JPS6065533A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPS6065533A
JPS6065533A JP17298483A JP17298483A JPS6065533A JP S6065533 A JPS6065533 A JP S6065533A JP 17298483 A JP17298483 A JP 17298483A JP 17298483 A JP17298483 A JP 17298483A JP S6065533 A JPS6065533 A JP S6065533A
Authority
JP
Japan
Prior art keywords
etching
gas
dry etching
residue
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17298483A
Other languages
Japanese (ja)
Inventor
Tatsumi Mizutani
水谷 巽
Kazunori Tsujimoto
和典 辻本
Sadayuki Okudaira
奥平 定之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17298483A priority Critical patent/JPS6065533A/en
Publication of JPS6065533A publication Critical patent/JPS6065533A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Abstract

PURPOSE:To eliminate an etching residue and trailing phenomenon of the end of a pattern occurred at dry etching time by etching by adding N2 gas to SF6. CONSTITUTION:Mo, W, Ti, Ta or their Si compound is etched by using a gas plasma mixed with at least one of N2 and Ar with SF6. The mixture rate of N2 is preferably 10vol% or less. When Ar is used as gas to be mixed with SF6, an arbitrary mixture ratio of 50vol% can be selected in the Ar mixture amount. Thus, etching residue can be eliminated, and a trailing phenomenon of the end of a pattern can be hardly generated at the etching.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はモリブデン、タングステンその他の遷移金属お
よびそれらの硅素化合物のドライエツチング方法に係り
、特にエツチング残渣の少ない、良好な高精度パターン
をエツチング形成するのに好適なエツチング方法に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for dry etching molybdenum, tungsten and other transition metals, and their silicon compounds, and in particular to etching and forming a good, high-precision pattern with little etching residue. This invention relates to an etching method suitable for.

〔発明の背景〕[Background of the invention]

グロー放電プラズマを用いるドライエツチング方法は、
微細なパターンを高精度に加工できる方法としてよく知
られており、近年、半導体集積回路の製造方法として採
用されつつある。この方法は、1〜100 Pa程度の
低圧の反応性ガスを真空室に導入し、高周波電界を印加
してプラズマ化させ、ガス分子から解離生成する反応性
のイオンやラジカノ【べこよって試料をエツチングする
方法である。反応性ガスとしては、通常、F、Ctなど
ハロゲンを含む化合物ガス、例えばCF4、SF6、C
C1!2F2等が単独あるいは混合して用いられる。
The dry etching method using glow discharge plasma is
It is well known as a method that can process fine patterns with high precision, and has recently been adopted as a method for manufacturing semiconductor integrated circuits. In this method, a low-pressure reactive gas of about 1 to 100 Pa is introduced into a vacuum chamber, and a high-frequency electric field is applied to turn it into plasma. This is an etching method. Reactive gases are usually compound gases containing halogens such as F and Ct, such as CF4, SF6, and Ct.
C1!2F2 and the like can be used alone or in combination.

モリフ゛デン(八1o )のエツチングを例にとると、
CF4あるいはSF、から解離したFラジカルがMO表
面で次の反応を行い MO+6F −−→MoF6 反応生成物MOF6は蒸気圧が高く気化してMo表面か
ら離脱し、エツチング反応が進行する。
Taking etching of molyphdenum (81o) as an example,
The F radicals dissociated from CF4 or SF undergo the following reaction on the MO surface: MO+6F --→MoF6 The reaction product MOF6 has a high vapor pressure and is vaporized and detached from the Mo surface, and the etching reaction progresses.

