JP2734748B2 - Reactive dry etching method - Google Patents

Reactive dry etching method

Info

Publication number
JP2734748B2
JP2734748B2 JP2154693A JP15469390A JP2734748B2 JP 2734748 B2 JP2734748 B2 JP 2734748B2 JP 2154693 A JP2154693 A JP 2154693A JP 15469390 A JP15469390 A JP 15469390A JP 2734748 B2 JP2734748 B2 JP 2734748B2
Authority
JP
Japan
Prior art keywords
gas
etching
dry etching
etching method
ccl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2154693A
Other languages
Japanese (ja)
Other versions
JPH0445528A (en
Inventor
裕明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15589877&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2734748(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2154693A priority Critical patent/JP2734748B2/en
Publication of JPH0445528A publication Critical patent/JPH0445528A/en
Application granted granted Critical
Publication of JP2734748B2 publication Critical patent/JP2734748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は反応性ドライエッチング法に関し、特に反応
ガスとして六フッ化硫黄(SF6)と窒素(N2)と塩素を
含むガス(CCl2F2,Cl2等)の混合ガスによるタングステ
ン(W)の反応性ドライエッチング法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactive dry etching method, and in particular, to a gas (CCl 2 ) containing sulfur hexafluoride (SF 6 ), nitrogen (N 2 ) and chlorine as a reactive gas. The present invention relates to a reactive dry etching method of tungsten (W) using a mixed gas of F 2 and Cl 2 .

〔従来の技術〕[Conventional technology]

従来のタングステン(W)エッチング法では第5図
(a)に示すように、シリコン基板21に拡散工程により
酸化膜22を形成し、その上にスパッタ等によりタングス
テン膜23を蒸着した後、フォトレジスト24を塗布し、露
光現像処理を行い、パターンを形成している。その後、
このパターンをマスクとし、エッチングガスとしてSF6
のみを用いて、エッチングを行うと、第5図(b)に示
すようにフォトレジスト24の下にタングステン膜23のア
ンダーカットが入る。しかし、エッチングガスとして、
SF6にCCl2F2等のフレオン系ガスを加えることにより、
エッチング形状は第5図(c)に示すように、異方的な
形状を得るが、SF6のみのときに較べてエッチング速度
が遅くなる。この理由は、次のように考えられる。すな
わち、反応ガスであるSF6とともにCCl2F2等のフレオン
系ガスを加えると、フレオン系ガス中の塩素原子(Cl)
とWとが反応し、不揮発性物質WCl6が生成し、エッチン
グW表面上に付着する。このWCl6により基板面に水平方
向のエッチングは妨げられるが、垂直方向にはイオンの
衝撃によりWCl6が取り除かれ、遅い速度でエッチングは
進行する。このようにしてSF6にCCl2F2等のフレオン系
ガスを加えた時には速度は遅いが、異方性形状のエッチ
ングが進行する。
In the conventional tungsten (W) etching method, as shown in FIG. 5A, an oxide film 22 is formed on a silicon substrate 21 by a diffusion process, and a tungsten film 23 is deposited thereon by sputtering or the like, and then a photoresist is formed. 24 is applied and exposed and developed to form a pattern. afterwards,
Using this pattern as a mask, SF 6
When etching is performed using only the photoresist film, an undercut of the tungsten film 23 is formed under the photoresist 24 as shown in FIG. 5B. However, as an etching gas,
By adding a Freon-based gas such as CCl 2 F 2 to SF 6 ,
As the etching shape shown in FIG. 5 (c), but obtain the anisotropic shape, the etching rate is slower than when only SF 6. The reason is considered as follows. That is, when a Freon-based gas such as CCl 2 F 2 is added together with the reaction gas SF 6 , chlorine atoms (Cl) in the Freon-based gas are added.
And W react with each other to generate a non-volatile substance WCl 6 and adhere to the surface of the etched W. This WCl 6 hinders the etching of the substrate surface in the horizontal direction, but in the vertical direction, the WCl 6 is removed by ion bombardment, and the etching proceeds at a slow speed. When a Freon-based gas such as CCl 2 F 2 is added to SF 6 in this manner, the etching proceeds in an anisotropic shape although the speed is low.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述のようにドライエッチング過程において、反応ガ
スである六フッ化硫黄(SF6)に二フッ化二塩化炭素(C
Cl2F2)を加えた場合には、異方性は向上するが、エッ
チング速度が遅くなるという問題点があった。
As described above, in the dry etching process, sulfur difluoride (SF 6 ) as a reaction gas is added to carbon difluoride (C 6 ).
When Cl 2 F 2 ) is added, the anisotropy is improved, but there is a problem that the etching rate is reduced.

