JPS6074351A - Sealed lead storage battery - Google Patents

Sealed lead storage battery

Info

Publication number
JPS6074351A
JPS6074351A JP58182579A JP18257983A JPS6074351A JP S6074351 A JPS6074351 A JP S6074351A JP 58182579 A JP58182579 A JP 58182579A JP 18257983 A JP18257983 A JP 18257983A JP S6074351 A JPS6074351 A JP S6074351A
Authority
JP
Japan
Prior art keywords
electrolyte
fiber sheet
container
battery
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58182579A
Other languages
Japanese (ja)
Inventor
Yoshinari Morimoto
森本 佳成
Etsuji Makino
牧野 悦治
Satoshi Matsubayashi
敏 松林
Akira Fujii
明 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP58182579A priority Critical patent/JPS6074351A/en
Publication of JPS6074351A publication Critical patent/JPS6074351A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the rapid discharge performance of a sealed lead storage battery by placing on the surface of the positive plate a fiber sheet formed by using a binder which is soluble in electrolyte. CONSTITUTION:A fiber sheet 4 formed by binding fibers together by means of a binder which is soluble in electrolyte, is placed on the surface of a positive plate 1. As a result, when an electrolyte-holding body 3 is impregnated with electrolyte, the binder contained in the fiber sheet 4 dissolves into the electrolyte and the fibers of the fiber sheet 4 get untied thereby bringing the fiber sheet 4 into close contact with the positive plate 1. Given numbers of positive plates 1 to each of which the fiber sheet 4 is affixed and negative plates 2 are stacked with electrolyte-holding bodies 3 interposed to make each plate group which is then installed in a container. Next, an inner lid is attached to the container to seal it before electrolyte is poured into the container through a liquid pouring hole formed in the inner lid to impregnate the electrolyte-holding bodies 3 with the electrolyte. After that, an exhaust valve is attached to the liquid pouring hole before an outer lid is attached to the container to form an exhaust space between the inner and the outer lids, thereby completing a sealed lead storage battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電解液を実質的に非流動化した構造の密閉型
鉛蓄電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a sealed lead-acid battery having a structure in which the electrolyte is substantially non-fluidized.

従来技術 近年鉛蓄電池のメンテナンスフリー化と無漏液化を図っ
た密閉型鉛蓄電池のニーズが多くなってきた。この種の
鉛蓄電池では、0.5〜1.5μ前後の細径のガラス繊
維を抄成した。ガラス細繊維シートやシリカコロイドに
電解液を含浸保持させることによシ′…;保液の非流動
化を図り、充電時に陽極板から発生廿る酸素ガスを、陰
極板の海綿状鉛に吸収させる陰極吸収反応を行なわせる
ことによってガスを電池外部に逸散させないような構造
にしている。
BACKGROUND OF THE INVENTION In recent years, there has been an increasing need for sealed lead-acid batteries that are maintenance-free and leak-free. In this type of lead-acid battery, glass fibers having a small diameter of about 0.5 to 1.5 μm are made. By impregnating and holding the electrolyte in a glass fiber sheet or silica colloid, the liquid is made non-fluid, and the oxygen gas generated from the anode plate during charging is absorbed by the spongy lead of the cathode plate. The structure is designed to prevent gas from escaping to the outside of the battery by causing a cathode absorption reaction to occur.

陰極吸収反応においては、酸素ガスと活性な海綿状鉛と
が反応して酸化鉛となシ、これが電解液である希硫酸と
反応して硫酸鉛となるため、陰極板が完全充電状態にな
らず、そのため、所定の充電電圧で充電されている間は
電解液の減少がないという特徴がある。
In the cathode absorption reaction, oxygen gas and active spongy lead react to form lead oxide, which reacts with dilute sulfuric acid (electrolyte) to form lead sulfate. Therefore, there is a characteristic that the electrolyte does not decrease while being charged at a predetermined charging voltage.