モリブデン(Mo)、タングステン(W)、チタン(T
i)、タンタル(Ta )およびこれらの硅素(Si)
化合物は、MO8型トランジスタのゲート電極材料等と
して半導体集積回路を構成する材料であるが、これらは
いずれもFを含むプラズマ中で上記の反応式と同様の反
応により容易にエツチングすることができる。通常、M
O8型トランジスタのゲート電極の下地には厚さ数十n
mの薄い二酸化硅素(Sin2)のゲート酸化膜があり
、ゲート電極のエツチング加工中に、このゲート酸化膜
のエツチングを最小限に抑制するため、使用するガスプ
ラズマ中でのゲート電極材料のエツチング速度とSio
2のエツチング速度の比(いわゆるエツチング選択比)
は十分大きな値でなければならない。一般にCF4等炭
素を含むフッ素化合物のプラズマでは5i02のエツチ
ング速度が相当大きな値古なって、十分なエツチング選
択比が得られず、ゲート電極のエツチングにはSF6、
NF3−ガスプラズマが用いられる。本発明者らが、反
応性スパッタエツチングあるいは反応性イオンエツチン
グと呼ばれる方式でSF6ガスを用いてMoおよびWを
エツチングした実験結果では、SiO2に対するエツチ
ング選択比は、ガス圧力、高周波電力等のある条件のも
とでは、それぞれ30および50以上さ非常に高い値が
得られた。
Molybdenum (Mo), tungsten (W), titanium (T)
i), tantalum (Ta) and these silicon (Si)
Compounds are materials constituting semiconductor integrated circuits, such as gate electrode materials of MO8 type transistors, and any of these can be easily etched in plasma containing F by a reaction similar to the above reaction formula. Usually, M
The base of the gate electrode of an O8 transistor has a thickness of several tens of nanometers.
There is a thin gate oxide film of silicon dioxide (Sin2) with a thickness of m, and in order to minimize the etching of this gate oxide film during the etching process of the gate electrode, the etching rate of the gate electrode material in the gas plasma used is and Sio
Etching speed ratio of 2 (so-called etching selection ratio)
must be a sufficiently large value. In general, in plasma of fluorine compounds containing carbon such as CF4, the etching rate of 5i02 becomes considerably high, and a sufficient etching selectivity cannot be obtained.
NF3-gas plasma is used. According to experimental results obtained by the present inventors in which Mo and W were etched using SF6 gas using a method called reactive sputter etching or reactive ion etching, the etching selectivity relative to SiO2 was determined under certain conditions such as gas pressure and high frequency power. Under these conditions, very high values of over 30 and 50 were obtained, respectively.

このように、SF6ガスは、Mo%Wに限らずTiTa
およびこれらのSi化合物からなるゲート電極材料を下
地ゲーI・酸化膜5i02に対して高い選択比でドライ
エツチングするのに有効であるが、本発明者等の実験検
討の結果、次のような問題のあることが見出された。す
なわち、SF6ガスのグロー放電プラズマ中で、反応性
スパッタエツチング法により上記のゲート電極材料をエ
ツチングすると、第1図に示したように、下地表面に著
しいエツチング残渣10が残り、長時間のオーバーエツ
チングを施しても容易に除去できなかった。さらに、レ
ジストマスク11の端部に沿ってゲート電極12が裾を
引いて形成され、長時間のオーバーエツチングを施して
も、裾を引いた形状が変化せず、結局、レジストマスク
寸法よりも大きな寸法のゲート電極が形成された。
In this way, SF6 gas is not limited to Mo%W but also TiTa.
Although it is effective for dry etching gate electrode materials made of these Si compounds with a high selectivity with respect to the underlying gate I/oxide film 5i02, as a result of experimental studies conducted by the present inventors, the following problems were found. It was found that there is. That is, when the above gate electrode material is etched by the reactive sputter etching method in glow discharge plasma of SF6 gas, a significant etching residue 10 remains on the underlying surface as shown in FIG. It could not be easily removed even after applying. Furthermore, the gate electrode 12 is formed with a skirt along the edge of the resist mask 11, and even if over-etching is performed for a long time, the shape of the gate electrode 12 does not change, and the gate electrode 12 ends up being larger than the resist mask dimension. A gate electrode with dimensions was formed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記のように、Mo、W、Ti。 As mentioned above, the object of the present invention is to use Mo, W, and Ti.

Ta、およびそれらのSi化合物からなる材料をSF6
プラズマでドライエツチングする時に生じるエツチング
残渣やパターン端部の裾引き現象を解消して、寸法精度
の高いエツチング方法を提供することにある。
SF6 is a material consisting of Ta and their Si compounds.
It is an object of the present invention to provide an etching method with high dimensional accuracy by eliminating etching residues and skirting phenomena at pattern edges that occur when dry etching is performed using plasma.

〔発明の概要〕[Summary of the invention]

本発明の基礎となった実験について以下に説明する。 The experiments that formed the basis of the present invention will be described below.

通常、ドライエツチングでは、被エツチング試料を真空
槽からなるエツチング室内の所定の場所に配置して、エ
ツチング室を十分排気したのち、SF6等のガスを所定
の流量で導入して同時に一定の排気速度でこれを排気す
ることにより、エツチング室内の圧力を1〜100Pa
程度の所定圧力に一定に制御して放電によりプラズマを
発生する。
Normally, in dry etching, the sample to be etched is placed at a predetermined location in an etching chamber consisting of a vacuum chamber, and after the etching chamber is sufficiently evacuated, a gas such as SF6 is introduced at a predetermined flow rate, and at the same time the etching rate is maintained at a constant pumping speed. By exhausting this, the pressure inside the etching chamber is reduced to 1 to 100 Pa.
Plasma is generated by electric discharge under constant control at a predetermined pressure.