本発明の目的は、異方性Wエッチング形状を維持しな
がら、エッチング速度を増大させることにより、前記課
題を解決した反応性ドライエッチング法を提供すること
にある。
An object of the present invention is to provide a reactive dry etching method which solves the above-mentioned problem by increasing an etching rate while maintaining an anisotropic W etching shape.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するため、本発明に係る反応性ドライ
エッチング法においては、六フッ化硫黄(SF6)ガスと
塩素を含むガスとの混合ガスをプラズマ化させてタング
ステン(W)またはタングステン合金の異方性エッチン
グを行う反応性ドライエッチング法において、前記混合
ガスに窒素(N2)ガスを添加するものである。
In order to achieve the above object, in the reactive dry etching method according to the present invention, a mixed gas of sulfur hexafluoride (SF 6 ) gas and a gas containing chlorine is turned into plasma to form tungsten (W) or tungsten alloy. In a reactive dry etching method for performing anisotropic etching, a nitrogen (N 2 ) gas is added to the mixed gas.

〔作用〕[Action]

本発明では、六フッ化硫黄(SF6)に塩素原子を含む
ガス(CCl2F2等)を混合させたものを用いて異方性エッ
チング形状を維持しつつ、さらにN2ガスを加えることに
より、エッチング速度を増大させるものである。
In the present invention, a mixture of sulfur hexafluoride (SF 6 ) and a gas containing a chlorine atom (such as CCl 2 F 2 ) is used, and an N 2 gas is further added while maintaining an anisotropic etching shape. This increases the etching rate.

〔実施例〕〔Example〕

以下、本発明の実施例を図面により説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施例1) 第2図は本発明を実施するのに適した反応性ドライエ
ッチング装置を示す断面図である。
Example 1 FIG. 2 is a sectional view showing a reactive dry etching apparatus suitable for carrying out the present invention.

図において、真空排気系36を用いて反応室41を圧力を
10-3Pa以下まで下げた後、ガス導入バルブ38を開いて、
反応ガスである六フッ化硫黄(SF6)ガス,二フッ化二
塩化炭素(CCl2F2)ガス,窒素(N2)ガスを反応室41内
に導入し、反応室41内の圧力を12Paにする。その後、試
料35が設置されている電極37と対向電極39との間に高周
波電源40を用いて13.56MHzの周波数をもつ高周波電圧を
かけることにより、プラズマを発生させ、電極37上の試
料35に対してエッチングを行う。この操作を、N2ガスを
流さずに、総流量を50SCCMとし、SF6とCCl2F2との比率
を変えて行った場合と、CCl2F2流量分率と、タングステ
ンの試料面に垂直な方向と水平な方向でのエッチング速
度比γとの関係を示したのが第3図である。これによ
り、CCl2F2流量分率10%以上で、試料面に水平方向のエ
ッチング速度がほとんど0になることがわかったので、
これ以降はエッチング速度の低下を最小限にとどめ、か
つ、異方性を保つために、SF6とCCl2F2の合計流量に対
するCCl2F2の流量分率を10%に固定して実験を行った。
次に、SF6の流量を45SCCM、CCl2F2の流量を5SCCMに固定
し、SF6とCCl2F2の合計流量に対するN2の流量分率を変
化させたときの被エッチング試料であるタングステン
(W)のエッチング速度の変化を示したのが第4図であ
る。これより、N2流量分率が5%のところでWエッチン
グ速度は最大値となり、N2を加えずにエッチングした場
合に較べてエッチング速度は1割ほど上昇し、かつ、第
1図に示す異方性の形状が得られた。図において、11は
シリコン基板、12は酸化膜、13はタングステン膜、14は
フォトレジストである。
In the figure, the pressure in the reaction chamber 41 is reduced by using the vacuum exhaust system 36.
After lowering to 10 -3 Pa or less, open the gas introduction valve 38,
Sulfur hexafluoride (SF 6 ) gas, carbon difluoride (CCl 2 F 2 ) gas, and nitrogen (N 2 ) gas, which are reaction gases, are introduced into the reaction chamber 41, and the pressure in the reaction chamber 41 is reduced. 12Pa. Thereafter, a plasma is generated by applying a high-frequency voltage having a frequency of 13.56 MHz using the high-frequency power supply 40 between the electrode 37 on which the sample 35 is installed and the counter electrode 39, thereby generating a plasma. Then, etching is performed. This operation, without supplying the N 2 gas, the total flow rate and 50 SCCM, and when performed by changing the ratio of SF 6 and CCl 2 F 2, and CCl 2 F 2 flow rate fraction, the sample surface of the tungsten FIG. 3 shows the relationship between the etching rate ratio γ in the vertical direction and the horizontal direction. As a result, it was found that when the flow rate fraction of CCl 2 F 2 was 10% or more, the etching rate in the horizontal direction on the sample surface became almost zero.
Thereafter, in order to minimize the decrease in etching rate and maintain anisotropy, the experiment was performed with the flow rate ratio of CCl 2 F 2 fixed to 10% of the total flow rate of SF 6 and CCl 2 F 2 Was done.
Then, the flow rate of SF 6 45 sccm, to fix the flow rate of CCl 2 F 2 to 5 SCCM, is to be etched sample when changing the flow rate fraction of N 2 in the total flow rate of SF 6 and CCl 2 F 2 FIG. 4 shows a change in the etching rate of tungsten (W). Than this, W etch rate at N 2 flow fraction of 5% becomes the maximum value, the etching rate in comparison to a case where it is etched without the addition of N 2 was increased about 10%, and, different as shown in Figure 1 An isotropic shape was obtained. In the figure, 11 is a silicon substrate, 12 is an oxide film, 13 is a tungsten film, and 14 is a photoresist.

