JPS6271201A - Bond magnet - Google Patents

Bond magnet

Info

Publication number
JPS6271201A
JPS6271201A JP60211546A JP21154685A JPS6271201A JP S6271201 A JPS6271201 A JP S6271201A JP 60211546 A JP60211546 A JP 60211546A JP 21154685 A JP21154685 A JP 21154685A JP S6271201 A JPS6271201 A JP S6271201A
Authority
JP
Japan
Prior art keywords
alloy
magnetic flux
flux density
thermal stability
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60211546A
Other languages
Japanese (ja)
Inventor
Yasuto Nozawa
野沢 康人
Shigeo Tanigawa
茂穂 谷川
Masaaki Tokunaga
徳永 雅亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60211546A priority Critical patent/JPS6271201A/en
Publication of JPS6271201A publication Critical patent/JPS6271201A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Abstract

PURPOSE:To improve the thermal stability of a bond magnet by preparing a composition of R-Fe-B alloy which contains by atomic percentage 11-18% of R, 4-11% of B, 30% or lower of Co, the residue of Fe and unavoidable impurities. CONSTITUTION:An R-Re-B alloy (where R is one or more types of rare earth elements including Y and contains R-Fe-Co-B alloy in which part of Fe is substituted for Co) controlled for 0.01-0.5mum of mean particle diameter, and 15-40% of binder in a volumetric ratio are provided. For instance, a permanent magnet for a rotary machine requires at least 6kG or higher of residual magnetic flux density and 10 kOe or more of coercive force iHc. Accordingly, the content ranges of Nd and B are obtained, and 11-18% of R and 4-11% of B are determined. R desirably contains mainly Nd and/or Pr from the view point of saturable magnetic flux density. Thus, thermal stability can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、R−Fe−B系合金(RはYを含む1種また
は2種以上の希土類元素並びにFeの一部をCoで置換
したR−Fe−Co−B系合金を含む)のボンド磁石に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an R-Fe-B alloy (R is one or more rare earth elements including Y and a portion of Fe is replaced with Co). The present invention relates to bonded magnets (including R-Fe-Co-B alloys).

〔従来の技術〕[Conventional technology]

近年、高エネルギー積を有するR−Fe−B系合金また
はFeの一部をCoで置換したR−Fe−Co−B系合
金による永久磁石、特にNdFe−B系永久磁石の研究
が盛んである。これらの永久磁石は、Sm−Co磁石と
略同程度の保磁力とエネルギー積を有するが、Sm−C
o磁石より経済的であるため最近注目されている永久磁
石である。而してNd−Fe−B系永久磁石の製造プロ
セスは、大別して下記の2種類がある。
In recent years, there has been active research into permanent magnets made of R-Fe-B alloys with high energy products or R-Fe-Co-B alloys in which a portion of Fe is replaced with Co, especially NdFe-B permanent magnets. . These permanent magnets have approximately the same coercive force and energy product as Sm-Co magnets, but Sm-C
It is a permanent magnet that has recently attracted attention because it is more economical than o-magnets. The manufacturing process for Nd-Fe-B permanent magnets can be broadly classified into the following two types.

まず第1の製造プロセスは、特開昭59−46008号
公報および同59−64733号公報に記載されている
ように、Nd−Fe−B系合金を粉砕した後、粉末冶金
プロセスにより成形し、焼結処理を経て焼結磁石とする
方法である。
First, the first manufacturing process is as described in Japanese Unexamined Patent Publication Nos. 59-46008 and 59-64733, after crushing the Nd-Fe-B alloy, it is molded by a powder metallurgy process. This is a method of making a sintered magnet through a sintering process.

他の製造プロセスは1例えば特開昭59−64739号
公報に記載されているように、超急冷法により合金をそ
のまま、あるいは熱処理をすることにより、フレーク状
の永久磁石を作成し、その後特開昭59−211549
号公報に記載されるように5樹脂と共に固化成形して等
方性ボンド磁石とするものである。
Another manufacturing process is 1, for example, as described in JP-A No. 59-64739, flake-shaped permanent magnets are created by ultra-quenching the alloy as it is or by heat treatment, and then Showa 59-211549
As described in the above publication, it is solidified and molded together with 5 resin to form an isotropic bonded magnet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前者の方法によれば、磁気異方性化が可能であり、得ら
れる磁気特性は35〜45MGOeにも到達するのであ
るが、木質的にキューリ一点が低く、熱安定性が悪い。
According to the former method, it is possible to create magnetic anisotropy, and the obtained magnetic properties reach 35 to 45 MGOe, but the curie point is low in wood quality and the thermal stability is poor.

従ってモーター用等、高温の環境下で使用されるものに
は適用できない欠点がある。また比較的複雑な形状のも
のまたは薄型の製品を高能率かつ経済的に製造すること
が困難である。また後者の方法によれば、比較的成形が
容易である。しかし単にインゴットを粉砕したのみの粉
末原料を使用するときには、保磁力が低いため、実用に
供し難いという欠点がある。
Therefore, it has the disadvantage that it cannot be applied to products used in high-temperature environments such as motors. Furthermore, it is difficult to efficiently and economically manufacture products with relatively complex shapes or thin shapes. Moreover, according to the latter method, molding is relatively easy. However, when a powder raw material obtained by simply pulverizing an ingot is used, the coercive force is low, making it difficult to put it to practical use.

本発明は上記のような従来技術に存する欠点を解消し、
熱安定性良好であり、すなわち不可逆減磁率が小さく、
比較的高温の環境下に適用可能なR−Fe−B系合金の
ボンド磁石を提供することを目的とするものである。
The present invention eliminates the drawbacks existing in the prior art as described above,
Good thermal stability, i.e. low irreversible demagnetization rate,
The object of the present invention is to provide a bonded magnet made of an R-Fe-B alloy that can be used in a relatively high-temperature environment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的達成のために、下記のような技術的手
段を採用したのである。
In order to achieve the above object, the present invention employs the following technical means.

すなわち、平均粒径を0.01〜0.5μmに制御した
R−Fe−B系合金(RはYを含む1種または2種以上
の希土類元素並びにFeの一部をC。
That is, an R-Fe-B alloy with an average grain size controlled to 0.01 to 0.5 μm (R is one or more rare earth elements including Y and a portion of Fe is C).

で置換したR−Fe−Co−B系合金を含む)と。(including R-Fe-Co-B alloys substituted with).

体積構成比で15〜40%のバインダーからなるもので
ある。
It consists of a binder with a volume composition ratio of 15 to 40%.

而して好ましくは、上raR−Fe−B系合金が。Preferably, the above raR-Fe-B alloy is used.

原子百分率において、R:11〜18%、B:4〜11
%、Co:30%以下、残部Feおよび不可避不純物か
らなる組成としたものである。
In atomic percentage, R: 11-18%, B: 4-11
%, Co: 30% or less, the balance consisting of Fe and unavoidable impurities.

本発明においてR−Fe−B系合金の平均粒径が0.5
μmを超えると、160℃における不可逆減磁率が10
%以上となって、著るしく熱安定性を低下させるので不
都合である。また平均粒径が0.011!m未満である
と、成形後のボンド磁石の保磁力が低く、所定の永久磁
石特性を得ることができない。従って平均粒径を0.0
1〜0.5μmと限定した。
In the present invention, the average grain size of the R-Fe-B alloy is 0.5
If it exceeds μm, the irreversible demagnetization rate at 160°C is 10
% or more, this is disadvantageous because it significantly reduces thermal stability. Also, the average particle size is 0.011! If it is less than m, the coercive force of the bonded magnet after molding will be low and predetermined permanent magnet characteristics cannot be obtained. Therefore, the average particle size is 0.0
It was limited to 1 to 0.5 μm.

またバインダーは9体積構成比で40%を超えると、成
形後の永久磁石体が所定の磁気特性を発揮することがで
きず、また15%未満では、成形体の機械的性質が充分
でなく1割れ、破損等の欠陥を生じ易いため、15〜4
0%と限定した。
In addition, if the binder exceeds 40% in terms of volumetric ratio, the molded permanent magnet will not be able to exhibit the desired magnetic properties, and if it is less than 15%, the mechanical properties of the molded product will be insufficient. 15 to 4 because defects such as cracks and breakage are likely to occur.
It was limited to 0%.

次にR−Fe−B系合金の好ましい成分範囲について記
述する。第1図および第2図は各々Nd−Fe−B系急
冷薄片磁石の残留磁束密度および保磁力の組成依存性を
示す図である。例えば回転機用永久磁石としては、少な
くとも残留磁束密度Brは6kG以上、保磁力iHcは
10kOe以上が必要である。従って第1図および第2
図からNdおよびBの成分範囲を求め、R:11〜18
%、B:4〜11%と定めた。Rとしては、飽和磁束密
度の観点から、Ndおよび/またはPrを主成分とする
ことが望ましい。また保磁力向上のため、Tb、  D
y等の元素を添加したり、資源の有効利用のためCeジ
ジム等の原料を使用することも可能である。第3図はN
d−Fe−B系合金において、Feの一部をCoで置換
した場合(Fe7&−xcOx Ndt&Bg)(D急
冷薄片磁石)残留磁束密度および保磁力のCo置換量依
存性を示す図である。Coはキューリ一点を上昇させる
作用があるため置換元素として好ましいが、第3図から
明らかなように、残留磁束密度Brを6kG以上確保す
るため、限界置換量を30at%と定めた。
Next, a preferred range of ingredients for the R-Fe-B alloy will be described. FIG. 1 and FIG. 2 are diagrams showing the composition dependence of the residual magnetic flux density and coercive force of a Nd-Fe-B based rapidly solidified thin piece magnet, respectively. For example, a permanent magnet for a rotating machine must have at least a residual magnetic flux density Br of 6 kG or more and a coercive force iHc of 10 kOe or more. Therefore, Figures 1 and 2
Determine the component range of Nd and B from the diagram, R: 11 to 18
%, B: 4 to 11%. From the viewpoint of saturation magnetic flux density, R preferably contains Nd and/or Pr as a main component. In addition, to improve coercive force, Tb, D
It is also possible to add elements such as y or to use raw materials such as Ce didymium for effective use of resources. Figure 3 is N
FIG. 7 is a diagram showing the dependence of residual magnetic flux density and coercive force on the amount of Co substitution when a part of Fe is replaced with Co (Fe7&-xcOx Ndt&Bg) (D quenched flake magnet) in a d-Fe-B alloy. Co is preferable as a substitution element because it has the effect of raising the Curie point, but as is clear from FIG. 3, in order to ensure a residual magnetic flux density Br of 6 kG or more, the limit substitution amount was set at 30 at%.

なお本発明の合金中には、上記元素の他に、不可避不純
物として、フェロボロン中に含まれるAQ。
In addition to the above-mentioned elements, the alloy of the present invention contains AQ, which is contained in ferroboron, as an unavoidable impurity.

Si、P、Cの他、Ndを還元する際に混入する還元剤
若しくはその酸化物等がある。
In addition to Si, P, and C, there are reducing agents or their oxides that are mixed in when reducing Nd.

また前記バインダーとして使用し得る材料として、まず
樹脂では、熱硬化性樹脂および熱可塑性樹脂の何れも適
用できるが、熱的に安定な樹脂が望ましい。例えば、ポ
リアミド、ポリイミド、ポリエステル、フェノール、フ
ッ素、ゲイ素、およびエポキシ等の樹脂を使用できる。
As for the material that can be used as the binder, both thermosetting resins and thermoplastic resins can be used, but thermally stable resins are preferable. For example, resins such as polyamide, polyimide, polyester, phenol, fluorine, silicone, and epoxy can be used.

また上記合成樹脂の他に、AQ、Sn、Pbおよびハン
ダその他の低融点金属または合金を使用することができ
〔実施例 1〕 F e 6oN d +aBb合金100gをAr雰囲
気中で単ロール法により薄片化した。薄片は厚さ約3Q
 メt mの不定形であり、X線回折の結果、薄片は非
結晶質体と結晶質体の混合体であることを確認した。
In addition to the above synthetic resins, low melting point metals or alloys such as AQ, Sn, Pb, and solder can be used. [Example 1] 100 g of F e 6oN d +aBb alloy is made into thin pieces by a single roll method in an Ar atmosphere. It became. Thickness of flakes is about 3Q
Met m was amorphous, and X-ray diffraction confirmed that the flakes were a mixture of amorphous and crystalline materials.

この薄片を真空中で600℃×1時間の熱処理を施した
7&Ar急冷し、その後32メツシユ以下に粉砕した。
This flake was heat treated in vacuum at 600° C. for 1 hour, rapidly cooled with 7&Ar, and then ground to 32 meshes or less.

この粉末に体積比で20%のエポキシ樹脂を加えた後に
、多量のアセトンを加えてエポキシ樹脂を溶解し、その
後に真空吸引することにより、前記アセトンを除去し、
粉末表面にエポキシ樹脂のコーティングを行なった。次
にこの粉末を8t / ctAの圧力で成形し、120
℃×2時間の硬化処理を施してボンド磁石とした。この
ボンド磁石は、平均結晶粒径0.06μmの組織を有し
ており、70kOeでパルス着磁することにより。
After adding 20% by volume of epoxy resin to this powder, a large amount of acetone is added to dissolve the epoxy resin, and then the acetone is removed by vacuum suction,
The powder surface was coated with epoxy resin. Next, this powder was compacted at a pressure of 8t/ctA, and 120
A bonded magnet was obtained by performing a curing treatment for 2 hours at ℃. This bonded magnet has a structure with an average crystal grain size of 0.06 μm, and is produced by pulse magnetization at 70 kOe.