−この方法で、Mo、 W、 Ti、 Taあるいはそ
れらのSi化合物をSF6プラズマでエツチングする際
に発生する前記したエツチング残渣およびパターン端部
の裾引き現象は、実験の結果、SF、ガスを導入する前
の到達真空度に依存し、到達真空度が高いはど残渣が生
じ易く、到達真空度が低い場合の方が残渣が少い傾向が
あるのが見出された。到達真空度が低い場合、エツチン
グ室内に吸着ガス等が多量に残渣しており、SF6プラ
ズマを発生させてエツチングしている際中に吸着ガスの
脱離等によってプラズマ中のガス組成が変化17、エツ
チング性状が異ったと考えられる。本実際では、到達真
空度が低い場合のエツチング室内の主な残留ガスはN2
.0゜、N20と考えて、これらをSF6ガスに添加し
てエツチングする方法を試みた結果、N2を少量混合す
ることが、上記のエツチング残渣やパターン端部の裾引
きの発生しないエツチングを実現するのに有効であるこ
とが判明1.た。
- As a result of experiments, the above-mentioned etching residue and tailing phenomenon at the edge of the pattern that occur when Mo, W, Ti, Ta, or their Si compounds are etched with SF6 plasma can be solved by introducing SF gas. It was found that it depends on the ultimate vacuum level before the process, and that residues are more likely to be formed when the ultimate vacuum level is high, and there is a tendency for there to be less residue when the ultimate vacuum level is low. When the ultimate vacuum level is low, there is a large amount of adsorbed gas remaining in the etching chamber, and during etching by generating SF6 plasma, the gas composition in the plasma changes due to desorption of the adsorbed gas, etc.17. It is thought that the etching properties were different. In this actual situation, the main residual gas in the etching chamber when the ultimate vacuum is low is N2.
.. 0° and N20, and tried a method of etching by adding these to SF6 gas, and found that mixing a small amount of N2 achieves etching without the above-mentioned etching residue or skirting at the edge of the pattern. It was found to be effective for 1. Ta.

本発明は、上記の実験結果に基づき、SF6に少量のN
2を混合したガスプラズマを用いて、 Mo 。
Based on the above experimental results, the present invention provides a small amount of N to SF6.
Mo using a gas plasma mixed with 2.

W、Ti、Ta、もしくはそれらのSi化合物をエツチ
ングを行うことにより、エツチング残渣の生じない上記
物質のエツチングを行うことを特徴とする。
A feature of this method is that by etching W, Ti, Ta, or their Si compounds, the above-mentioned substances can be etched without producing any etching residue.

本発明の効果のよって来る原因は明らかではないが、本
発明者等の推測では、レジストマスクあるいはエツチン
グ室内の残留ガスに起因する炭素あるいは酸素がガスプ
ラズマ中に混入し、Mo、W等のエツチング中にこれら
の炭化物もしくは酸化物が形成され、これらが難エツチ
ング性であるために残渣になり易いと考えられる。SF
6にN2を混合するとプラズマ中で生成するNラジカル
が、炭化物もしくは酸化物のCもしくはOをCN、ON
に転化させて除去されて残渣のないエツチングが可能に
なると考えられる。パターン端部に裾を引く現象が解消
できるのも同様な機構によると考えられる。
Although the cause of the effects of the present invention is not clear, the inventors have speculated that carbon or oxygen from the resist mask or residual gas in the etching chamber is mixed into the gas plasma, causing etching of Mo, W, etc. It is thought that these carbides or oxides are formed in the film, and because these are difficult to etch, they tend to become residues. science fiction
When N2 is mixed with 6, N radicals generated in the plasma convert C or O of carbides or oxides into CN, ON.
It is believed that this process is converted into and removed, allowing for residue-free etching. It is thought that a similar mechanism is also responsible for eliminating the phenomenon of hems being drawn at the ends of the pattern.

SF6に混合するN2の混評は容量%で10優を超える
と、Mo、 W%Ti、Ta等のエツチング速度が著し
く低下するため、これらの材料の下地となるS + 0
2 (’)エツチング速度との比が低下するため、実用
上不適格となる。このため、N2の混合率はSF6に対
し、10容量チ以下、更に望ましくは3〜7容量チがエ
ツチング選択比を10〜20倍以上の実用的な値に維持
したまま、上記の残渣除去の効果を実現する上で好まし
い。
The mixed reputation of N2 mixed with SF6 is that if the volume % exceeds 10, the etching rate of Mo, W% Ti, Ta, etc. will decrease significantly, so the S + 0 that is the base of these materials will decrease.
2 (') The ratio to the etching rate decreases, making it unsuitable for practical use. For this reason, the mixing ratio of N2 to SF6 should be 10 volumes or less, more preferably 3 to 7 volumes, to maintain the etching selectivity at a practical value of 10 to 20 times or more while removing the above residue. Preferable for achieving the effect.

また、SF6に混合するガス吉してAr、He1H2等
を用いた場合、このうちArをSF6に混合する場合に
ついて、上記のSF6+N2と同様にエツチング残渣な
く、パターンの裾引き現象も少ないエツチングが実現で
きるこ吉が実験の結果明らかになった。この場合、上記
の炭化物あるいは酸化物と考えられるエツチング残渣と
なり易い物質は、プラズマ中に生成するArイオンによ
るスパッタ効果により除去されるものであろう。SF6
にArを混合する場合は、Ar混合量が50容量チ程度
まで、エツチング速度の低下等の望ましくない副次効果
は生じず、50容易チ以下で任意の混合比率を選択でき
るメリットがある。
Furthermore, when Ar, He1H2, etc. are used as a gas to be mixed with SF6, when Ar is mixed with SF6, etching is achieved with no etching residue and less pattern tailing phenomenon, similar to the above-mentioned SF6+N2. Dekikokichi was revealed as a result of an experiment. In this case, the above-mentioned carbides or oxides, which tend to become etching residues, will be removed by the sputtering effect of Ar ions generated in the plasma. SF6
When Ar is mixed with Ar, no undesirable side effects such as a decrease in etching speed occur until the amount of Ar mixed is around 50 volumes, and there is an advantage that an arbitrary mixing ratio can be selected within 50 volumes or less.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を参照して詳しく説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 エツチング室内の高周波電極上に被エツチング試料を載
置する方式の反応性スパッタエツチング装置を用いて、
Mo%W%Ti%Taの薄膜が被着されたウェーハ状試
料のエツチングを行った。エツチング室内にSF6のみ
を50m l!/m i nの流量で導入し、一定の排
気速度で排気して、エツチング室内のSF6圧力を20
Paに一定に保ったのち、高周波゛電極に13.56 
MT−(zの高周波電力を電力密度0.35W/cm2
で印加しプラズマを発生させて、エツチングを行った。
Example 1 Using a reactive sputter etching apparatus in which a sample to be etched is placed on a high-frequency electrode in an etching chamber,
A wafer-shaped sample coated with a thin film of Mo%W%Ti%Ta was etched. 50ml of SF6 only in the etching chamber! SF6 pressure in the etching chamber was increased to 20% by introducing at a flow rate of /min and exhausting at a constant exhaust speed.
After keeping the Pa constant, the high frequency electrode was set at 13.56
MT-(z high frequency power at power density 0.35W/cm2
Etching was performed by generating plasma.

被エツチング試料がWの場合、厚さ300nmのW膜は
約1分でエツチングが終了して、下地のSiO2膜が露
出したが、引き続き2分間のオーバーエツチングを施し
た。エツチングの試料表面を走査型電子顕微鏡で観察す
ると第1図に示すよう?こ大きさ50nm程度の残渣1
0が試料表面に多数観察された。次に、同様な試料を、
SF6.50m//min、1”J2; 3m//mi
nを同時にエツチング室に導入して、上記と同様の手続
きに従ってエツチングすると、第2図に示したように残
渣がなく、かつ第1図のような裾引きのないレジストマ
スク寸法に忠実なパターンをエツチング形成することが
できた。このとき、厚さ300 nmのW膜のエツチン
グ時間は約1.5分であり、オーバーエツチングは1.
5分さした。
When the sample to be etched was W, the etching of the 300 nm thick W film was completed in about 1 minute and the underlying SiO2 film was exposed, but over-etching was subsequently performed for 2 minutes. When the surface of an etched sample is observed with a scanning electron microscope, it looks as shown in Figure 1. Residue 1 with a size of about 50 nm
Many 0s were observed on the sample surface. Next, a similar sample is
SF6.50m//min, 1”J2; 3m//mi
When N is introduced into the etching chamber at the same time and etched according to the same procedure as above, a pattern that is faithful to the resist mask dimensions without residue as shown in Figure 2 and without skirting as shown in Figure 1 can be obtained. It was possible to form it by etching. At this time, the etching time for a W film with a thickness of 300 nm was about 1.5 minutes, and the overetching was 1.5 minutes.
It took 5 minutes.

以上の結果は、Mo、Ti、Taの薄膜をエツチングす
る場合も同様であった。
The above results were the same when etching thin films of Mo, Ti, and Ta.

実施例2 実施例1においてSF6に混合するガスをN2の替りに
Arとし、SP650m/’/minに対してArを2
0mJ/minの割合で混合してエツチングした場合に
も実施例1と同様にエツチング残渣のないエツチングが
実現できた。ただし、この場合実施例1と異なり、Ar
の混合によって5in2のエツチング速度が、約5 n
 m/m i nから15 nm/m i n程度に増
大した。
Example 2 In Example 1, the gas mixed with SF6 was Ar instead of N2, and Ar was changed to 2 for SP650m/'/min.
Even when etching was performed by mixing at a rate of 0 mJ/min, etching without any etching residue could be achieved as in Example 1. However, in this case, unlike Example 1, Ar
The etching rate of 5in2 is increased by mixing approximately 5n
m/min increased to approximately 15 nm/min.

実施例3 実施例1及び2と同様な方法で、Mo 、 W、 Ti
 。
Example 3 In the same manner as in Examples 1 and 2, Mo, W, Ti
.

Taのいずれかの8+化合物をエツチングした場合も、
SF6にN2を5容量係もしくはArを30容量怖混合
した結果、残渣の少ないエツチングができた。
When etching any 8+ compound of Ta,
As a result of mixing SF6 with 5 volumes of N2 or 30 volumes of Ar, etching with less residue was achieved.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明によれば、Mo、W、 
Ti 、 Taもしくはそれらの8i化合物のエツチン
グを残渣を生じることなく、またパターン端部に裾を引
くことなく行うことができるので、パターン寸法精度が
高く、エツチング残渣によるパターン間短絡のない加工
ができる効果がある。
As explained above, according to the present invention, Mo, W,
Etching of Ti, Ta, or their 8i compounds can be performed without creating a residue or drawing a hem at the edge of the pattern, resulting in high pattern dimensional accuracy and processing without short circuits between patterns due to etching residue. effective.

従って、本発明の方法は、上記の材料をMO8型トラン
ジスタのゲート電極材料として用いる半導体集積回路の
装造方法として有効である。
Therefore, the method of the present invention is effective as a method for fabricating a semiconductor integrated circuit using the above-mentioned material as a gate electrode material of an MO8 type transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSF6ガスのみのプラズマにより、レジストパ
ターンをマスクとして厚さ300nmのW膜をエツチン
グしたときの試料の断面図、第2図は、SF6にN2も
しくはArを混合したガスのプラズマにより同様な試料
をエツチングした場合の試料の断面図である。 10・・・・・・・・・エツチング残渣、11・・・・
・・・・・レジストマスク、1261010.1.、ゲ
ート電極(W)、13・・・・・・・・ゲート酸化膜、
14・・・・・・・・・基板結晶0第 (図 禎 2 図
Figure 1 is a cross-sectional view of a sample when a W film with a thickness of 300 nm was etched using a resist pattern as a mask using a plasma containing only SF6 gas. FIG. 3 is a cross-sectional view of a sample obtained by etching a sample. 10... Etching residue, 11...
...Resist mask, 1261010.1. , gate electrode (W), 13...gate oxide film,
14......Substrate crystal 0th (Figure 2)

Claims (1)

【特許請求の範囲】 ■ 六弗化イオウに窒素、アルゴンの少くトモ一方を混
合したガスのグロー放電プラズマ中でモリブデン、タン
グステン、チタン、タンタルおよび/もしくはそれらの
硅素化合物をドライエツチングするこ吉を特徴とするド
ライエツチング方法。 2、特許請求の範囲第1項記載のドライエツチング方法
において、六弗化イオウに混合する窒素の混合率が六弗
化イオウに対して1o容量チ以下であることを特徴とす
るドライエツチング方法。 3、特許請求の範囲第1項記載のドライエツチング方法
において、六弗化イオウに混合するアルゴンの混合率が
六弗化イオウに対して5o容量チ以下であるこ吉を特徴
とするドライエツチング方法。
[Claims] ■ A method for dry etching molybdenum, tungsten, titanium, tantalum and/or their silicon compounds in a glow discharge plasma of a gas containing sulfur hexafluoride and a little bit of nitrogen or argon. Characteristic dry etching method. 2. A dry etching method as claimed in claim 1, characterized in that the mixing ratio of nitrogen to sulfur hexafluoride is less than 10% by volume per sulfur hexafluoride. 3. A dry etching method according to claim 1, characterized in that the mixing ratio of argon to sulfur hexafluoride is less than 50% by volume per sulfur hexafluoride.
JP17298483A 1983-09-21 1983-09-21 Dry etching method Pending JPS6065533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17298483A JPS6065533A (en) 1983-09-21 1983-09-21 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17298483A JPS6065533A (en) 1983-09-21 1983-09-21 Dry etching method

Publications (1)

Publication Number Publication Date
JPS6065533A true JPS6065533A (en) 1985-04-15

Family

ID=15952010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17298483A Pending JPS6065533A (en) 1983-09-21 1983-09-21 Dry etching method

Country Status (1)

Country Link
JP (1) JPS6065533A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133323A (en) * 1987-11-19 1989-05-25 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH0265132A (en) * 1988-08-30 1990-03-05 Sony Corp Dry etching method
EP0418540A2 (en) * 1989-08-11 1991-03-27 Sanyo Electric Co., Ltd Dry etching method
JPH0445528A (en) * 1990-06-13 1992-02-14 Nec Corp Reactive dry etching
EP0514013A2 (en) * 1991-04-22 1992-11-19 Nec Corporation Method for etching polysilicon film
JPH07147271A (en) * 1993-11-26 1995-06-06 Nec Corp Manufacture of semiconductor device
US5521119A (en) * 1994-07-13 1996-05-28 Taiwan Semiconductor Manufacturing Co. Post treatment of tungsten etching back
US5545290A (en) * 1987-07-09 1996-08-13 Texas Instruments Incorporated Etching method
DE102015117448A1 (en) * 2015-09-02 2017-03-02 Von Ardenne Gmbh Method and processing arrangement

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545290A (en) * 1987-07-09 1996-08-13 Texas Instruments Incorporated Etching method
JPH01133323A (en) * 1987-11-19 1989-05-25 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH0265132A (en) * 1988-08-30 1990-03-05 Sony Corp Dry etching method
EP0418540A2 (en) * 1989-08-11 1991-03-27 Sanyo Electric Co., Ltd Dry etching method
JPH0445528A (en) * 1990-06-13 1992-02-14 Nec Corp Reactive dry etching
EP0514013A2 (en) * 1991-04-22 1992-11-19 Nec Corporation Method for etching polysilicon film
JPH07147271A (en) * 1993-11-26 1995-06-06 Nec Corp Manufacture of semiconductor device
US5521119A (en) * 1994-07-13 1996-05-28 Taiwan Semiconductor Manufacturing Co. Post treatment of tungsten etching back
DE102015117448A1 (en) * 2015-09-02 2017-03-02 Von Ardenne Gmbh Method and processing arrangement

Similar Documents

Publication Publication Date Title
CA1172993A (en) Microwave plasma etching
US4615764A (en) SF6/nitriding gas/oxidizer plasma etch system
JP3300632B2 (en) Semiconductor device etching method
JPH05247673A (en) Method for etching body to be treated incorporating oxide part and nitride part
GB2144083A (en) Selective etching process
JP2008028022A (en) Plasma etching method and computer readable storage medium
US5108542A (en) Selective etching method for tungsten and tungsten alloys
JPS6065533A (en) Dry etching method
US4479850A (en) Method for etching integrated semiconductor circuits containing double layers consisting of polysilicon and metal silicide
JP3559691B2 (en) Method for manufacturing semiconductor device
JPH0312454B2 (en)
JPS6044825B2 (en) Etching method
JPS63220525A (en) Method of etching diamond semiconductor
JPH0363209B2 (en)
JP4360065B2 (en) Plasma processing method
JP2003332304A (en) Method for cleaning dry-etching apparatus
JPH0121230B2 (en)
JPH11111686A (en) Low-pressure plasma etching method
JPH0472082A (en) Dry etching method
JP3399494B2 (en) Low gas pressure plasma etching method for WSiN
JPS6148924A (en) Dry etching method for metal having high fusion point
JPS5855568A (en) Reactive ion etching method
WO2023100476A1 (en) Method for forming deposition film
JPH07263406A (en) Method of manufacturing semiconductor device
JP2734748B2 (en) Reactive dry etching method