JPS6048884B2 - Manufacturing method of intermetallic compound magnet - Google Patents

Manufacturing method of intermetallic compound magnet

Info

Publication number
JPS6048884B2
JPS6048884B2 JP59090651A JP9065184A JPS6048884B2 JP S6048884 B2 JPS6048884 B2 JP S6048884B2 JP 59090651 A JP59090651 A JP 59090651A JP 9065184 A JP9065184 A JP 9065184A JP S6048884 B2 JPS6048884 B2 JP S6048884B2
Authority
JP
Japan
Prior art keywords
intermetallic compound
magnet
powder
magnetic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59090651A
Other languages
Japanese (ja)
Other versions
JPS6063905A (en
Inventor
一和 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP59090651A priority Critical patent/JPS6048884B2/en
Publication of JPS6063905A publication Critical patent/JPS6063905A/en
Publication of JPS6048884B2 publication Critical patent/JPS6048884B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Description

【発明の詳細な説明】 本発明は、基本組成が希土類金属R(Sm、Y9Ce9
La9Pr)ミツシユメタルなど)とコバールト (C
o)からなる金属間化合物磁石粉末と有機物樹脂を混練
せしめた磁石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a basic composition of rare earth metals R (Sm, Y9Ce9
La9Pr) Mitsushi Metal etc.) and Kobalt (C
The present invention relates to a method for manufacturing a magnet in which an intermetallic compound magnet powder consisting of (o) and an organic resin are kneaded.

RとCoからなる金属間化合物磁石の製造方法は焼結法
、鋳造法およびバインダー法に大別される。
Methods for producing intermetallic compound magnets made of R and Co are broadly classified into sintering methods, casting methods, and binder methods.

バインダー法は結合剤に金属又は合金を用いるメタルバ
イングー法、有機物樹脂を用いるプラスチックバインダ
ー法が知られている。本願発明は磁石体強度靭性の秀れ
た永久磁石を得ることができるプラスチックバインダー
法の改良に係わる。従来プラスチックバインダー法とし
て知られる含浸法は、有橙物樹脂の種類が大幅に限定さ
れる欠点があつた。
Known binder methods include a metal binder method in which a metal or alloy is used as a binder, and a plastic binder method in which an organic resin is used. The present invention relates to an improvement in a plastic binder method that allows a permanent magnet with excellent magnet strength and toughness to be obtained. The conventional impregnation method known as the plastic binder method has the disadvantage that the types of orange resins are greatly limited.

即ち粘度が80■p以下でないと、含浸が十分行なえず
、また中心部に含浸残り、キズの発生ができやすかつた
。有機物樹脂の安定性が求められポットライフはIOB
寺間以上必要であるなどの制約条件があつた。本発明は
有機物樹脂とRCo磁石粉末をあらかじめ混合、混練せ
しめた後プレス圧縮等で成形するものであつて次のよう
な利点を有する。
That is, unless the viscosity was 80 μp or less, sufficient impregnation could not be carried out, and impregnation remained in the center, easily causing scratches. Stability of organic resin is required and pot life is IOB
There were constraints such as the need for a temple or more. The present invention is a method in which organic resin and RCo magnet powder are mixed and kneaded in advance and then molded by press compression or the like, and has the following advantages.

1 強度の向上 2 磁気性能の安定性 3 キズ、ワレの発生がない 4 製造性が良い 次に本発明方法における有機物樹脂は粘度が500CP
以下では成形時に加圧によつて樹脂の絞り出し現象がみ
られるため、500CP以上でなければならない。
1. Improved strength 2. Stable magnetic performance 3. No scratches or cracks 4. Good manufacturability Next, the organic resin used in the method of the present invention has a viscosity of 500 CP.
Below, the resin must be 500 CP or more because squeezing of the resin occurs due to pressure during molding.

一方20000CP以上の粘度ては磁石粉末との混練性
が低下し、また混合粉の磁場整列性(配向性)を悪化さ
せ、磁石の磁気特性の低下を招く。とりわけ磁石粉末と
の混合割合か低くなると、高粘度樹脂の使用は上記制限
が一層きびしくなる。ここて磁石粉末に対する混合割合
は磁石体の機械的特性と磁気特性に与える影響が大きく
、また成形法にも影響を与える。従つて求める特性ヨに
応じて可変すべきである。本願発明者は特願昭48−1
33187号明細書において有機物樹脂4〜5%(重量
比)についてその有効性を明らかにしている。
On the other hand, if the viscosity is 20,000 CP or more, the kneadability with the magnet powder decreases, and the magnetic field alignment (orientation) of the mixed powder deteriorates, leading to a decrease in the magnetic properties of the magnet. In particular, when the mixing ratio with magnet powder becomes low, the above-mentioned restrictions on the use of high-viscosity resin become even more severe. Here, the mixing ratio to the magnet powder has a large influence on the mechanical properties and magnetic properties of the magnet body, and also affects the molding method. Therefore, it should be varied depending on the desired characteristics. The inventor of this application is the patent application No. 48-1
In the specification of No. 33187, the effectiveness of an organic resin of 4 to 5% (weight ratio) is disclosed.

その后該発明を量産生産する中で更に実験検討を加える
ことにより磁気7特性はそれほど低下せしめないで、機
械的特性を向上し成形性を改良し、各種の成形法を可能
にする混合範囲を見いだした。即ち、磁性体粉末に対す
る有機物樹脂バインダーの量を5%を越え14%までと
することである。この範囲は、成形体磁石の磁気特性を
あまり低下せしめないで圧粉成形を容易にし、成形時に
ワレ、キズなどを生じない磁石体を圧縮成形に限らず射
出成形など広範な方法で成形することが可能となつた。
Afterwards, during mass production of the invention, further experimental studies were conducted to improve the mechanical properties and moldability without significantly degrading the magnetic properties, and to find a mixing range that would enable various molding methods. I found it. That is, the amount of the organic resin binder to the magnetic powder is more than 5% and up to 14%. This range facilitates powder compaction without significantly reducing the magnetic properties of the molded magnet, and allows molding of magnet bodies that do not cause cracks or scratches during molding using a wide range of methods, including not only compression molding but also injection molding. became possible.

例えばRCO。系化合物の結晶性を改善して大粒子径に
したり、R。CO,,系化合物においては熱処理による
粒内析出による保磁力の発現強化などRCO化合物の保
磁力機構の工夫及びFe元素の添加による飽和磁化の向
上などと相俟つて高混合比範囲を可能にしている。また
、バインダー量が多いことから混合物の流動性が向上し
磁場配向が向上する。更に成形法が非常に広範囲になり
圧縮成形に限らなくなるなどの特徴を有する。混合比は
、5%以下では充分な保磁力が得られないが、5%を越
えると保磁力向上の効果がみられる。これは、5%以下
では樹脂の充填量が充分でないため、磁石粉末粒子間の
微小な間隙(これは空孔率と呼ばれている)に存在する
空気によつて金属間化合物の粉末が酸化されやすく、そ
のために保磁力が低下するが、5%を越えると空孔率が
減少して金属間化合物の粉末が酸化しにくくなり、その
結果保磁力の低下が防止されるためであると考えられる
。また混合比が5%を越えると、;磁石粉末と樹脂の流
動性が向上し、粉末粒子の配向性が向上する。その結果
残留磁束密度が向上し、樹脂の混合比増大による著しい
低下を防止す**ることができる。また混合比が14%
を越えると非磁性体である樹脂の量が多くなり過ぎて、
磁気特性の低下が著しくなつて実用的でなくなるので、
混合比は5%を越え14%までとする。
For example, R.C.O. By improving the crystallinity of the system compound and making the particle size large, For CO,,-based compounds, a high mixing ratio range has been made possible by improving the coercive force mechanism of RCO compounds, such as strengthening the expression of coercive force through intragranular precipitation through heat treatment, and improving saturation magnetization by adding Fe elements. There is. Furthermore, since the amount of binder is large, the fluidity of the mixture is improved and the magnetic field orientation is improved. Furthermore, the molding method is very wide-ranging and is not limited to compression molding. If the mixing ratio is less than 5%, sufficient coercive force cannot be obtained, but if it exceeds 5%, the effect of improving coercive force can be seen. This is because if the resin filling amount is less than 5%, the amount of resin filling is insufficient, so the intermetallic compound powder is oxidized by the air that exists in the minute gaps between the magnet powder particles (this is called porosity). This is thought to be because when the porosity exceeds 5%, the porosity decreases, making it difficult for the intermetallic compound powder to oxidize, and as a result, a decrease in coercive force is prevented. It will be done. When the mixing ratio exceeds 5%, the fluidity of the magnet powder and resin improves, and the orientation of the powder particles improves. As a result, the residual magnetic flux density is improved, and a significant decrease due to an increase in the resin mixing ratio can be prevented. Also, the mixing ratio is 14%
If it exceeds the amount, the amount of non-magnetic resin becomes too large,
The deterioration of magnetic properties becomes so significant that it becomes impractical.
The mixing ratio should be more than 5% and up to 14%.

このように本発明は前記出願に係わる発明に比べて成形
性、磁性体の配向性をより重視した永久磁石の製造方法
に係わるものである。
As described above, the present invention relates to a method of manufacturing a permanent magnet that places greater importance on moldability and orientation of magnetic material than the invention related to the above-mentioned application.

また、比重に対する磁気性能比は配向性の向上に伴なつ
て向フ上し、コストメリットと併せて実用面の有利性が
大きい。以下、実施例によつて本発明方法を詳述する。
In addition, the magnetic performance ratio to specific gravity increases as the orientation improves, and this has great practical advantages in addition to cost benefits. Hereinafter, the method of the present invention will be explained in detail with reference to Examples.

原料のSm(純度99.9%UP)とCO(99.5%
Up)をSmCO=,(原子比1:5)になるよう秤量
(1k9)し、高周波溶解炉(Arガス中)で溶解、鋳
造した。次にトルエンを用いた湿式ボールミルで粉砕し
、粒度が主分布で5μ〜20μとした。乾燥した該粉末
に熱硬化性樹脂(具体的にはエポキシ樹脂)を加えて混
合し充分混練した。圧粉成形は磁場ブレスを用いて行な
い成形品は150℃に加熱固化した。その時の製造条件
は第1表に示す通りである。ここで磁性体粉末の粒度は
、RCO5系においてはおおむね5 〜20μが適する
が他の例、たとえばR。
Raw materials Sm (purity 99.9% UP) and CO (99.5%
Up) was weighed (1k9) so that SmCO=, (atomic ratio 1:5), and melted and cast in a high frequency melting furnace (in Ar gas). Next, it was pulverized in a wet ball mill using toluene to obtain a particle size of 5 μ to 20 μ with a main distribution. A thermosetting resin (specifically, an epoxy resin) was added to the dried powder, mixed, and sufficiently kneaded. Powder compaction was performed using a magnetic field press, and the molded product was heated and solidified at 150°C. The manufacturing conditions at that time are as shown in Table 1. Here, the particle size of the magnetic powder is suitably approximately 5 to 20μ in the RCO5 system, but in other cases, for example, R.

CO,,化合物(又はこれにFe,Cuその他を添加し
たもの)においては、磁性体の特性から更に大きく50
μ以上とすることもできる。本発明の混練法は、すでに
磁場ブレス時には有機物バインダーがRCO粉末に入つ
ているためブレス性がかなり改善されている。
In the case of CO,, compounds (or those to which Fe, Cu, etc. are added), it is even larger due to the characteristics of the magnetic material.
It can also be more than μ. In the kneading method of the present invention, since the organic binder is already included in the RCO powder during magnetic field pressing, the pressing property is considerably improved.

すなわち、圧力を上げてもほとんど割れ、キズの発生は
なかつ4’た。比較例の含浸法はブレス圧力は1.5t
/dまでで、これ以上になると、全く成形不可能であつ
た。なお試料の形状は20φ×101WrIftであつ
た。本実施例の磁場ブレスは加工方向と磁場の方向は平
行であるが、これとは別に磁場の方向を加圧方向と直角
にすることによる方法も同様の効果を奏するものである
。なお混練方法は乳鉢中で乳棒によって行なつた。その
他、機械的方法も可能である。次に、得られた試料の磁
気特性、強度等の特性をまとめた結果を第2表に示す。
That is, even when the pressure was increased, almost no cracks occurred and no scratches occurred. In the impregnation method of the comparative example, the press pressure is 1.5t.
/d, and above this, it was completely impossible to mold. The shape of the sample was 20φ×101WrIft. In the magnetic field press of this embodiment, the processing direction and the direction of the magnetic field are parallel to each other, but a method in which the direction of the magnetic field is made perpendicular to the pressing direction can also produce the same effect. The kneading method was carried out using a pestle in a mortar. Other mechanical methods are also possible. Next, Table 2 summarizes the magnetic properties, strength, and other properties of the obtained samples.

尚、本実施例はRCO系化合物中SmcO5に関して述
べているがR。
Incidentally, this example describes SmcO5 among RCO-based compounds, but R.

CO,,系などの化合物磁性粉を用いた磁石体に関して
も全く同じ効果を期待できることは説明をまたない。ま
たエポキシ樹脂以外の樹脂に関しても同様てあり液状樹
脂の粘度範囲が該当範囲に含まれれば適合できる。 *
:“ 尚、先にも述べたように磁性体粒子径及び分布と
熱硬化性バインダー混合比及び圧粉成形法との間には製
品の特性を左右する種々の条件が含まれる。
It goes without saying that exactly the same effect can be expected with magnets using compound magnetic powders such as CO, . The same applies to resins other than epoxy resins as long as the viscosity range of the liquid resin falls within the applicable range. *
:" As mentioned above, there are various conditions that affect the characteristics of the product between the magnetic particle size and distribution, the thermosetting binder mixing ratio, and the compaction method.

以上、実施例に詳述したように混練法は、RCO粉と有
機物樹脂を均一にすることができるうえ、製造性、品質
、性能、安定性等総合的に判・断して、従来法にはない
すぐれた磁石を得ることができる工業上極めて有益なも
のてある。
As described in detail in the examples above, the kneading method can make the RCO powder and organic resin uniform, and it can be compared with the conventional method based on comprehensive judgments such as manufacturability, quality, performance, and stability. It is extremely useful in industry as it allows us to obtain excellent magnets.

Claims (1)

【特許請求の範囲】[Claims] 1 基本組成が希土類金属とコバルトからなる金属間化
合物磁石粉末に粘度が500〜20,000CP(セン
チポイズ)の有機物樹脂を重量比で5%を越え14%ま
で加えて混合し混練せしめた後成形することを特徴とす
る金属間化合物磁石の製造方法。
1 Organic resin with a viscosity of 500 to 20,000 CP (centipoise) is added to intermetallic compound magnet powder whose basic composition is rare earth metal and cobalt to more than 5% and up to 14% by weight, mixed, kneaded, and then molded. A method for manufacturing an intermetallic compound magnet, characterized by:
JP59090651A 1984-05-07 1984-05-07 Manufacturing method of intermetallic compound magnet Expired JPS6048884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59090651A JPS6048884B2 (en) 1984-05-07 1984-05-07 Manufacturing method of intermetallic compound magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59090651A JPS6048884B2 (en) 1984-05-07 1984-05-07 Manufacturing method of intermetallic compound magnet

Publications (2)

Publication Number Publication Date
JPS6063905A JPS6063905A (en) 1985-04-12
JPS6048884B2 true JPS6048884B2 (en) 1985-10-30

Family

ID=14004416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59090651A Expired JPS6048884B2 (en) 1984-05-07 1984-05-07 Manufacturing method of intermetallic compound magnet

Country Status (1)

Country Link
JP (1) JPS6048884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223961U (en) * 1985-07-26 1987-02-13

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860296A (en) * 1971-12-03 1973-08-23
JPS493196A (en) * 1972-04-26 1974-01-11
JPS5334640A (en) * 1976-09-02 1978-03-31 Ibm Wet treating device
JPS5561003A (en) * 1978-10-31 1980-05-08 Seiko Epson Corp Manufacture of intermetallic compound magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860296A (en) * 1971-12-03 1973-08-23
JPS493196A (en) * 1972-04-26 1974-01-11
JPS5334640A (en) * 1976-09-02 1978-03-31 Ibm Wet treating device
JPS5561003A (en) * 1978-10-31 1980-05-08 Seiko Epson Corp Manufacture of intermetallic compound magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223961U (en) * 1985-07-26 1987-02-13

Also Published As

Publication number Publication date
JPS6063905A (en) 1985-04-12

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
JPS6043900B2 (en) permanent magnet material
WO2014112406A1 (en) Magnetic material and method for producing magnetic material
JPH0551656B2 (en)
JP3222482B2 (en) Manufacturing method of permanent magnet
EP0573224B1 (en) Method of producing a solid resin-coated magnet powder for producing anisotropic bonded magnet
US4721538A (en) Permanent magnet alloy
JPS6048884B2 (en) Manufacturing method of intermetallic compound magnet
JPS5945745B2 (en) Permanent magnet material and its manufacturing method
JPS61179801A (en) Alloy powder for bond magnet and its production
JPH0152469B2 (en)
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JPH0620818A (en) Rare earth cobalt magnet
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JPH10135020A (en) Radial anisotropic bond magnet
US4789521A (en) Permanent magnet alloy
JPS6271201A (en) Bond magnet
JPH04240703A (en) Manufacture of permanent magnet
JPH01181502A (en) Manufacture of rare earth permanent magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH04144206A (en) Rare earth bonded magnet
JP2005290398A (en) Rare-earth magnet powder, compound using it, and bond magnet using it
JPH0696919A (en) Material for permanent magnet and permanent magnet
JPS58180005A (en) Manufacture of rare-earth intermetallic compound magnet
JPS6245684B2 (en)