近年この柵の電池では、小形化を図ることが要求される
とともに、急放電性能を得ることが要求されるようにな
ってきた。もともとこの種の構造を有する密閉型鉛蓄電
池は、陰極ガス吸収反応を効率的に起させるように電解
液を殆んど遊離させ々い設計がなされているため、比較
的低い電流値での放電率では充分な放電容量が得られる
ようになっているが、高い電流値での放電率では、電)
性液の拡散が放電反応に追随できない傾向があり、この
傾向は放電電流が大きくなればなる程大きくなるため、
急放電性能を得ることは困難であった。
In recent years, batteries for this type of fence have been required to be smaller in size and to have rapid discharge performance. Originally, sealed lead-acid batteries with this type of structure were designed to release almost all of the electrolyte in order to efficiently cause the cathode gas absorption reaction, so they could not be discharged at relatively low current values. At high current values, sufficient discharge capacity can be obtained, but at high current value discharge rates, the
There is a tendency for the diffusion of sexual fluids to be unable to follow the discharge reaction, and this tendency increases as the discharge current increases.
It was difficult to obtain rapid discharge performance.

発明の目的 本発明の目的は、急放電性能を得ることができる密閉型
鉛蓄電池を提供することにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a sealed lead-acid battery capable of achieving rapid discharge performance.

発明の構成 本発明は、電1解液を実質的に非流動化させた構造の鉛
蓄電池において、−電解液に溶解し得るバインダーによ
シ作られた繊維体シートを陽極板の表面に配置したこと
を特徴とするものである。
1. Structure of the Invention The present invention provides a lead-acid battery having a structure in which the electrolyte is substantially non-fluidized.- A fibrous sheet made of a binder that can be dissolved in the electrolyte is disposed on the surface of the anode plate. It is characterized by the fact that

一般に鉛蓄電池の陽陰極活物質の放電反応は次式による
と云われている。
Generally, the discharge reaction of the anode and cathode active materials of lead-acid batteries is said to be according to the following equation.

陽極反応:PbO2+3I(+十H804−+2e−→
Pb5o4+2H2゜陰極反応: pb+Hso4−+
 pbso4+r−r’ + 2e−これらの式は、放
電時に陽極板での忙イオンの消費が陰極板よシも多いこ
とを示している。したがって、電解液量を規制した密閉
型鉛蓄電池においては、放電時に陽極板へのH+イオン
の供給が多ければ多い程放電容量が向上することになる
。陽極板に供給される肋イオンの量は陽極板に接触する
電解液の総量に相応しているため、従来、陽極活物質の
多孔度を増大させたシ、極板の厚みを薄くして極板の数
を増加させる等の対策が考えられているが、陽極板の多
孔度を高くすると、充放電に伴って進行する陽極活物質
の微細化及び泥状化が促進されるため活物質が脱落し易
くなって寿命が短くなるという問題が生じる。この場合
活物質の脱落を防ぐために電池組立時における極板群に
対する加圧力を高めることが考えられるが、群加圧力を
増大させると陽陰極板間にあるガラス細繊維体等からな
る電解液保持体が圧迫され、電解液の保持能力が低下し
て所定の容量が得られないという問題がある。また極板
の厚みを減少させて陽極板の枚数を増やすと、電解液の
保持能力は向上するが、電池重量が増大するのを赴けら
れず、電池の出力密度が低下するのを避けられない。
Anodic reaction: PbO2+3I (+10H804-+2e-→
Pb5o4+2H2゜Cathode reaction: pb+Hso4-+
pbso4+r-r'+2e-These equations show that during discharge, the anode plate consumes more busy ions than the cathode plate. Therefore, in a sealed lead-acid battery in which the amount of electrolyte is regulated, the more H+ ions are supplied to the anode plate during discharge, the better the discharge capacity will be. The amount of rib ions supplied to the anode plate is commensurate with the total amount of electrolyte that comes into contact with the anode plate. Countermeasures such as increasing the number of plates have been considered, but increasing the porosity of the anode plate accelerates the fineness and muddy formation of the anode active material that progresses with charging and discharging. A problem arises in that it becomes easy to fall off and its lifespan is shortened. In this case, in order to prevent the active material from falling off, it may be possible to increase the pressure applied to the electrode plate group during battery assembly. There is a problem in that the body is compressed, the ability to hold the electrolyte decreases, and a predetermined capacity cannot be obtained. Also, reducing the thickness of the electrode plates and increasing the number of anode plates improves the electrolyte holding capacity, but this increases the weight of the battery and inevitably reduces the battery's output density. .

