JPH05144753A - Thin film vapor-phase growth system - Google Patents

Thin film vapor-phase growth system

Info

Publication number
JPH05144753A
JPH05144753A JP33438791A JP33438791A JPH05144753A JP H05144753 A JPH05144753 A JP H05144753A JP 33438791 A JP33438791 A JP 33438791A JP 33438791 A JP33438791 A JP 33438791A JP H05144753 A JPH05144753 A JP H05144753A
Authority
JP
Japan
Prior art keywords
raw material
holes
reactor
material gas
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33438791A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kubota
清 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP33438791A priority Critical patent/JPH05144753A/en
Publication of JPH05144753A publication Critical patent/JPH05144753A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly mix material gases in a reactor by guiding a material gas to above a straightening board, then blowing it into the reactor through longitudinal through holes and guiding another material gas to the side of the straigtening board, then leading it into the reactor through radial holes and longitudinal partial holes. CONSTITUTION:A material gas A is guided to above a straitening board 6 and directed downward through longitudinal through holes 13, led into a reactor 9. Another material gas B is guided to the side of the stepped portion 16 of the straightening board 6 and led into the reactor 9 through radial holes 15 and longitudinal partial holes 14. These longitudinal through holes 13 and partial holes 14 are evenly distributed on the circumference. Thus, material gases A and B are jetted out through these evenly distributed holes 13 and 14, respectively, which enables them to be uniformly mixed in the reactor 9. This makes it possible that two different gases are guided through respective passages to different sets of holes of almost the same distribution and blown into a reactor, being uniformly mixed therein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は2種類の原料ガスを反
応炉内に導き、気相反応を起こさせ、基板の上に反応生
成物の薄膜を形成するようにした薄膜気相成長装置に関
する。特に異種の原料ガスを層流状態で均一に反応炉の
内部に導入し濃度分布のできないようにした改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film vapor phase growth apparatus in which two kinds of source gases are introduced into a reaction furnace to cause a gas phase reaction to form a thin film of a reaction product on a substrate. .. Particularly, it relates to an improvement in which different source gases are uniformly introduced into the reaction furnace in a laminar flow state so that the concentration distribution cannot be achieved.

【0002】[0002]

【従来の技術】MOCVD法で化合物半導体の薄膜を基
板の上に成長させる場合、複数の原料ガスを反応炉の上
頂部から導入する。化合物半導体としてはIII −V半導
体、II−VI半導体などがあるが、V、VI族は水素化物が
ガス状であるのでこれを使うことができる。ところがII
I 族、II族の金属は単体では金属の固体である。しかし
有機金属の形で液状のものが得られこれをバブラで水素
ガスを吹き付けることによりガスとしている。反応炉は
例えば石英製の縦長の容器である。上頂部が原料ガスの
入口になっている。容器の内部には、カ−ボン製のサセ
プタがあって、この上に水平に基板が戴置される。サセ
プタは鉛直軸の回りに回転するようになっている。これ
はガスと基板の接触や温度分布を均一にするためであ
る。排ガスはサセプタの下方の排気口から排出される。
2. Description of the Related Art When a compound semiconductor thin film is grown on a substrate by MOCVD, a plurality of source gases are introduced from the top of the reaction furnace. As the compound semiconductor, there are III-V semiconductors, II-VI semiconductors, and the like. However, since the hydrides of group V and VI are gaseous, they can be used. However II
Group I and group II metals are metallic solids by themselves. However, a liquid form is obtained in the form of an organic metal, and this is used as a gas by spraying hydrogen gas with a bubbler. The reaction furnace is, for example, a vertically long container made of quartz. The top is the source gas inlet. Inside the container, there is a susceptor made of carbon, on which the substrate is placed horizontally. The susceptor is designed to rotate about a vertical axis. This is to make the contact between the gas and the substrate and the temperature distribution uniform. The exhaust gas is discharged from the exhaust port below the susceptor.