(実施例2) 次に本発明の実施例2について説明する。Second Embodiment Next, a second embodiment of the present invention will be described.

本実施例では、実施例1と同じ装置を用い、試料とし
てチタンタングステン膜をもつものを用い、反応ガスと
して、六フッ化硫黄(SF6)ガス,塩素(Cl2)ガス,窒
素(N2)ガスの混合ガスを用い、実施例1と同様な操作
により実験を行った。その結果、反応室41内の圧力を10
パスカル、高周波出力400ワット,SF6ガス40SCCM,Cl2
ス10SCCM,N2ガス10SCCMの条件下において、第1図に示
す異方性エッチング形状が得られ、エッチング速度はN2
を加えない場合に較べ、1.5割ほど向上した。本実施例
では、環境破壊に関連して規制対象であるフロン12を使
わないで済むという利点を有する。
In the present embodiment, the same apparatus as in the first embodiment is used, a sample having a titanium tungsten film is used as a sample, and sulfur hexafluoride (SF 6 ) gas, chlorine (Cl 2 ) gas, and nitrogen (N 2 An experiment was performed by the same operation as in Example 1 using a mixed gas of gases. As a result, the pressure in the reaction chamber 41 is increased by 10
Under the conditions of Pascal, high frequency output 400 watts, SF 6 gas 40 SCCM, Cl 2 gas 10 SCCM, N 2 gas 10 SCCM, the anisotropic etching shape shown in FIG. 1 was obtained, and the etching rate was N 2
Compared with the case where no is added, it improved by about 15%. In this embodiment, there is an advantage that it is not necessary to use Freon 12, which is a regulated object in connection with environmental destruction.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は反応ガスとして、SF6
塩素系ガスとに加えてN2ガスを用いたので、エッチング
形状の異方性を保ちながら、エッチング速度を増大でき
るという効果を有する。
As the present invention the reactive gas as described above, since the N 2 gas was used in addition to SF 6, chlorine-based gas, while maintaining the anisotropic etching shape has the effect that the etching rate can be increased.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の反応性エッチング法によりエッチング
を行った状態を示す断面図、第2図は本発明を実施する
反応性ドライエッチング装置を示す断面図、第3図はCC
l2F2流量分率と異方性指数γとの関係を示す図、第4図
はN2流量分率とWエッチング速度との関係を示す図、第
5図(a),(b),(c)はWエッチング試料を示す
断面図である。 11……シリコン基板、12……酸化膜 13……タングステン膜、14……フォトレジスト 35……試料、36……真空排気系 37……電極、38……ガス導入バルブ 39……対向電極、40……高周波電源 41……反応室
FIG. 1 is a sectional view showing a state where etching is performed by the reactive etching method of the present invention, FIG. 2 is a sectional view showing a reactive dry etching apparatus embodying the present invention, and FIG.
FIG. 4 shows the relationship between l 2 F 2 flow rate fraction and anisotropy index γ, FIG. 4 shows the relationship between N 2 flow rate fraction and W etching rate, and FIGS. 5 (a) and 5 (b). And (c) are cross-sectional views showing a W etching sample. 11: Silicon substrate, 12: Oxide film 13: Tungsten film, 14: Photoresist 35: Sample, 36: Vacuum exhaust system 37: Electrode, 38: Gas introduction valve 39: Counter electrode, 40 …… High frequency power supply 41 …… Reaction chamber