これに対し、本発明のように、電解液に可溶なバインダ
ーにより作られた繊維体シートを陽極板の表面に一体化
させると、陽極板の近傍において繊維体が単糸状に飄く
だけた状態で存在し、該単糸状繊維体が陽極板表面に密
着することになるだめ、陽極板に対して充分な量のH+
イオンを供給することができ、急放電性能を向上させる
ことができる。
On the other hand, when a fibrous sheet made of a binder soluble in an electrolytic solution is integrated with the surface of the anode plate as in the present invention, the fibrous sheet is blown out in the form of a single thread near the anode plate. Since the monofilamentous fibers are in close contact with the surface of the anode plate, a sufficient amount of H+ is present on the anode plate.
It is possible to supply ions and improve rapid discharge performance.

実施例 以下本発明の密閉型鉛蓄電池の実施例を説明する0 第1図は、本発明の密閉型鉛蓄電池の要部の拡大断面図
で、同図において1は陽極板、2は陰極板、3は両極板
間に配置された電解液保持体であシ、電解液保持体3は
例えばガラス細繊維を抄成したものからなる。本発明に
おいては、陽極板1の表面に、電解液に溶解し得るバイ
ン〆によシ繊°維を結合してシート状にした繊維体4が
配置されている。この繊維体4は、陽極板1の両表面に
接着剤により密着固定しておく。電池の組立に当っては
該繊維体を固着した陽極板1と陰極板2とを、電解液保
持体3を介して所定枚数積層して極板群を構成し、該極
板群を図示しない電槽に収納する。
Examples Examples of the sealed lead-acid battery of the present invention will be described below. Figure 1 is an enlarged sectional view of the main parts of the sealed lead-acid battery of the present invention, in which 1 is an anode plate and 2 is a cathode plate. , 3 is an electrolytic solution holder disposed between the two electrode plates, and the electrolytic solution holder 3 is made of, for example, glass fine fiber. In the present invention, on the surface of the anode plate 1, a fibrous body 4 in the form of a sheet is disposed by bonding fibers with binder that can be dissolved in the electrolytic solution. This fibrous body 4 is closely fixed to both surfaces of the anode plate 1 with an adhesive. In assembling the battery, a predetermined number of anode plates 1 and cathode plates 2 to which the fibrous bodies are fixed are laminated via an electrolyte holder 3 to form an electrode plate group, which is not shown. Store it in a battery case.

次いで該電槽に中蓋を取付けて密閉し、該中蓋に設けた
注液口から電槽内に電解液を注入して電解液保持体3に
電解液を含浸させる。その後、注液口V月Lσ411.
か前杆け一面r雷塔f版芸冬助紺けて外蓋と中蓋との間
に排気空間を形成し、密閉型鉛蓄電池を完成する。尚陰
極板同志及び1% 4WA板同志を接続するストラップ
の形成は、栃板群を構成した後、該極板群を電槽に収納
する前に行なうか、または該極板群を電槽内に収納した
後中蓋により電槽を密閉する前に行なう。
Next, an inner lid is attached to the battery container and sealed, and an electrolytic solution is injected into the battery container from a liquid injection port provided on the inner lid to impregnate the electrolytic solution holder 3 with the electrolytic solution. After that, the liquid injection port V month Lσ411.
The front lever is one side R, the thunder tower F, and Geifuyusuke is cut out to form an exhaust space between the outer cover and the inner cover, completing a sealed lead-acid battery. The straps that connect the cathode plates and the 1% 4WA plates can be formed after forming the Tochi plate group and before storing the plate group in the battery case, or by placing the plate group in the battery case. This is done before sealing the battery case with the inner lid after storing it in the container.

上記のように陽極板10表面に、TeLM液に可溶なバ
インダにより結合された繊維体4を配置しておくと、電
解液保持体3に電解液を含浸させた際に繊維体4中のバ
インダが電解液に溶解し、該繊維体4が単糸状にほぐれ
た状態になって陽極板に密着する。
If the fibrous body 4 bonded with a binder soluble in the TeLM solution is placed on the surface of the anode plate 10 as described above, when the electrolyte holder 3 is impregnated with the electrolyte, the fibrous body 4 is The binder is dissolved in the electrolytic solution, and the fibrous body 4 is loosened into a single filament and tightly adheres to the anode plate.

i施例では、pbと、0.07%のCaと、04チのS
nとQ、02%のAtとからなる鉛カルシウム合金を加
熱溶解して、幅105m+++、高さ125+1幇 J
jλさ1.35mの陽極格子及び陰極格子を製作し、と
れらの格子に常法に従ってイーストを充填してペースト
式陽、陰極板を製作した。これらの極板の化成を行なっ
た後陽極板に厚さ0.5 mの繊維体4を当接させて該
陽極板に一体化させた。繊維体4としては、希硫酸によ
り単糸状にほぐれるように、希硫酸に可溶なメチルセル
ロースをバインダーとしてガラス単繊維をシート状に結
合したものを使用した。本実施例の陽極板は、20時間
率の放電電流(1,75A)で、1枚当り8.75Ah
の容量を示した。
In Example i, pb, 0.07% Ca, and 04% S
By heating and melting a lead-calcium alloy consisting of n, Q, and 0.2% At, a width of 105 m + + + and a height of 125 + 1 ㎜ J
An anode grid and a cathode grid with a length of 1.35 m were manufactured, and yeast was filled into the grids according to a conventional method to produce paste-type positive and negative electrode plates. After these electrode plates were chemically formed, a fibrous body 4 having a thickness of 0.5 m was brought into contact with the anode plate to be integrated with the anode plate. The fibrous body 4 used was one in which glass single fibers were bonded into a sheet shape using methyl cellulose soluble in dilute sulfuric acid as a binder so that it could be loosened into single fibers by dilute sulfuric acid. The anode plate of this example was 8.75Ah per plate at a discharge current (1.75A) at a 20 hour rate.
capacity.

上記陽極板4枚と同容量の陰極板5枚とを用い、直径1
μ以下の微細なガラス細繊維からなる厚さ240■のマ
ットを電解液保持体3として陰陽両極板間に介在させて
極板群を構成し、該極板群を電槽に収納して2vの電池
を組み立てた。そして該電槽内に比重1.350の希硫
酸255CCを注入して保持体3に含浸させ、2.6v
で補充電してこれを試験電池Aとしだ。
Using the above four anode plates and five cathode plates of the same capacity, a diameter of 1
A mat with a thickness of 240 mm made of fine glass fibers of less than μ is interposed between the negative and positive electrode plates as the electrolyte holder 3 to form a group of electrode plates, and the group of electrode plates is stored in a battery case. Assembled the battery. Then, 255 CC of dilute sulfuric acid with a specific gravity of 1.350 was injected into the container to impregnate the holder 3, and the
Recharge the battery and use it as test battery A.

参考のため、従来の陽極板を用いて同容量の2■電池を
製作し、これを試験電池Bとした。
For reference, a 2-inch battery with the same capacity was manufactured using a conventional anode plate, and this was designated as test battery B.

上記試験電池A、Bを一15℃の温度下で18時間放置
した後、150Aの放電電流で終止電圧1■まで放電さ
せたときの電池電圧の変化を第2図に示した。
FIG. 2 shows the change in battery voltage when the test batteries A and B were left at a temperature of -15° C. for 18 hours and then discharged to a final voltage of 1 μ at a discharge current of 150 A.

第2図から明らかなように、従来の電池Bでは、約2分
30秒の放電しか行なわせることができなかつたが、本
発明の電池Bでは約3分10秒の放電が可能でるり、放
電容量が従来のものに比べて約25チも向上した。
As is clear from FIG. 2, conventional battery B was only able to discharge for about 2 minutes and 30 seconds, but battery B of the present invention was able to discharge for about 3 minutes and 10 seconds. The discharge capacity has been improved by approximately 25 inches compared to the conventional model.

上記実施例では、陽極板の表面に配置する繊維体4の厚
さを0.5胴としたが、この繊維体4の厚さは当業者が
任意に選択し得るものである。
In the above embodiment, the thickness of the fibrous body 4 disposed on the surface of the anode plate was set to 0.5 mm, but the thickness of the fibrous body 4 can be arbitrarily selected by those skilled in the art.

上記実施例では格子体として鋳造格子を用いたが、エキ
スフ9ンド加工や打抜き等の機械加工により得られるエ
キスバンド格子やノやンチング格子等を用いることがで
きるのは勿論である。
Although a cast lattice was used as the lattice body in the above embodiment, it is of course possible to use an expanded lattice or a punched lattice obtained by mechanical processing such as expanded processing or punching.

発明の効果 以上のように本発明によれば、陽極板の表面に、電解液
に可溶なバインダーを用いて形成した繊維体を配置した
ことにより、電池の急放電性能を大幅に向上させること
ができる。
Effects of the Invention As described above, according to the present invention, the rapid discharge performance of the battery can be greatly improved by arranging the fibrous body formed using a binder soluble in the electrolyte on the surface of the anode plate. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の要部を概略的に示す断面図、
第2図は本発明の電池の低温度下における急放電性能を
従来の電池と比較して示した線図である。 1・・・陽極板、2・・・陰極板、3・・・電解液保持
体、4・・・繊維体。 第1図 第2図 方欠1ら時開 (分)
FIG. 1 is a sectional view schematically showing the main parts of an embodiment of the present invention;
FIG. 2 is a diagram showing the rapid discharge performance of the battery of the present invention at low temperatures in comparison with a conventional battery. DESCRIPTION OF SYMBOLS 1... Anode plate, 2... Cathode plate, 3... Electrolyte holder, 4... Fibrous body. Figure 1 Figure 2 Half-hour opening (minutes)

Claims (1)

【特許請求の範囲】[Claims] 電解液を実質的に非流動化させた構造の鉛蓄電池におい
て、電解液に溶解し得るバインダーによ勺作られた繊維
体を陽極板の表面に配置したことを特徴とする密閉型鉛
蓄電池。
A sealed lead acid battery having a structure in which the electrolyte is substantially non-fluidized, characterized in that a fibrous body made of a binder that can be dissolved in the electrolyte is disposed on the surface of the anode plate.
JP58182579A 1983-09-30 1983-09-30 Sealed lead storage battery Pending JPS6074351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58182579A JPS6074351A (en) 1983-09-30 1983-09-30 Sealed lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58182579A JPS6074351A (en) 1983-09-30 1983-09-30 Sealed lead storage battery

Publications (1)

Publication Number Publication Date
JPS6074351A true JPS6074351A (en) 1985-04-26

Family

ID=16120748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58182579A Pending JPS6074351A (en) 1983-09-30 1983-09-30 Sealed lead storage battery

Country Status (1)

Country Link
JP (1) JPS6074351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327546A (en) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd Control valve type lead-acid battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715360A (en) * 1980-07-02 1982-01-26 Matsushita Electric Ind Co Ltd Manufacture of electrode for lead battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715360A (en) * 1980-07-02 1982-01-26 Matsushita Electric Ind Co Ltd Manufacture of electrode for lead battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327546A (en) * 2004-05-13 2005-11-24 Matsushita Electric Ind Co Ltd Control valve type lead-acid battery

Similar Documents

Publication Publication Date Title
US4648177A (en) Method for producing a sealed lead-acid cell
US4637966A (en) Sealed lead-acid cell
JPS6074351A (en) Sealed lead storage battery
JP3146438B2 (en) Sealed lead-acid battery
JP2809634B2 (en) Manufacturing method of sealed lead-acid battery
JPH06140019A (en) Clad type sealed lead acid battery
JP3103781B2 (en) How to inject the battery
JPH0151029B2 (en)
JP2958791B2 (en) Sealed lead-acid battery
JPS60207262A (en) Sealed lead storage battery
JP3163510B2 (en) Sealed lead-acid battery
JPH0193066A (en) Manufacture of sealed lead-acid battery
JPH054783B2 (en)
JPH01149376A (en) Sealed lead-acid battery
JPS59138062A (en) Lead storage battery
JPS635866B2 (en)
JPH06187967A (en) Clad type sealed lead-acid battery
JPH0628782Y2 (en) Sealed lead acid battery
JPS5916394B2 (en) Zinc alkaline secondary battery
JPS6049557A (en) Sealed lead storage battery
JPS60198052A (en) Sealed lead storage battery
JPS62103975A (en) Cathode plate for enclosed lead storage battery
JPH0413829B2 (en)
JPH05151988A (en) Sealed type lead acid battery
JPS62103989A (en) Enclosed lead storage battery