【0003】さて原料ガスの流入状態であるが、これは
できるだけ均一に基板に当たるようにしなければならな
い。通常は複数の原料ガスを単純に個別の導入管に分け
て反応炉へ供給するか、予め混合してから、原料ガス入
口に通して、反応炉の中へ供給するようになっている。
しかし前者の場合、このようにしても2種類または3種
類のガスが均一に混合し難い。混合が不完全であると、
基板上での成長が不均一になる。これを避けるための措
置として、例えば特開昭64−082614は、原料ガ
スを混合したあと、板状部材に縦に穴を多数穿った整流
部材を通して、流れを整流するという工夫が提案されて
いる。しかしこのように工夫しても,2種類、または3
種類の原料ガスが整流板に至るまでに均一に混合されて
いるとは限らない。2本または3本の配管が単に合一し
ているだけだからである。もしも整流板の直前で不均一
であれば、これを通過した後も不均一なガスになるの
で、原料ガスの中に不均一な濃度分布が残る。基板の上
に化合物を成長させた場合も組成が一定せず揺らぎが大
きくなる。また後者の場合、配管内で、異なる原料ガス
を予め混合してから反応容器に導入すると、原料によっ
ては配管の内部で反応が起こり、配管内が汚れたり、反
応生成物が成長中の薄膜に取り込まれ品質が低下すると
いう可能性もあった。
The raw material gas is in the inflow state, but it must be made to hit the substrate as uniformly as possible. Usually, a plurality of raw material gases are simply divided into individual introduction pipes and fed to the reaction furnace, or they are mixed in advance and then fed into the raw material gas inlet and fed into the reaction furnace.
However, in the former case, it is difficult to evenly mix the two or three kinds of gas even in this case. If the mixing is incomplete,
Uneven growth on the substrate. As a measure for avoiding this, for example, Japanese Patent Laid-Open No. 64-082614 proposes a method of rectifying the flow through a rectifying member having a plate-shaped member with a number of holes vertically formed after mixing raw material gases. .. However, even if devised in this way, two types or three
It is not always the case that the raw material gases of various types are uniformly mixed before reaching the straightening vane. This is because the two or three pipes are simply united. If it is non-uniform immediately before the straightening plate, it becomes non-uniform gas even after passing through it, so that a non-uniform concentration distribution remains in the raw material gas. Even when the compound is grown on the substrate, the composition is not constant and the fluctuation becomes large. In the latter case, if different raw material gases are mixed in advance in the pipe and then introduced into the reaction vessel, a reaction occurs inside the pipe depending on the raw material, the inside of the pipe becomes dirty, and the reaction product becomes a growing thin film. There was also a possibility that the quality would be reduced due to being taken in.

【0004】[0004]

【発明が解決しようとする課題】配管内で予め混合した
原料ガスはそこで反応をする場合があり、配管内が汚れ
たり、反応生成物が成長中の薄膜に取り込まれ品質が低
下するということは無視できない。また単純に個別の導
入管に分けて反応炉へ供給したとしても従来の方法では
ガス流の微妙な制御ができないので原料が均一に混合す
るとは限らない。複数の異なる原料ガスを用いて気相反
応させ薄膜を成長させる際に、原料ガスを反応炉の内部
で均一に混合して、基板の上に供給できるようにした薄
膜成長装置を提供するのが本発明の目的である。
The raw material gas premixed in the pipe may react there, and the inside of the pipe may become dirty, or the reaction product may be taken into the growing thin film to deteriorate the quality. I can't ignore it. Further, even if the gas is simply divided into individual introduction pipes and supplied to the reaction furnace, the conventional method cannot delicately control the gas flow, so that the raw materials are not always uniformly mixed. It is possible to provide a thin film growth apparatus capable of uniformly mixing raw material gases inside a reaction furnace and supplying them onto a substrate when a thin film is grown by a gas phase reaction using a plurality of different raw material gases. It is an object of the present invention.

【0005】[0005]

【課題を解決するための手段】本発明の薄膜成長装置
は、ガス導入口に多くの通し穴を有する整流板を設け、
複数種類のガスを別々にこれらの通し穴に通して、原料
ガスを別々に整流板から下方に吹き出すようにしたもの
である。整流板は段付の円盤状であって、ある群の穴
は、上下に貫通する縦穴となっている。また他の群の穴
は段の側方から内部半ばに至る放射状の穴とこれから下
方に続く部分縦穴との結合よりなっている。ある原料ガ
スは整流板の上方に導かれて、前記の貫通縦穴から反応
容器の内部に吹き込まれる。他の原料ガスは整流板の段
部の側方に導かれて放射穴と部分縦穴を通って反応容器
の内部に入るようになっている。原料ガスが3種類の場
合は、3段になっている整流板を用いて、3群の通し穴
を設ければ良い。また、縦穴の口径や分布の密度は円周
方向には均一であるが、半径方向には分布がある。中心
部で低密度で、周辺に行くほど高密度にするのが望まし
い。
The thin film growth apparatus of the present invention is provided with a straightening plate having a large number of through holes at the gas inlet,
A plurality of kinds of gas are separately passed through these through holes, and the raw material gas is separately blown downward from the straightening vane. The baffle plate is in the form of a stepped disk, and a group of holes are vertical holes that penetrate vertically. The other group of holes consists of a combination of radial holes extending from the side of the step to the middle of the inside and partial vertical holes continuing downward from this. A certain source gas is introduced above the straightening vanes and blown into the reaction vessel through the through vertical holes. Other source gases are guided to the side of the stepped portion of the straightening vane and enter the inside of the reaction vessel through the emission holes and the partial vertical holes. When there are three kinds of source gases, three groups of through holes may be provided by using a straightening plate having three stages. The diameter of the vertical holes and the density of distribution are uniform in the circumferential direction, but there is distribution in the radial direction. It is desirable that the density be low in the center and high in the periphery.

【0006】[0006]

【作用】原料ガスは、反応容器の上方のガス導入口に別
々に導かれる。導入部は、同心円筒状になる。ある原料
ガスは、整流板の上方に来るので、これは前記の貫通縦
穴を経て、上から下への流れとなって反応容器に入る。
他の原料ガスは、整流板の段部側方に来て、これから放
射穴と部分縦穴とを通って反応容器の内部に入る。何れ
も上から下に向かう層流に近い流れになっている。それ
ぞれの貫通縦穴、部分縦穴は、円周上に均等に穿たれ
る。しかし中心と周辺部では、密度が異なり、周辺部で
密度が高くなるようにしているので、周辺部に出るガス
の流れの方が多い。通常は中央で流速が大きく周辺で小
さいポアズイユ流となるが、本発明ではそうはならな
い。むしろ周辺での初速が大きくなる。周辺の流れは壁
面からの摩擦抵抗を受けるので、次第に中央周辺部で流
速の等しい流れになる。基板に至るときはほぼ同一の流
速になるようにするのが良い。異なる原料ガスが反応容
器に入ってから初めて混合される。従って反応容器外で
反応が起こらず原料の損耗を防ぐことができる。また、
均等に穿たれた部分縦穴、貫通縦穴から原料ガスが噴出
するので、反応容器内部で均一に混合される。これが重
要な点である。
The source gas is separately introduced into the gas inlet above the reaction vessel. The introduction part has a concentric cylindrical shape. Since a certain source gas comes above the straightening vane, it enters the reaction vessel as a flow from the top to the bottom through the through vertical hole.
The other raw material gas comes to the side of the step portion of the rectifying plate, and then enters the inside of the reaction container through the emission hole and the partial vertical hole. All of them are close to laminar flow from top to bottom. The through vertical holes and the partial vertical holes are evenly formed on the circumference. However, since the density is different between the central part and the peripheral part, and the density is made higher in the peripheral part, the flow of gas flowing out to the peripheral part is larger. Normally, the Poiseuille flow has a large flow velocity in the center and a small flow velocity in the periphery, but this does not occur in the present invention. Rather, the initial speed in the surrounding area will be higher. Since the peripheral flow receives frictional resistance from the wall surface, the flow gradually becomes equal in the central peripheral part. When reaching the substrate, it is preferable that the flow velocities are almost the same. The different source gases are mixed only after they enter the reaction vessel. Therefore, the reaction does not occur outside the reaction vessel, and the raw material can be prevented from being worn. Also,
Since the raw material gas is ejected from the evenly formed partial vertical holes and the through vertical holes, the raw material gas is uniformly mixed inside the reaction vessel. This is an important point.

【0007】[0007]

【実施例】図1は本発明の実施例に係る薄膜気相成長装
置の縦断面図である。これは上半部のみを示している。
原料ガスはA、Bの2種類であるとした。原料Aは中央
のAパイプ1から、原料Bは外周部のBパイプ2から別
々の流路3、4を持つノズル5に導入される。ノズル5
は、内部に整流板6と、分配板7とを有する。分配板7
と、ノズル5の上板8の間が原料Bを通すべきB流路4
となっている。これは整流板6の側周部に原料ガスBを
導く。中央部のパイプAは分配板7の内部に通じる。分
配板7は二つのガス流路3、4を遮断している。A流路
3は、整流板6の上方に原料ガスAを導く。ノズル5の
フランジは、反応容器9の上部のフランジに固着され
る。間にはOリング10が介装される。反応容器9の内
部には、基板11を戴置したサセプタ12が設けられ
る。これの内部には基板を加熱するためのヒ−タがあ
る。さて整流板6の構造が特別である。整流板6は、
A、Bの原料ガスを別々の穴に導き、別々の穴から反応
容器9に吹き出すべきものである。
FIG. 1 is a vertical sectional view of a thin film vapor phase growth apparatus according to an embodiment of the present invention. This shows only the upper half.
It is assumed that there are two types of raw material gas A and B. The raw material A is introduced from a central A pipe 1 and the raw material B is introduced from a peripheral B pipe 2 into a nozzle 5 having separate channels 3 and 4. Nozzle 5
Has a current plate 6 and a distribution plate 7 inside. Distribution plate 7
And the flow path 4 for the raw material B to pass between the upper plate 8 of the nozzle 5 and
Has become. This guides the raw material gas B to the side peripheral portion of the current plate 6. The pipe A in the central portion communicates with the inside of the distribution plate 7. The distribution plate 7 blocks the two gas flow paths 3 and 4. The A channel 3 guides the raw material gas A above the straightening vane 6. The flange of the nozzle 5 is fixed to the upper flange of the reaction vessel 9. An O-ring 10 is interposed between them. Inside the reaction container 9, a susceptor 12 on which a substrate 11 is placed is provided. Inside this is a heater for heating the substrate. Now, the structure of the current plate 6 is special. The current plate 6 is
The raw material gases of A and B should be introduced into separate holes and blown into the reaction vessel 9 through the separate holes.

【0008】先ず整流板6の上下面を連絡するように貫
通縦穴13が多数穿孔される。これらが原料ガスAを通
すものである。簡単にA穴という。次に整流板6の中間
高さから下方に穿たれた部分縦穴14がある。これは整
流板6の中間高さに放射状に穿たれた放射穴15に連通
している。放射穴15と部分縦穴14は原料ガスBを導
くものである。これを単にB穴という。図1ではガス流
を明示するために貫通縦穴13と、放射穴15が交差す
るように書いてあるが実はそうでなく、これらは連通し
ていない。隣接する放射穴15の丁度中間に貫通縦穴1
3があるのである。図2は整流板6のみの底面図であ
る。白丸で示したのがB穴14である。これは整流板の
下面に開口し整流板中間高さの放射穴15に連通してい
る。黒丸で示したのがA穴13である。これは単なる貫
通縦穴であるが、B穴と区別するために黒く塗り潰して
示した。A穴とB穴の全体としての面積は同一であるよ
うにするのが望ましい。また分布密度も周辺部で相対的
に高くして、中央部で低くする。こうすると管壁との摩
擦のために周辺部の流れが減速されても、基板近傍では
均一の密度の流れになる。
First, a large number of through vertical holes 13 are bored so as to connect the upper and lower surfaces of the current plate 6. These pass the raw material gas A. It is simply called hole A. Next, there is a partial vertical hole 14 drilled downward from the middle height of the straightening vane 6. This communicates with a radial hole 15 that is formed at an intermediate height of the straightening vane 6 in a radial manner. The radiation holes 15 and the partial vertical holes 14 guide the raw material gas B. This is simply called hole B. In FIG. 1, the through vertical hole 13 and the radiating hole 15 are shown to intersect so as to clearly show the gas flow, but this is not the case and they are not in communication with each other. Vertical hole 1 that penetrates exactly in the middle of adjacent radiation hole 15
There are three. FIG. 2 is a bottom view of only the current plate 6. The hole B is shown by a white circle. This opens in the lower surface of the straightening vane and communicates with the radiation hole 15 at the middle height of the straightening vane. A hole 13 is shown by a black circle. This is a mere vertical through hole, but it is shown in black to distinguish it from the B hole. It is desirable that the holes A and B have the same area as a whole. The distribution density is also relatively high in the peripheral portion and low in the central portion. In this way, even if the peripheral flow is decelerated due to friction with the tube wall, the flow has a uniform density near the substrate.

【0009】図3は整流板の断面図であるが、A穴とB
穴とを示すために図2のX0Y断面図としている。図
4、図5は、それぞれ図3の4−4、5−5断面図であ
る。整流板6には上半周縁部に段部16があるので、こ
れから原料ガスBを送給できる。段部16の直上に分配
板7の脚部が溶接してあるので、これにより整流板の段
部16より上と、下が分離され、上がA流路3に、下が
B流路4の終端になるのである。この実施例では、黒丸
でしめしたA穴が28、白丸で示したB穴が24あるが
これは1つの例である。穴の個数や分布は整流板の大き
さによって自由に決定できる。A穴、B穴が均等に分布
しているのでこれらから噴出された原料ガスA、Bはこ
れより下で均一に混合されるので、基板上に組成の一定
した薄膜を形成することができる。
FIG. 3 is a cross-sectional view of the current plate, showing holes A and B.
The X0Y sectional view of FIG. 2 is shown to show the holes. 4 and 5 are cross-sectional views taken along line 4-4 and 5-5 of FIG. 3, respectively. Since the straightening vane 6 has the step portion 16 in the upper half peripheral portion, the raw material gas B can be fed from this. Since the leg portion of the distribution plate 7 is welded directly above the step portion 16, the upper portion and the lower portion of the flow regulating plate are separated from each other, the upper portion is the A flow path 3, and the lower portion is the B flow path 4. Is the end of. In this embodiment, 28 holes A are filled with black circles and 24 holes B are shown with white circles, but this is one example. The number and distribution of holes can be freely determined depending on the size of the straightening vane. Since the holes A and B are evenly distributed, the raw material gases A and B ejected from them are uniformly mixed below this, so that a thin film having a constant composition can be formed on the substrate.

【0010】もしも原料ガスが3種類あれば、整流板を
3段の構造にして、2つの高さの異なる放射穴を穿ちこ
れらに続く2種類の部分縦穴を穿つ。3つの群の穴がで
きるので3種類のガスを別々に通すことができる。本発
明において複雑になるのはノズル5に設ける整流板6だ
けである。これは例えばステンレスで作ることができ
る。穴の数が多いと加工は難しくなるが原料ガスの均一
性は高まる。反応容器自体に整流板のようなものを設け
るのではなく、ノズルの一部として整流板が設けられて
いるため、反応容器の構造は簡素であり、頻度の多い反
応容器の清掃は容易である。
If there are three kinds of raw material gases, the straightening plate is made to have a three-stage structure and two radiating holes having different heights are formed, followed by two kinds of partial vertical holes. Since there are three groups of holes, it is possible to pass three kinds of gas separately. In the present invention, only the straightening plate 6 provided in the nozzle 5 is complicated. It can be made of stainless steel, for example. If the number of holes is large, processing becomes difficult, but the uniformity of the source gas is increased. The structure of the reaction vessel is simple because the flow vessel is provided as a part of the nozzle instead of providing the flow vessel on the reaction vessel itself, and it is easy to clean the reaction vessel frequently. ..

【0011】[0011]

【発明の効果】2種類以上の原料ガスを用いる薄膜形成
装置において、原料ガス毎に異なる流路からほぼ同一の
分布を有する異なる穴に導きこれを反応容器に吹き出さ
せるので、原料ガスが反応容器内部で均一に混合され
る。反応容器に入る前に混合する従来の方法では、原料
ガスが均一に混合されていない可能性がある。本発明で
は原料ガスの流れを周方向に均一に分布した微小な穴か
らの流れとしているので混合の度合いを制御できる。ま
た穴の面積、密度などの分布によって流速分布を自在に
決定できる。例えば、周辺で高密度にすれば、基板の近
傍では均一流速をもつように原料ガスの流れを規定する
ことができる。また反応容器の内部に入る前に原料ガス
を混合しないので配管内が汚れたり、反応生成物が成長
中の薄膜に取り込まれ品質が低下するということがな
い。
EFFECT OF THE INVENTION In a thin film forming apparatus using two or more kinds of raw material gas, the raw material gas is introduced into different holes having substantially the same distribution from the different flow paths for each raw material gas and blown out into the reaction vessel. Mix evenly inside. In the conventional method of mixing before entering the reaction vessel, the source gases may not be mixed uniformly. In the present invention, since the flow of the raw material gas is the flow from the minute holes uniformly distributed in the circumferential direction, the degree of mixing can be controlled. In addition, the flow velocity distribution can be freely determined by the distribution of the area and density of the holes. For example, if the density is high in the periphery, the flow of the source gas can be regulated so as to have a uniform flow velocity in the vicinity of the substrate. Further, since the raw material gas is not mixed before entering the inside of the reaction vessel, the inside of the pipe is not contaminated, and the reaction product is not taken into the growing thin film to deteriorate the quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る薄膜形成装置の上半部の
断面図。
FIG. 1 is a sectional view of an upper half portion of a thin film forming apparatus according to an embodiment of the present invention.

【図2】整流板のみの底面図。FIG. 2 is a bottom view of only the current plate.

【図3】図2のXOY断面図。FIG. 3 is a sectional view taken along the line XOY in FIG.

【図4】図3の4−4断面図。4 is a sectional view taken along line 4-4 of FIG.

【図5】図3の5−5断面図。5 is a sectional view taken along line 5-5 of FIG.

【符号の説明】[Explanation of symbols]

1 Aパイプ 2 Bパイプ 3 A流路 4 B流路 5 ノズル 6 整流板 7 分配板 8 上板 9 反応容器 10 Oリング 11 基板 12 サセプタ 13 貫通縦穴 14 部分縦穴 15 放射穴 16 段部 1 A pipe 2 B pipe 3 A channel 4 B channel 5 nozzle 6 straightening plate 7 distribution plate 8 upper plate 9 reaction vessel 10 O-ring 11 substrate 12 susceptor 13 through vertical hole 14 partial vertical hole 15 radial hole 16 step section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上頂部から原料ガスを導入し下方から排
出できるようにした縦型の反応炉と、反応炉の内部に設
けられ基板を上向きに保持するサセプタと、反応炉の内
部を真空に引くための真空排気装置と、サセプタ、基板
を加熱するためのヒ−タと、反応炉上頂部の原料ガス導
入口とを含み、2種類の異なる原料ガスを用いて薄膜成
長を行う薄膜気相成長装置であって、平板状であって側
周に段部があり面と直角方向に貫通する複数の貫通縦穴
が穿たれ、中間高さにおいて段部外周から複数の放射穴
が穿たれ放射穴から一方の面に続く複数の部分縦穴が穿
たれている整流板が原料ガス導入口に設けられ、2種類
の原料ガスは別々に前記の整流板に導かれ、一方の原料
ガスは整流板の上面から貫通縦穴を通って反応炉に下向
きに入り、他方の原料ガスは前記の整流板の側面から放
射穴と部分縦穴を通って反応炉に下向きに入り整流板の
直下で2種類の原料ガスが混合されるようにしたことを
特徴とする薄膜気相成長装置。
1. A vertical reactor in which a source gas is introduced from the top and discharged from below, a susceptor provided inside the reactor for holding a substrate upward, and a vacuum inside the reactor. A thin film vapor phase that includes a vacuum exhaust device for pulling, a susceptor, a heater for heating a substrate, and a raw material gas inlet at the top of the reaction furnace for performing thin film growth using two different raw material gases. A growth device, which is a flat plate, has a step portion on the side circumference, and has a plurality of through holes penetrating in a direction perpendicular to the surface, and at the intermediate height, a plurality of emission holes are made from the outer circumference of the step portion. A straightening plate having a plurality of partial vertical holes extending from one side to the other side is provided in the raw material gas introduction port, two kinds of raw material gases are separately guided to the straightening plate, and one raw material gas is Enter the reactor downward from the top through the through vertical hole, and The raw material gas flows downward from the side surface of the straightening vane into the reaction furnace through the emission holes and the partial vertical holes, and two kinds of raw material gases are mixed immediately below the straightening vane so as to mix the two kinds of raw material gases. apparatus.
【請求項2】 上頂部から原料ガスを導入し下方から排
出できるようにした縦型の反応炉と、反応炉の内部に設
けられ基板を上向きに保持するサセプタと、反応炉の内
部を真空に引くための真空排気装置と、サセプタ、基板
を加熱するためのヒ−タと、反応炉上頂部の原料ガス導
入口とを含み、2種類の異なる原料ガスを用いて薄膜成
長を行う薄膜気相成長装置であって、平板状であって側
周に段部があり面と直角方向に貫通する複数の貫通穴が
周縁部でより高密度、中心部でより低密度になるように
穿たれ、中間高さにおいて段部外周から複数の放射穴が
穿たれ放射穴から一方の面に続く複数の部分縦穴が周縁
部でより高密度、中心部でより低密度になるように穿た
れている整流板が原料ガス導入口に設けられ、2種類の
原料ガスは別々に前記の整流板に導かれ、一方の原料ガ
スは整流板の上面から第1の縦穴を通って反応炉に下向
きに入り、他方の原料ガスは前記の整流板の側面から放
射穴と第2の縦穴を通って反応炉に下向きに入り整流板
の直下で2種類の原料ガスが混合されるようにしたこと
を特徴とする薄膜気相成長装置。
2. A vertical reactor in which a source gas is introduced from the top and discharged from below, a susceptor provided inside the reactor for holding a substrate upward, and a vacuum inside the reactor. A thin film vapor phase that includes a vacuum exhaust device for pulling, a susceptor, a heater for heating a substrate, and a raw material gas inlet at the top of the reaction furnace for performing thin film growth using two different raw material gases. In the growth apparatus, a plurality of through-holes that are flat plate-shaped and have a step portion on the side periphery and penetrate in the direction perpendicular to the surface are formed so that the peripheral portion has a higher density and the central portion has a lower density, At the middle height, multiple radiating holes are drilled from the step outer periphery, and multiple partial vertical holes continuing from the radiating hole to one surface are drilled so that the peripheral part has a higher density and the central part has a lower density. A plate is installed at the raw material gas inlet and the two raw material gases are One raw material gas is introduced into the reactor through the first vertical hole from the upper surface of the straightening vane into the reaction furnace downward, and the other raw material gas is directed from the side surface of the straightening vane to the radiation hole and the second straight hole. A thin film vapor phase growth apparatus characterized in that two kinds of raw material gases are mixed directly below a straightening plate into a reactor through a vertical hole so as to face downward.
【請求項3】 2種類の原料ガスは内外同心管によっ
て、整流板の上面と、段部側面に導かれるようにしたこ
とを特徴とする請求項1または請求項2に記載の薄膜気
相成長装置。
3. The thin film vapor phase epitaxy according to claim 1 or 2, wherein the two kinds of source gases are guided to the upper surface and the step side surface of the straightening plate by the inner and outer concentric tubes. apparatus.
JP33438791A 1991-11-21 1991-11-21 Thin film vapor-phase growth system Pending JPH05144753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33438791A JPH05144753A (en) 1991-11-21 1991-11-21 Thin film vapor-phase growth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33438791A JPH05144753A (en) 1991-11-21 1991-11-21 Thin film vapor-phase growth system

Publications (1)

Publication Number Publication Date
JPH05144753A true JPH05144753A (en) 1993-06-11

Family

ID=18276806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33438791A Pending JPH05144753A (en) 1991-11-21 1991-11-21 Thin film vapor-phase growth system

Country Status (1)

Country Link
JP (1) JPH05144753A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835067A (en) * 1994-07-20 1996-02-06 G T C:Kk Film forming device and film formation
US5950925A (en) * 1996-10-11 1999-09-14 Ebara Corporation Reactant gas ejector head
JP2004193173A (en) * 2002-12-06 2004-07-08 Fujitsu Ltd Apparatus and method for vapor deposition
JP2008508744A (en) * 2004-08-02 2008-03-21 ビーコ・インストゥルメンツ・インコーポレイテッド Multi-gas supply injector for CVD reactor
JP2009167520A (en) * 2008-01-15 2009-07-30 Samsung Electro-Mechanics Co Ltd Shower head and chemical vapor deposition apparatus having the same
US20090286405A1 (en) * 2006-06-13 2009-11-19 Tokyo Electron Limited Shower plate, and plasma processing apparatus, plasma processing method and electronic device manufacturing method using the shower plate
US20100288439A1 (en) * 2007-09-06 2010-11-18 Tokyo Electron Limited Top plate and plasma process apparatus employing the same
JP4897184B2 (en) * 2000-09-22 2012-03-14 アイクストロン、アーゲー Deposition method and deposition apparatus for depositing a crystal structure layer
JP2014513209A (en) * 2011-03-23 2014-05-29 ピルキントン グループ リミテッド Method of depositing zinc oxide coating by chemical vapor deposition
JP2016140863A (en) * 2015-01-29 2016-08-08 株式会社Gsユアサ Gas nozzle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835067A (en) * 1994-07-20 1996-02-06 G T C:Kk Film forming device and film formation
US5950925A (en) * 1996-10-11 1999-09-14 Ebara Corporation Reactant gas ejector head
JP4897184B2 (en) * 2000-09-22 2012-03-14 アイクストロン、アーゲー Deposition method and deposition apparatus for depositing a crystal structure layer
JP2004193173A (en) * 2002-12-06 2004-07-08 Fujitsu Ltd Apparatus and method for vapor deposition
JP2008508744A (en) * 2004-08-02 2008-03-21 ビーコ・インストゥルメンツ・インコーポレイテッド Multi-gas supply injector for CVD reactor
US20090286405A1 (en) * 2006-06-13 2009-11-19 Tokyo Electron Limited Shower plate, and plasma processing apparatus, plasma processing method and electronic device manufacturing method using the shower plate
US20100288439A1 (en) * 2007-09-06 2010-11-18 Tokyo Electron Limited Top plate and plasma process apparatus employing the same
JP2009167520A (en) * 2008-01-15 2009-07-30 Samsung Electro-Mechanics Co Ltd Shower head and chemical vapor deposition apparatus having the same
JP2014513209A (en) * 2011-03-23 2014-05-29 ピルキントン グループ リミテッド Method of depositing zinc oxide coating by chemical vapor deposition
JP2016140863A (en) * 2015-01-29 2016-08-08 株式会社Gsユアサ Gas nozzle

Similar Documents

Publication Publication Date Title
US11286566B2 (en) Apparatus for deposition of a III-V semiconductor layer
TWI390608B (en) Gas treatment systems
CN101802254B (en) Chemical vapor deposition reactor
TWI417415B (en) Chemical vapor deposition flow inlet elements and methods
US8980000B2 (en) Density-matching alkyl push flow for vertical flow rotating disk reactors
US20100300359A1 (en) Multi-gas distribution injector for chemical vapor deposition reactors
JPH05144753A (en) Thin film vapor-phase growth system
JPH07283149A (en) Thin film vapor growth device
US4834022A (en) CVD reactor and gas injection system
CN109037095A (en) Device for processing a substrate
KR100580062B1 (en) Chemical vapor deposition apparatus and film deposition method
EP0378543B1 (en) Gas injector apparatus for chemical vapor deposition reactors
EP0612867A1 (en) Inert gas rectifying/blowing apparatus for single crystal pulling device
US4072470A (en) Gas feeder for sulfonation apparatus
CN104498904A (en) Spray header for MOCVD equipment
CN218666410U (en) Film forming device with top air inlet
CN201071403Y (en) Upward-in and upward-out vertically spraying type MOCVD reactor
CN202830169U (en) Chemical vapor deposition device for metal organic matters
CN115110064A (en) Gas input equipment and gas input method
JPH08148439A (en) Thin film vapor phase growth method
JP3185493B2 (en) Thin film vapor deposition equipment
JPS6237374A (en) Vapor growth device
JP2845105B2 (en) Thin film vapor deposition equipment
CN218756027U (en) Gas assembly of vapor deposition equipment and vapor deposition equipment
TWI822023B (en) Gas shower heads and chemical vapor deposition equipment