejector 4 as indicated by a broken line arrow. The remaining cooling water is
It joins with makeup water from the water supply pump 11 and is led to the cooling water pump 10 again.

との電池冷却系で発生した余剰の熱は、冷却水用熱交換
器7によシ温水などの形で回収される。
Excess heat generated in the battery cooling system is recovered in the form of hot water or the like by the cooling water heat exchanger 7.

このような1疋米の燃料電池系装置において、燃料酸油
系につらなる成力負荷が急激に、たとえば25%負荷か
ら100%負荷に増加した場合を考える。
Consider a case where, in such a one-size-fits-all fuel cell system, the resultant load connected to the fuel acid/oil system suddenly increases, for example, from 25% load to 100% load.

この負荷増加に対応するためには、燃料電池本体1の水
素極1aへの供給ガスを素早く増加させる必要があるが
、このためには、主燃料量調節弁13、補助燃料量1節
弁14、カソード空気量調節弁15、バーナ空気量調節
弁16および蒸気量調節弁17等の弁類の開度を急激に
増加する必要がある。
In order to cope with this increase in load, it is necessary to quickly increase the gas supplied to the hydrogen electrode 1a of the fuel cell main body 1. It is necessary to rapidly increase the opening degrees of valves such as the cathode air amount control valve 15, the burner air amount control valve 16, and the steam amount control valve 17.

しかし、比較的小形の弁であっても、弁の制御系には時
間遅れの要素がともなうため、通常2〜10秒程度の作
動遅れが生じる。このことは、作動遅れの間、燃料電池
系が負荷に追従できないことを意味するのであり、第5
図に、その状態を模式的に示す。
However, even if the valve is relatively small, the valve control system is accompanied by a time delay element, so there is usually an operation delay of about 2 to 10 seconds. This means that the fuel cell system cannot follow the load during the operation delay, and the fifth
The figure schematically shows this state.

第5図は、負荷応答性を示す線図で、(a)は、負荷が
ステップ関数的に増加した状態を、横軸に時間、縦軸に
負荷をとって示している。
FIG. 5 is a diagram showing load responsiveness, and (a) shows a state where the load increases in a step function manner, with time on the horizontal axis and load on the vertical axis.

(b)は、それに対する従来の燃料電池系からの出力可
能電力の変化を、横軸に時間、縦軸に出力可能電力をと
って(a)と対比して示している。
(b) shows the change in outputtable power from a conventional fuel cell system in comparison with (a), with time on the horizontal axis and outputtable power on the vertical axis.

燃料電池系は時間遅れTIがあるために、斜線で示した
Aの部分だけ出力電力に不足が生じていることがわかる
It can be seen that because the fuel cell system has a time delay TI, the output power is insufficient in the shaded area A.

このことは、一般系統屯力とは独立して使用(アイソレ
ート運転)されるオンサイト形の燃料電池本体【直にお
いては、負荷変動が激しいため、痔に大きな問題となっ
ていた。
This has become a major problem for hemorrhoids due to severe load fluctuations in on-site fuel cell systems that are used independently of the general system capacity (isolated operation).

このように燃料用、池系装置では、優れた負荷応答性が
要求され、とくに燃料電池本体への燃料供給量の応答性
の向上が重要な課題である。
As described above, excellent load responsiveness is required for fuel and pond systems, and in particular, improving the responsiveness of the amount of fuel supplied to the fuel cell body is an important issue.

〔発明お目的〕[Purpose of invention]

本発明は、前述の従来技術の問題点を解決するためにな
されたもので、負荷増加時に迅速に燃料ガスの補給がな
される負荷追従性の優れた燃料電池系装置の提供を、そ
の目的としている。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and its purpose is to provide a fuel cell system device with excellent load followability, which can quickly replenish fuel gas when the load increases. There is.

〔発明の概要〕[Summary of the invention]

本発明に係る燃料電池系装置の構成は、燃料電池本体と
、この燃料、4池本体に対する燃料供給系、空気供給系
、電池冷却系、排ガス、水分回収系および付属装置とか
らなる燃料電池系装置において、上記燃料電池本体に対
する燃料供給系の配庁に燃料ガス補給管を介して接続さ
れ、定常時に燃料ガスを備蓄する蓄ガス槽と、この蓄ガ
ス片檜に連通管を介して接続され、定常時に水を備蓄す
る貯水槽とを設け、上記電池冷却ホ内で発生ずる水黒気
を、蒸気制御手段を具備しf′C,蒸気配管を介して前
記貯水槽の上部に導通しうるように、傳I戊して、負荷
塘〃日時に、水蒸気f nil記貯水槽内に導通するこ
とによって貯水槽内の水を移動させ、蓄ガス槽内の燃料
ガスを前記燃料供給系の配管に送出しうるようにしたも
のである。
The structure of the fuel cell system device according to the present invention is a fuel cell system consisting of a fuel cell main body, this fuel, a fuel supply system for the four pond main bodies, an air supply system, a battery cooling system, an exhaust gas and water recovery system, and ancillary devices. In the device, the gas storage tank is connected to the fuel supply system for the fuel cell main body via a fuel gas supply pipe, and is connected to the gas storage tank via a communication pipe for storing fuel gas during normal operation. , a water storage tank for storing water during normal operation, and a steam control means is provided to conduct the water vapor generated in the battery cooling hole to the upper part of the water storage tank via steam piping. In this way, when the load is reached, the water in the water tank is transferred by conducting water vapor into the water tank, and the fuel gas in the storage gas tank is transferred to the piping of the fuel supply system. It is designed so that it can be sent to

なお付記すると、本発明は、足踏運転時に、燃料補給装
置内の畜ガス槽に、燃料電池での発電に必要な水素リッ
チガスを備蓄しておき、負荷増加時に、電池冷却系内で
発生する水蒸気の圧力によって前記のV44されたガス
を強制的に押し出させ、燃料電池本体に素早く補給する
ことにより、負荷の増加にともなう一時的な燃料不足に
対応しようとするものである。
As an additional note, the present invention stores hydrogen-rich gas necessary for power generation in the fuel cell in the gas tank in the refueling device during foot-operated operation, and when the load increases, hydrogen-rich gas is generated in the battery cooling system. The purpose is to forcibly push out the V44 gas by the pressure of water vapor and quickly replenish it to the fuel cell body in order to cope with a temporary fuel shortage caused by an increase in load.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図ないし第3図および第
5図を参照して説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 3 and 5. FIG.

第1図は、本発明の一実施例に係る燃料電池系装置の系
統図、第2図は、その燃料補給装置の詳細構成図、第3
図は、その燃料補給装置の作動説明図で、(a)は作動
中、(b)は燃料ガスの補給終了状態を示す。図中、先
の第4図と同一符号のものは従来技術と同等部分である
から、その説明を省略する。
FIG. 1 is a system diagram of a fuel cell system according to an embodiment of the present invention, FIG. 2 is a detailed configuration diagram of the fuel supply device, and FIG.
The figures are explanatory diagrams of the operation of the fuel replenishment device, with (a) showing it in operation and (b) showing the state in which fuel gas replenishment has been completed. In the figure, the same reference numerals as those in FIG. 4 are the same parts as in the prior art, so the explanation thereof will be omitted.

また、各流体の径路を示す矢印の種別も、それぞれ第4
図に合わせている。
Furthermore, the types of arrows indicating the paths of each fluid are also
It matches the diagram.

第1図において、18は、燃料電池本体1に対する燃料
供給系の配管の一部で、燃料電池本体1の水素極1aと
シフトコンバータ3を連結する配管、18′は、燃料電
池本体1の水素極1aからの出口側の配管、19は、電
池冷却系内にある蒸気発生器5とエゼクタ4とを連結す
る蒸気配管であり、これらの配管は従来の装置と同じも
のである。
In FIG. 1, 18 is a part of the piping of the fuel supply system to the fuel cell main body 1, which is a pipe connecting the hydrogen electrode 1a of the fuel cell main body 1 and the shift converter 3, and 18' is the hydrogen The piping 19 on the outlet side from the pole 1a is a steam piping that connects the steam generator 5 and the ejector 4 in the battery cooling system, and these pipings are the same as those in the conventional device.