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】六フッ化硫黄(SF6)ガスと塩素を含むガ
スとの混合ガスをプラズマ化させてタングステン(W)
またはタングステン合金の異方性エッチングを行う反応
性ドライエッチング法において、前記混合ガスに窒素
(N2)ガスを添加することを特徴とする反応性ドライエ
ッチング法。
A mixed gas of a sulfur hexafluoride (SF 6 ) gas and a gas containing chlorine is converted into plasma to form tungsten (W).
Alternatively, in a reactive dry etching method for performing anisotropic etching of a tungsten alloy, a nitrogen (N 2 ) gas is added to the mixed gas.
JP2154693A 1990-06-13 1990-06-13 Reactive dry etching method Expired - Fee Related JP2734748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2154693A JP2734748B2 (en) 1990-06-13 1990-06-13 Reactive dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2154693A JP2734748B2 (en) 1990-06-13 1990-06-13 Reactive dry etching method

Publications (2)

Publication Number Publication Date
JPH0445528A JPH0445528A (en) 1992-02-14
JP2734748B2 true JP2734748B2 (en) 1998-04-02

Family

ID=15589877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2154693A Expired - Fee Related JP2734748B2 (en) 1990-06-13 1990-06-13 Reactive dry etching method

Country Status (1)

Country Link
JP (1) JP2734748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100259609B1 (en) * 1996-06-13 2000-08-01 우성일 Etching method for transition metal layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065533A (en) * 1983-09-21 1985-04-15 Hitachi Ltd Dry etching method
JPS6148924A (en) * 1984-08-15 1986-03-10 Nippon Telegr & Teleph Corp <Ntt> Dry etching method for metal having high fusion point
US4713141A (en) * 1986-09-22 1987-12-15 Intel Corporation Anisotropic plasma etching of tungsten
JP2754578B2 (en) * 1988-07-25 1998-05-20 ソニー株式会社 Etching method

Also Published As

Publication number Publication date
JPH0445528A (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US4473436A (en) Method of producing structures from double layers of metal silicide and polysilicon on integrated circuit substrates by RIE utilizing SF6 and Cl2
US4438315A (en) High selectivity plasma etching apparatus
JPS6214429A (en) Bias impression etching and device thereof
US4479850A (en) Method for etching integrated semiconductor circuits containing double layers consisting of polysilicon and metal silicide
JP2734748B2 (en) Reactive dry etching method
JP3350973B2 (en) Plasma processing method and plasma processing apparatus
JPS6065533A (en) Dry etching method
JPH02156529A (en) Oxide layer inclined etching method of semiconductor wafer
JPH031825B2 (en)
JPH0626199B2 (en) Etching method
JPS6044825B2 (en) Etching method
JPH09116149A (en) Polyside gate formation of semiconductor device
JPH05251399A (en) Etching method for silicon nitriding film based on leaflet type etcher
JPH0121230B2 (en)
JP4360065B2 (en) Plasma processing method
JPH0336908B2 (en)
JPS63262843A (en) Gas plasma etching method
JP2000031128A (en) Etching processing device and method and semiconductor manufacturing method and semiconductor device
TWI833452B (en) Method of forming conductive layer of semiconductor device
JP3399494B2 (en) Low gas pressure plasma etching method for WSiN
JPS6148924A (en) Dry etching method for metal having high fusion point
JPS63260133A (en) Dry etching method
JPH0251987B2 (en)
JPH0223619A (en) Manufacture of semiconductor device
JPH07263406A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees