JPS6081093A - Chemical reaction apparatus for vapor phase epitaxial growth - Google Patents

Chemical reaction apparatus for vapor phase epitaxial growth

Info

Publication number
JPS6081093A
JPS6081093A JP18584983A JP18584983A JPS6081093A JP S6081093 A JPS6081093 A JP S6081093A JP 18584983 A JP18584983 A JP 18584983A JP 18584983 A JP18584983 A JP 18584983A JP S6081093 A JPS6081093 A JP S6081093A
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
substrate
vapor phase
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18584983A
Other languages
Japanese (ja)
Inventor
Toshio Kusumoto
淑郎 楠本
Toshio Hayashi
俊雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nihon Shinku Gijutsu KK filed Critical Ulvac Inc
Priority to JP18584983A priority Critical patent/JPS6081093A/en
Publication of JPS6081093A publication Critical patent/JPS6081093A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Abstract

PURPOSE:To increase reaction velocity and to improve simultaneously uniformity of film remarkably by providing a gas ejecting port comprising many small holes to a gas introducing section to cause turbulent flow of the gas. CONSTITUTION:A gas ejecting port 7 having many small holes 7a is provided to a gas introducing section to a reaction chamber 1 from a gas mixing device 5 for mixing gas supplied from a gas feeding device and guiding the mixed gas to a reaction chamber 1, to cause turbulent flow in the stream of gas introduced into the reaction chamber 1. By this arrangement, the amt. of molecule to be reacted supplied on the surface of a substrate 2 is made uniform and increased.

Description

【発明の詳細な説明】 この発明は、有機金属を原料としだiセへ分カイ法であ
るMOOVD (metal organic che
rnical vapourdeposi目on)法の
ような気相エピタキシャル成長用化学反応装置に関する
ものである。
[Detailed Description of the Invention] The present invention is based on MOOVD (metal organic che
The present invention relates to a chemical reaction apparatus for vapor phase epitaxial growth, such as a vapor phase epitaxial growth method.

M OOV D法では、ガス吹出し口の形状や試f’1
手での距離によって、基板上における成長膜の均−M1
ニーAt i、+2−t、、 /”1 イ/ 2− 2
kXE h5 In %j /、、 /7’l −fr
 27ノ)14スは、反応室に細いガス輸送管を単に封
メ゛7するか或いは単に反応室内に挿入することによっ
て行なわれておシ、これだけでは成長膜の均−件が良く
ないため、反応室内を減圧(〜i o OTorr) 
したシ、基板を回転させたシすることが行なわれてきた
In the M OOV D method, the shape of the gas outlet and the
The uniformity of the grown film on the substrate - M1 by hand distance
Knee At i, +2-t,, /”1 i/2-2
kXE h5 In %j /,, /7'l -fr
27) 14 The process is carried out by simply sealing a thin gas transport pipe in the reaction chamber or simply inserting it into the reaction chamber, but this alone does not result in good uniformity of the grown film. Reduce the pressure inside the reaction chamber (~ioOTorr)
In some cases, the substrate has been rotated.

しかしながら、このような手段を用いても、基板内の動
径方向の膜厚の均一性はあ剪り改善畑れ得ない。
However, even if such means are used, the uniformity of the film thickness in the radial direction within the substrate cannot be improved.

現在使用されているM OOV ])における実験条件
下でのガス流のレイノズル数は妓十〜数百であり、ガス
吹出口から基板までの間ではガスの流れは層流状態にな
っていると考えられ、このことに、文献、G、 Wa 
b l著’Th1n 5olid Films 〃4’
θ、(/り77)+3−stにも記載されているように
、流れの可視化実験によっても確認されている。このよ
うな会件下では、反応ガス分子は分子拡散過程によって
基板に到達し、反応する。分子拡散過程て(ツユ、分子
の基板への到達速度は非”+’l’;に遅く、玉流の変
化の影響も受け易い。従って反応至の径に比収してペデ
スタルの径が大きい(例えは、反応呈径のl 7以上)場合に61、従来のガス導入形状では、流れの
動径分布を均一にすることは原理的に困難である。
The Raynozzle number of the gas flow under experimental conditions in the currently used MOOV]) is from tens to hundreds, and the gas flow is laminar between the gas outlet and the substrate. Considering this, the literature, G. Wa
Written by b l'Th1n 5olid Films 〃4'
As described in θ, (/ri77)+3-st, this has also been confirmed by flow visualization experiments. Under such conditions, reactive gas molecules reach and react with the substrate through a molecular diffusion process. In the molecular diffusion process, the speed at which molecules reach the substrate is extremely slow and is easily affected by changes in the flow of particles.Therefore, the diameter of the pedestal is large in proportion to the diameter of the reaction. (For example, when the reaction diameter is l7 or more), it is theoretically difficult to make the radial distribution of the flow uniform with the conventional gas introduction shape.

ここでガスの流れに関してべらに詳しく考察してみると
、今、あるスカラー骨O(例えば温yfや濃1仄など)
が流速υで流れる場合の輸送刀根式は次式で与えられる
If we consider the flow of gas in more detail, we can see that there are certain scalar bones O (for example, warm yf, kon1, etc.)
The transport sword equation when flowing at a velocity υ is given by the following equation.

ここでには分子拡散係数である。錫板表面への反応ガス
の到達を考えてみると、基板近傍ではガスの流速υは基
板に平行でしかも1υ1ユ。でわる力゛ら、I−送は分
子拡散のみによる。ところが/atm、J 00 K 
、 l−12雰囲気におけるTM(Jのにの瞭はOj 
J 7 / See でありs’viつて1crnの距
離を移動するのに約3秒要することになる。しかしその
間にTMGの大部分は基板に到達することなくυIもシ
去られてしまうことになる。
Here it is the molecular diffusion coefficient. Considering the arrival of the reactive gas to the surface of the tin plate, the gas flow velocity υ is parallel to the substrate and is 1υ1 u near the substrate. Due to the intervening forces, I-transport is solely due to molecular diffusion. However, /atm, J00K
, TM in l-12 atmosphere (J is Oj
J7/See, and it takes about 3 seconds to travel a distance of 1 crn. However, during this time, most of TMG does not reach the substrate and υI is also removed.

一方、流れを乱してやると、平均的稲込方程式%式%) となる。ここで−を付したものは平均値を、また〜を付
したものは乱れ(ゆらぎ)の1!:をそitそれ表わす
。乱れは細かな渦の集合を意味するので、0(τ、τ)
がかき混ぜを促進することは直観8勺j にも明らかである。そこでに’4. ’& sil′r
I的に乱流拡散(または渦拡散)の概念を導入すると、
乱流輸込(11−は、 で衣わされる。ここでLljは流速のゆらぎ、ン性媛度
のゆらぎ、εは渦拡散係数、Cは平均的な濃度、X は
流れの方向の座標である。εの大きさit乱流の強さに
大きく依存するが、一般にε)に(分子拡散はほぼ無視
できる)でりることが実ト扱IJ′9に知られている。
On the other hand, if the flow is disturbed, the average Inagome equation % formula %) will be obtained. Here, those marked with - are average values, and those marked with ~ are 1 of disturbance (fluctuation)! : represents that. Since turbulence means a collection of small eddies, 0(τ, τ)
It is also clear from intuition that this promotes stirring. There '4. '&sil'r
When we introduce the concept of turbulent diffusion (or eddy diffusion),
The turbulent import (11-) is given by , where Llj is the fluctuation of the flow velocity, the fluctuation of the conductivity, ε is the eddy diffusion coefficient, C is the average concentration, and X is the coordinate in the flow direction. Although the magnitude of ε greatly depends on the strength of the turbulent flow, it is known from the practical IJ'9 that it is generally ε) (molecular diffusion can be almost ignored).

この発明は、気相エピタキシャル成長用化学反応装置の
反応ガス導入i4(に上述の乱流の概念をWl用して渦
拡散作用によシ反応ガスK ’tむ4人ン゛ノスを基板
堀面全域に均一にかつ有効に接触きせることを目的とす
る。。
This invention uses the above-mentioned turbulent flow concept to introduce a reactant gas into a chemical reaction apparatus for vapor phase epitaxial growth, and uses the eddy diffusion effect to introduce a reactant gas K't into the substrate trench surface. The purpose is to make contact uniformly and effectively over the entire area.

この目的を達成するために、この発明による気相エピタ
キシャル成長用化学反応装置は、ガス供給装置からのガ
スを混合して反応室へ導くようにされたガス混合装置d
の反応室へのガス導入部に、反応室へ導入され7・ガス
泥に乱σ1Gを引き起させるように配列した多数の小孔
を俯えたガス吹出し口を設け、反応室内に挿置された基
板嵌向への反応分子の供給量が一様かつ増加するように
、(ハ成したことをlf+徴としている。
In order to achieve this object, the chemical reaction apparatus for vapor phase epitaxial growth according to the present invention includes a gas mixing apparatus d adapted to mix gases from a gas supply apparatus and guide them into a reaction chamber.
A gas outlet with a large number of small holes arranged so as to cause disturbance σ1G in the gas slurry introduced into the reaction chamber was provided at the gas introduction part into the reaction chamber, and the gas was inserted into the reaction chamber. In order to ensure that the amount of reactive molecules supplied to the substrate-fitting direction is uniform and increased, the lf+ sign indicates that the reaction is completed.

以下この発明を、添附図面を参照して笑施例について説
明する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図にはこの発明による気相エピタキシャル成長用化
学反応装置の一実施例を概fl+%的に示し、lは反応
管でめシ、この反応管l内に基板2を受ける回転可能な
試料受台3が配置され、lたこの反応管lの外周には加
熱用のI(Fコイル≠が配置されている。
FIG. 1 shows an embodiment of the chemical reaction apparatus for vapor phase epitaxial growth according to the present invention in terms of approximately fl+%, where l is a reaction tube, and a rotatable sample receiver for receiving a substrate 2 in the reaction tube l is shown. A stand 3 is arranged, and a heating I(F coil≠) is arranged around the outer periphery of the octopus reaction tube 1.

lV、応管lの上部開口には図示してないガス供給装置
からのガスを混合して反応管l内へ導くガス混合装置j
が挿置され、このガス混貧装置jは反応管lのフランジ
/、に対して気密に数例りられる。ガス混合装置jは図
示したようにガス混合室tを備え、このガス混合室tか
ら反応管l内へのガス吹出しロアは多数の小孔7aから
成っている。
lV, the upper opening of the reaction tube l is equipped with a gas mixing device j that mixes gas from a gas supply device (not shown) and guides it into the reaction tube l.
is inserted, and this gas mixing device j is airtightly mounted to the flange of the reaction tube l. As shown, the gas mixing device j includes a gas mixing chamber t, and a lower gas blowing lower part from the gas mixing chamber t into the reaction tube 1 is made up of a large number of small holes 7a.

これらの多数の小孔7aから吹出したガスは互いに衝突
を起し、乱流となる。
The gases blown out from these many small holes 7a collide with each other, creating a turbulent flow.

B< 7図に示すように、ガス吹出しロアが平板に多数
の小孔7aを設けた構造である場合には、乱れが自発的
に発達する流速の領域ではないので、ガスの流れの乱れ
成分は距離と共に鋏其する。また吹出しロアと基板λと
の距離が近ずぎると、小孔分布による特性波数が膜p%
分布に強く影乙することになる。従って吹出しロアと基
板2との距離の、これらの点を考慮して最適に設足する
必要がある。
B<7 As shown in Figure 7, when the gas blowing lower has a structure in which a large number of small holes 7a are provided in a flat plate, the turbulence component of the gas flow is not in the flow velocity region where turbulence spontaneously develops. The distance changes with the distance. In addition, if the distance between the blowing lower and the substrate λ is too short, the characteristic wave number due to the small hole distribution will decrease by the film p%.
This will have a strong impact on the distribution. Therefore, it is necessary to optimally set the distance between the blower lower and the substrate 2 by taking these points into consideration.

第2図には、小孔分布による特性波数の膜厚分布に対す
る影響を軽減するように徊成したガス混合装置を示し、
この実施°例ではガス吠u」シロf l−j:湾曲板に
多数の小孔ざaをあけた構造である。各lj・孔Jaか
ら出た流束は互いに衝突し合うので、有効に乱流を作る
ことができ、址だ流れの管壁による影響を軽減させるこ
とができる。
Figure 2 shows a gas mixing device designed to reduce the influence of small pore distribution on the film thickness distribution of characteristic wave numbers.
This embodiment has a structure in which a large number of small holes are formed in a curved plate. Since the fluxes coming out of each hole Ja collide with each other, turbulent flow can be effectively created, and the influence of the pipe wall on the flow can be reduced.

第12.2図に示す実施例において、乱流輸送量は上式
(3)で表わされ、光分に発達しだ乱流では渦拡散係数
は分子拡散係数に比べて極めて大きい。
In the embodiment shown in FIG. 12.2, the turbulent transport amount is expressed by the above equation (3), and in the case of turbulence that develops into light components, the eddy diffusion coefficient is extremely large compared to the molecular diffusion coefficient.

従って従来のように層流状態のま寸結晶成長を行なう場
合に比べて、この発明に従って意叫:的に乱流を形成し
て結晶成長を行なう方が、基板へより多くの反応ガスを
一様に接1独させることができ有利であることがわかる
Therefore, compared to the conventional case of directly growing a crystal in a laminar flow state, it is better to grow a crystal by forming a turbulent flow according to the present invention, which allows more reactive gases to reach the substrate at once. It can be seen that this is advantageous because it allows the students to interact with each other in a similar manner.

以上説明してきノ’cようにこの発明においては、ガス
導入部に乱5tt、 を起させるように多数の小孔から
成るガス吹き出し口tVけたことにより、反応分子は渦
拡散によって供給されるようにな” 、qr′Lって基
板表面への供給献を多くできると共に基板表面全体に一
様に供給することができ、反応速度の上昇と共に膜の均
一性を地固的に向上心せることかできる。その結果、累
子製造の歩留りを上けろことができる。
As explained above, in this invention, the gas outlet tV, which is made up of a large number of small holes, is arranged so as to cause turbulence in the gas introduction part, so that the reactant molecules are supplied by eddy diffusion. qr'L can increase the supply to the substrate surface and uniformly supply it to the entire substrate surface, increasing the reaction rate and improving the uniformity of the film. As a result, it is possible to increase the yield of seiko manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図はそれぞれこの発明の異なる実施例を示す概
略断面図である。 図中、l:反応管、2:基板、7.ど:ガス吹出し口、
72.J’a:小孔。 児1図 児2図
1 and 2 are schematic sectional views showing different embodiments of the present invention, respectively. In the figure, l: reaction tube, 2: substrate, 7. D: Gas outlet,
72. J'a: small hole. Child 1 Diagram Child 2 Diagram

Claims (1)

【特許請求の範囲】[Claims] ガス供給装置からのガスを混合して反応室へ導くように
されたガス混合装置の反応室へのガス専大部に、反応室
へ専入されるガス流に乱流を引き起させるように配列し
た多数の小孔を備えたガス吹出し口を設け、反応室内に
挿置された基板表−ritiへの反応分子の供給量が一
様かつ多くなるようにしたことを特徴とする気相エピタ
キシャル成長用化学反応装置6゜
A gas mixing device configured to mix gas from a gas supply device and guide it to the reaction chamber is arranged in a gas-only part to the reaction chamber so as to cause turbulence in the gas flow dedicated to the reaction chamber. For vapor phase epitaxial growth, the method is characterized in that a gas outlet with a large number of small holes is provided so that a uniform and large amount of reactant molecules are supplied to the substrate surface placed in the reaction chamber. Chemical reaction device 6゜
JP18584983A 1983-10-06 1983-10-06 Chemical reaction apparatus for vapor phase epitaxial growth Pending JPS6081093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18584983A JPS6081093A (en) 1983-10-06 1983-10-06 Chemical reaction apparatus for vapor phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18584983A JPS6081093A (en) 1983-10-06 1983-10-06 Chemical reaction apparatus for vapor phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPS6081093A true JPS6081093A (en) 1985-05-09

Family

ID=16177951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18584983A Pending JPS6081093A (en) 1983-10-06 1983-10-06 Chemical reaction apparatus for vapor phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPS6081093A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0283007A2 (en) * 1987-03-17 1988-09-21 Fujitsu Limited Chemical vapour deposition apparatus having a perforated head
EP0385382A2 (en) * 1989-02-27 1990-09-05 Heinrich Dr. Söhlbrand Process and apparatus for the thermal treatment of semiconducting materials
US4993360A (en) * 1988-03-28 1991-02-19 Kabushiki Kaisha Toshiba Vapor growth apparatus having a diffuser section containing a flow regulating member
JPH03285328A (en) * 1990-03-31 1991-12-16 Tokyo Electron Sagami Ltd Vertical type heat treatment device
EP0472316A2 (en) * 1990-08-08 1992-02-26 Hughes Aircraft Company Multichannel plate assembly for gas source molecular beam epitaxy
WO1992005577A1 (en) * 1990-09-21 1992-04-02 Fujitsu Limited Method and apparatus for growing compound semiconductor crystals
WO2006020424A3 (en) * 2004-08-02 2007-06-28 Veeco Instr Inc Multi-gas distribution injector for chemical vapor deposition reactors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130917A (en) * 1974-09-09 1976-03-16 Nippon Sharyo Seizo Kk HOGOSOCHI
JPS5136590A (en) * 1974-09-24 1976-03-27 Fujitsu Ten Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130917A (en) * 1974-09-09 1976-03-16 Nippon Sharyo Seizo Kk HOGOSOCHI
JPS5136590A (en) * 1974-09-24 1976-03-27 Fujitsu Ten Ltd

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0283007A2 (en) * 1987-03-17 1988-09-21 Fujitsu Limited Chemical vapour deposition apparatus having a perforated head
US4993360A (en) * 1988-03-28 1991-02-19 Kabushiki Kaisha Toshiba Vapor growth apparatus having a diffuser section containing a flow regulating member
EP0385382A2 (en) * 1989-02-27 1990-09-05 Heinrich Dr. Söhlbrand Process and apparatus for the thermal treatment of semiconducting materials
EP0385382A3 (en) * 1989-02-27 1991-08-28 Heinrich Dr. Söhlbrand Process and apparatus for the thermal treatment of semiconducting materials
JPH03285328A (en) * 1990-03-31 1991-12-16 Tokyo Electron Sagami Ltd Vertical type heat treatment device
EP0472316A2 (en) * 1990-08-08 1992-02-26 Hughes Aircraft Company Multichannel plate assembly for gas source molecular beam epitaxy
US5188671A (en) * 1990-08-08 1993-02-23 Hughes Aircraft Company Multichannel plate assembly for gas source molecular beam epitaxy
WO1992005577A1 (en) * 1990-09-21 1992-04-02 Fujitsu Limited Method and apparatus for growing compound semiconductor crystals
US5304247A (en) * 1990-09-21 1994-04-19 Fujitsu Limited Apparatus for depositing compound semiconductor crystal
US5392730A (en) * 1990-09-21 1995-02-28 Fujitsu Limited Method for depositing compound semiconductor crystal
WO2006020424A3 (en) * 2004-08-02 2007-06-28 Veeco Instr Inc Multi-gas distribution injector for chemical vapor deposition reactors

Similar Documents

Publication Publication Date Title
TW320754B (en)
WO1996017107A1 (en) Method and apparatus for growing thin films
CN111167331B (en) T-shaped mixer for supercritical hydrothermal synthesis technology
JPS6081093A (en) Chemical reaction apparatus for vapor phase epitaxial growth
US10710042B2 (en) Device for efficient mixing of laminar, low-velocity fluids
JPH01125923A (en) Vapor growth apparatus
EP0378543A4 (en) Gas injector apparatus for chemical vapor deposition reactors
US3621812A (en) Epitaxial deposition reactor
JPH05144753A (en) Thin film vapor-phase growth system
CN105908150B (en) For the Multi-source GIS of particle-optical apparatus
CN101812673A (en) Fan-shaped gas inlet spray head for metal organic chemical vapor deposition equipment
JPS6328868A (en) Cvd method
JPS62235728A (en) Vapor phase epitaxial growth device
JPH0766130A (en) Chemical vapor deposition system
CN104120408B (en) A kind of hvpe reactor device improving substrate airflow direction
JPS6291496A (en) Reaction tube for vapor growth device
CN220724332U (en) Uniform air inlet structure of vacuum chamber
JP2845105B2 (en) Thin film vapor deposition equipment
TWI390090B (en) Apparatus for manufacturing quartz film
JPH04221077A (en) Gaseous phase treating apparatus
JPH0456124A (en) Normal pressure cvd device
JPS6428295A (en) Vapor growth process and apparatus therefor
JPS6335777A (en) Photochemical reactor
JPS5518077A (en) Device for growing film under gas
JPH01117315A (en) Vapor growth method for semiconductor thin film crystal