20は燃料補給装置で、後述する燃料ガス補給管25を
介して前記燃料供給系の配管18に接続し、後述する蒸
気配管26を介して前記蒸気配管19に接続している。
Reference numeral 20 denotes a fuel replenishment device, which is connected to the piping 18 of the fuel supply system through a fuel gas replenishment pipe 25, which will be described later, and to the steam piping 19 through a steam piping 26, which will be described later.

この燃料補給装置20の構成の詳細を第2図に示す。The details of the configuration of this refueling device 20 are shown in FIG. 2.

第2図において、21は蓄ガス槽で、燃料電池本体1に
対する燃料供給系の配管18に燃料ガス補給管25を介
して接続し淀常時にシフトコンバータ3出口からの燃料
ガスを備蓄しているものである。22は、前記蓄ガス槽
21に連通管23を介して接続する貯水槽で、定常時に
水を備蓄しているものである。その水は貯水槽22の上
部まで満たされており、さらに連通管を連通し蓄ガス槽
21の底部まで貯まっている。蓄ガス槽21内の前記水
の上部に燃料ガスが備蓄される。
In FIG. 2, reference numeral 21 denotes a gas storage tank, which is connected to the fuel supply system piping 18 for the fuel cell main body 1 via a fuel gas supply pipe 25, and stores fuel gas from the outlet of the shift converter 3 during stagnation. It is something. Reference numeral 22 denotes a water storage tank connected to the gas storage tank 21 via a communication pipe 23, which stores water during normal operation. The water is filled to the top of the water storage tank 22, and is further stored to the bottom of the gas storage tank 21 through a communication pipe. Fuel gas is stored above the water in the storage gas tank 21.

蒸気発生器5からの蒸気配管19から分岐した蒸気配管
26は前記貯水槽21の頂部に接続しており、蒸気配管
26には、電磁制御弁である蒸気止め弁およびオリフィ
ス28が具備されて蒸気制御手段を構成している。
A steam piping 26 branched from the steam piping 19 from the steam generator 5 is connected to the top of the water tank 21, and the steam piping 26 is equipped with a steam stop valve, which is an electromagnetic control valve, and an orifice 28. It constitutes a control means.

貯水槽22の水面にはハンマリング防止フロート24が
浮かしてあシ、蒸気配管26から高温蒸気が貯水槽22
に導通されたとき、高温蒸気と常温の水が直接触れてハ
ンマリングを起こすのを防止している。
A hammering prevention float 24 floats on the water surface of the water tank 22, and high-temperature steam flows from the steam pipe 26 to the water tank 22.
This prevents direct contact between high-temperature steam and room-temperature water, causing hammering.

燃料ガス補給管25には、分岐管29を介して水分回収
手段に係るトレーナ30が配設されている。31は蓄ガ
ス槽とトレーナ30を連通ずる管である。このトレーナ
30によって、燃料ガスに混入したドレン水を分離し排
出して水タンク9に戻すように構成されている。
A trainer 30 relating to moisture recovery means is disposed in the fuel gas supply pipe 25 via a branch pipe 29 . 31 is a pipe that communicates the storage gas tank and the trainer 30. This trainer 30 is configured to separate and discharge drain water mixed in the fuel gas and return it to the water tank 9.

また、燃料ガス補給管25には、分岐管33を介して差
圧制限器33が配設されている。34は、燃料電池本体
1の水素極1aからの出口側の配管18′と差圧制限器
32とを接続する燃料ガスバイパス管である。
Further, a differential pressure limiter 33 is disposed in the fuel gas supply pipe 25 via a branch pipe 33. 34 is a fuel gas bypass pipe that connects the pipe 18' on the outlet side from the hydrogen electrode 1a of the fuel cell main body 1 and the differential pressure limiter 32.

差圧制限器32内には、内部に封入液35が封入されて
おり、分岐管33、燃料ガスバイパス管34の接続して
いる差圧制限器内上部には燃料ガスが入っている。図に
示すように封入液35によって常時は燃料電池本体1の
水素極1aの入口と出口との差圧をΔPに保持しながら
シールしておシ、差圧がΔpmax を超過したときに
燃料ガスを配管18′にバイパスし、燃料電池本体1の
水素極1aの入口圧力が異常に上昇するのを防止するよ
うに構成されている。
A sealed liquid 35 is sealed inside the differential pressure limiter 32, and fuel gas is contained in the upper part of the differential pressure limiter to which the branch pipe 33 and the fuel gas bypass pipe 34 are connected. As shown in the figure, the sealed liquid 35 normally maintains the differential pressure between the inlet and outlet of the hydrogen electrode 1a of the fuel cell main body 1 at ΔP and seals it, and when the differential pressure exceeds Δpmax, the fuel gas is bypassed to the pipe 18' to prevent the inlet pressure of the hydrogen electrode 1a of the fuel cell main body 1 from increasing abnormally.

次に、このような構成の燃料補給装置の負荷増加時の作
用を説明する。
Next, the operation of the refueling device having such a configuration when the load increases will be explained.

いま、燃料電池系につらなる負荷が急激に増加したとす
ると、蒸気止め弁27が急開する。蒸気止め弁27は電
磁制御弁であシ、他の燃料調節弁や空気量調節弁にくら
べ時間遅れは著しく少い。
Now, if the load connected to the fuel cell system suddenly increases, the steam stop valve 27 suddenly opens. The steam stop valve 27 is an electromagnetic control valve, and the time delay is significantly smaller than that of other fuel control valves or air flow control valves.

蒸気量はオリフィス28により設定されている。The amount of steam is set by an orifice 28.

蒸気発生器5から蒸気配管19を経て蒸気配管26に導
通される蒸気は10気圧以上の高圧蒸気であり、オリフ
ィス28の下流で急激に膨張するために貯水槽21の液
面を下方に低下させる。
The steam conducted from the steam generator 5 to the steam piping 26 via the steam piping 19 is high-pressure steam of 10 atmospheres or more, and expands rapidly downstream of the orifice 28, thereby lowering the liquid level in the water storage tank 21 downward. .

このとき液面にはハンマリング防止フロートが浮いてい
るため、高温蒸気と常温の水の衝突によるハンマリング
を生じ彦い。
At this time, since a hammering prevention float is floating on the liquid surface, hammering occurs due to the collision of high temperature steam and room temperature water.

貯水槽22内の水は、水蒸気の圧力に押されて連通管2
3を移動し、蓄ガス槽21では液面が上昇し、蓄ガス槽
21内の燃料ガス、すなわち水素リッチガスは燃料ガス
補給管25を経てシフトコンバータ3出口側の燃料供給
系の配管18に送出される。
The water in the water storage tank 22 is pushed by the pressure of water vapor and flows into the communication pipe 2.
3, the liquid level rises in the gas storage tank 21, and the fuel gas in the storage gas tank 21, that is, hydrogen-rich gas, is sent to the fuel supply system piping 18 on the exit side of the shift converter 3 via the fuel gas supply pipe 25. be done.

第3図(a)に、前述の動作が始まって少し経過した作
動状態を示し、第3図(b)に、燃料ガス送出、すなわ
ち燃料電池本体1への燃料ガス補給終了の状態を示す。
FIG. 3(a) shows the operating state a little while after the above-mentioned operation started, and FIG. 3(b) shows the state of fuel gas delivery, that is, the end of fuel gas replenishment to the fuel cell main body 1.

この動作によって、第3図に示すΔVに相当する燃料ガ
スが燃料電池本体1の水素極1aに補給されたことにな
る。
By this operation, fuel gas corresponding to ΔV shown in FIG. 3 is replenished to the hydrogen electrode 1a of the fuel cell main body 1.

一連の燃料ガス送出の動作が終了したのち、蒸気止め弁
27が閉止する。
After a series of fuel gas delivery operations are completed, the steam stop valve 27 is closed.

そこで、貯水槽22に満たされた水蒸気は自然あるいは
強制冷却され水(液体)の状態になる。
Therefore, the water vapor filled in the water storage tank 22 is naturally or forcedly cooled and becomes a water (liquid) state.

水蒸気部の体積が減少するために、貯水槽22の液面が
上昇し、蓄ガス槽21の液面が低下するので、シフトコ
ンバータ3出口側の燃料供給系の配管18から燃料ガス
補給管25を経て蓄ガス槽21内に燃料ガスが吸入され
再びもとの状態になシ、次の負荷の急激な増加に対応で
きる状態となる。
Since the volume of the water vapor part decreases, the liquid level in the water storage tank 22 rises, and the liquid level in the gas storage tank 21 decreases, so that the fuel gas supply pipe 25 is connected to the pipe 18 of the fuel supply system on the outlet side of the shift converter 3. After that, fuel gas is sucked into the storage gas tank 21, and the original state is restored again, allowing the tank to respond to the next sudden increase in load.

この動作において、水蒸気の供給量とシフトコンバータ
3からの燃料ガス量の不つシあいなどで、電池本体1の
水素極1aの入口圧力が異常に上昇しようとする場合は
、差圧制限器32が作動して、桝料ガスを燃料ガスバイ
パス管34を経て電池本体1の水素極1aの出口側配管
18′にバイパスして、異常圧力上昇を防止する。
In this operation, if the inlet pressure of the hydrogen electrode 1a of the battery body 1 is about to rise abnormally due to a mismatch between the amount of water vapor supplied and the amount of fuel gas from the shift converter 3, the differential pressure limiter 32 is activated to bypass the feed gas through the fuel gas bypass pipe 34 to the outlet side pipe 18' of the hydrogen electrode 1a of the battery body 1, thereby preventing abnormal pressure rise.

第5図に、本実施例の効果を模式的に示す。FIG. 5 schematically shows the effects of this embodiment.

第5図(C)は、本発明の一実施例に係る燃料電池系か
らの出力可能電力の変化を、横軸に時間、縦軸に出力可
能電力をとって示している。
FIG. 5(C) shows changes in the outputtable power from the fuel cell system according to an embodiment of the present invention, with time on the horizontal axis and outputtable power on the vertical axis.

この場合は、第5図(b)に示した従来技術にくらべ、
Bに相当する部分だけ出力可能電力が増加しておシ、そ
の結果、時間遅れがT2  (T2 <TI )に減少
し、負荷応答性が著しく向上している。
In this case, compared to the prior art shown in FIG. 5(b),
The outputtable power increases by the portion corresponding to B, and as a result, the time delay is reduced to T2 (T2 < TI), and the load response is significantly improved.

このように、本実施例によれば、燃料電池系につらなる
負荷が急激に増加しても、蓄ガス槽21に備蓄されてい
る燃料ガスを、蒸気発生器5からの水蒸気の圧力で貯水
槽22に備蓄されている水の移動を介して素早く燃料電
池本体1に補給して、供給燃料ガスの不足を補うことが
できるので、燃料電池系装置の負荷応答性を高めること
ができるという効果がある。
In this way, according to the present embodiment, even if the load connected to the fuel cell system suddenly increases, the fuel gas stored in the storage gas tank 21 is transferred to the water storage tank using the pressure of the water vapor from the steam generator 5. It is possible to quickly replenish the fuel cell main body 1 through the movement of water stored in the fuel cell 22 to compensate for the shortage of supplied fuel gas, which has the effect of increasing the load response of the fuel cell system. be.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、負荷増加時に迅速
に燃料ガスの補給がなされる、負荷追従性の優れた燃料
電池系装置を提供することができる。
As described above, according to the present invention, it is possible to provide a fuel cell system device that can quickly replenish fuel gas when the load increases and has excellent load followability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る燃料電池系装置の系
統図、第2図は、その燃料補給装置の詳細構成図、第3
図は、その燃料補給装置の作動説明図で、(a)は作動
中、(b)は燃料ガスの補給終了状態を示し、第4図は
、従来の燃料電池系装置の系統図、第5図は、負荷応答
性を示す線図で、(a)は、負荷がステップ関数的に増
加した状態、(b)は、それに対する従来の燃料電池系
からの出力可能電力の変化、(C)は、本発明の一実施
例に係る燃料電池系からの出力可能電力の変化を示して
いる。
FIG. 1 is a system diagram of a fuel cell system according to an embodiment of the present invention, FIG. 2 is a detailed configuration diagram of the fuel supply device, and FIG.
The figures are explanatory diagrams of the operation of the fuel replenishment device, with (a) in operation and (b) in a state where fuel gas replenishment has been completed. The figure is a diagram showing load response. (a) is a state where the load increases in a step function manner, (b) is a corresponding change in the output power from a conventional fuel cell system, and (C) is a diagram showing load response. 3 shows a change in the power that can be output from the fuel cell system according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、燃料電池本体と、この燃料電池本体に対する燃料供
給系、空気供給系、電池冷却系、排ガス、水分回収系お
よび付属装置とからなる燃料電池系装置において、上記
燃料電池本体に対する燃料供給系の配管に燃料ガス補給
管を介して接続され、定常時に燃料ガスを備蓄する蓄ガ
ス槽と、この蓄ガス槽に連通管を介して接続され、定常
時に水を備蓄する貯水槽とを設け、上記電池冷却系内で
発生する水蒸気を、蒸気制御手段を具備した蒸気配管を
介して前記貯水槽の上部に導通しうるように構成して、
負荷増加時に、水蒸気を前記貯水槽内に導通することに
よって貯水槽内の水を移動させ、蓄ガス槽内の燃料ガス
を前記燃料供給系の配管に送出しうるように構成したこ
とを特徴とする燃料電池系装置。 2、特許請求の範囲第1項記載のものにおいて、蒸気配
管に具備された蒸気制御手段は、電磁制御弁およびオリ
フィスである燃料電池系装置。 3、特許請求の範囲第1項記載のものにおいて、蒸気配
管を接続した貯水槽の液面上に、ハンマリング防止フロ
ートを浮かせたものである燃料電池系装置。 4、特許請求の範囲第1項記載のものにおいて、燃料供
給系の配管と蓄ガス槽とを接続する燃料ガス補給管に、
燃料電池本体の入口側配管と出口側配管との差圧を制御
する差圧制限装置を設けたものである燃料電池系装置。 5、特許請求の範囲第1項記載のものにおいて、燃料供
給系の配管と蓄ガス槽とを接続する燃料ガス補給管に、
燃料ガスに混入したドレン水を分離排出せしめる水分回
収手段を設けたものである燃料電池系装置。
[Scope of Claims] 1. A fuel cell system comprising a fuel cell main body, a fuel supply system for the fuel cell main body, an air supply system, a cell cooling system, an exhaust gas, a moisture recovery system, and an accessory device, which includes: A storage gas tank that is connected to the fuel supply system piping for the main body via a fuel gas supply pipe and stores fuel gas during normal operation, and a water storage tank that is connected to this storage gas tank via a communication pipe and stores water during normal operation. a tank, and configured so that the water vapor generated in the battery cooling system can be conducted to the upper part of the water storage tank via a steam piping equipped with a steam control means,
When the load increases, water vapor is conducted into the water storage tank to move the water in the water storage tank, and the fuel gas in the gas storage tank can be sent to the piping of the fuel supply system. Fuel cell system equipment. 2. The fuel cell system according to claim 1, wherein the steam control means provided in the steam piping is an electromagnetic control valve and an orifice. 3. A fuel cell system according to claim 1, in which a hammering prevention float is suspended above the liquid level of a water storage tank connected to steam piping. 4. In the item described in claim 1, the fuel gas supply pipe connecting the pipe of the fuel supply system and the storage gas tank,
A fuel cell system device that is equipped with a differential pressure limiting device that controls the differential pressure between the inlet side piping and the outlet side piping of the fuel cell main body. 5. In the item described in claim 1, the fuel gas supply pipe connecting the pipe of the fuel supply system and the storage gas tank,
A fuel cell system equipped with a water recovery means that separates and discharges drain water mixed in with fuel gas.
JP59131028A 1984-06-27 1984-06-27 Fuel cell system Pending JPS6110875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59131028A JPS6110875A (en) 1984-06-27 1984-06-27 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131028A JPS6110875A (en) 1984-06-27 1984-06-27 Fuel cell system

Publications (1)

Publication Number Publication Date
JPS6110875A true JPS6110875A (en) 1986-01-18

Family

ID=15048322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131028A Pending JPS6110875A (en) 1984-06-27 1984-06-27 Fuel cell system

Country Status (1)

Country Link
JP (1) JPS6110875A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481176A (en) * 1987-09-24 1989-03-27 Hitachi Ltd Fuel cell
JPH01217863A (en) * 1988-02-25 1989-08-31 Mitsubishi Electric Corp Steam separator system of fuel cell
JP2001210350A (en) * 2000-01-25 2001-08-03 Nissan Motor Co Ltd Fuel cell system
JP2010118204A (en) * 2008-11-12 2010-05-27 Toshiba Corp Fuel cell electric power generation system and its operation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481176A (en) * 1987-09-24 1989-03-27 Hitachi Ltd Fuel cell
JPH01217863A (en) * 1988-02-25 1989-08-31 Mitsubishi Electric Corp Steam separator system of fuel cell
JP2001210350A (en) * 2000-01-25 2001-08-03 Nissan Motor Co Ltd Fuel cell system
DE10102890B4 (en) * 2000-01-25 2006-09-14 Nissan Motor Co., Ltd., Yokohama Fuel cell system and control method of a fuel cell system
JP2010118204A (en) * 2008-11-12 2010-05-27 Toshiba Corp Fuel cell electric power generation system and its operation method

Similar Documents

Publication Publication Date Title
CN116190706A (en) Vehicle-mounted liquid hydrogen gasification hydrogen supply system and control method thereof
JPS6110875A (en) Fuel cell system
JPH0249359A (en) Fuel cell power generating system
JP2003282108A (en) Fuel cell system
JP2887346B2 (en) Fuel cell generator
JPS61128473A (en) Deaerator of water recovery line in a fuel cell system
JPH0682756U (en) Fuel cell power generator
JPH0311504B2 (en)
CN100361334C (en) Fuel battery generating system with hydrogen gas intermittence safety bleeder
JP7110079B2 (en) fuel cell system
JP7460718B1 (en) fuel cell system
JP2007182974A (en) High-pressure fuel gas emitting system
JP3882337B2 (en) Fuel cell power generation facility with differential pressure self-control function
JPS62148302A (en) Reforming device
JPH03179672A (en) Fuel gas supply unit for fuel cell
JP3680980B2 (en) Fuel cell power generator
JPH04324255A (en) Fuel cell generating unit
JP2004161554A (en) Method for supplying hydrogen to equipment requiring hydrogen
JP2003277012A (en) Apparatus and method for supplying raw material to hydrogen producer
EP4350213A1 (en) Power generation facility
JP2665547B2 (en) Molten carbonate fuel cell system and its control method
JPH02132772A (en) Fuel cell power generating device
JP2008135402A (en) Solid oxide fuel cell system
JP2006342047A (en) Reformer, method for controlling pump in fuel cell system, and control unit
JPS60207256A (en) Fuel cell power generation system