Br=6.9kG、1Hc=11.8kOe、  (B
H)ma x=10.3MGOeなる磁気特性を示した
Br=6.9kG, 1Hc=11.8kOe, (B
H) max=10.3MGOe.

不可逆減磁率は、100℃、130℃、160℃でそれ
ぞれ、1.4%、2.2%、4.1%であった。
The irreversible demagnetization rates were 1.4%, 2.2%, and 4.1% at 100°C, 130°C, and 160°C, respectively.

他の組成のものについても同様の処理を行ない。Similar treatment was performed for other compositions as well.

それらの結果を第1表および第4図に示す。表および図
中における符号A−DおよびE−Gは各々本発明の実施
例における試料および比較例における試料を示す。而し
て符号A−Eがボンド磁石。
The results are shown in Table 1 and Figure 4. Symbols A-D and E-G in the tables and figures indicate samples in Examples of the present invention and samples in Comparative Examples, respectively. The symbols A-E are bonded magnets.

FおよびGは磁気異方性焼結磁石である。F and G are magnetically anisotropic sintered magnets.

第  1  表 第1表から明らかなように、試料A−Gは何れも保磁力
が1Okoeを超えており、磁気特性は略満足すべき値
を示しているが、第4図に示すように、各温度に対応す
る不可逆減磁率の値には大きな差がある。すなわち本発
明の実施例における試料A−Dにおいては、温度160
℃においても不可逆減磁率は10%以下であるのに対し
、比較例のE−Gは何れも100〜130℃で不可逆減
磁率はすでに10%を越えている。
Table 1 As is clear from Table 1, samples A to G all have coercive forces exceeding 1 Okoe, and their magnetic properties show approximately satisfactory values; however, as shown in Figure 4, There is a large difference in the value of irreversible demagnetization rate corresponding to each temperature. That is, in samples A-D in the examples of the present invention, the temperature was 160
The irreversible demagnetization rate is 10% or less even at 100 DEG C., whereas the irreversible demagnetization rate is already over 10% at 100 to 130 DEG C. in all of the comparative examples E-G.

〔実施例 2〕 次に薄片の熱処理温度を変えることにより、平均結晶粒
径を制御した結果、不可逆減磁率に及ぼす影響を第2表
に示す。他の条件は何れも実施例1と同様である。
[Example 2] Next, the average grain size was controlled by changing the heat treatment temperature of the flakes, and the effects on the irreversible demagnetization rate are shown in Table 2. All other conditions are the same as in Example 1.

第2表 第2表における符号H−には本発明の実施例であり、符
号りおよびMは比較例である。第2表から明らかなよう
に、平均結晶粒径の大なるしおよびMにおいては、不可
逆減磁率は160℃において何れも10%を越えている
のに対し1本発明の実施例を示す符号H−には、何れも
10%以下の値を示している。
Table 2 In Table 2, the symbol H- indicates an example of the present invention, and the symbol and M indicate a comparative example. As is clear from Table 2, the irreversible demagnetization rate exceeds 10% at 160°C for both large and M grains with large average grain sizes, whereas the symbol H indicating the embodiment of the present invention - indicates a value of 10% or less.

〔実施例 3〕 本実施例においては2希土類元素の一部を変化させたも
の、およびFeの一部をCoで置換したものについて、
前記実施例1と同様の条件でボンド磁石を成形したもの
である。
[Example 3] In this example, two rare earth elements were partially changed and Fe was partially replaced with Co.
A bonded magnet was molded under the same conditions as in Example 1.

第3表 第3表から明らかなように、何れの組成のものも不可逆
tJJi磁率は極めて低い値を示し、熱安定性が良好で
あることを表わしている。
As is clear from Table 3, irreversible tJJi magnetic coefficients of all compositions showed extremely low values, indicating good thermal stability.

〔発明の効果〕〔Effect of the invention〕

以上記述のように1本発明のボンド磁石は比較的高温環
境下においても不可逆減磁率が小さく。
As described above, the bonded magnet of the present invention has a small irreversible demagnetization rate even in a relatively high temperature environment.

熱安定性が極めて良好である。また成形性も良好である
ため、比較的複雑な形状のものでも高能率で成形するこ
とができる。従ってモーター等の回転機の構成要素とし
て広く適用できる効果がある。
Extremely good thermal stability. Furthermore, since the moldability is good, even relatively complicated shapes can be molded with high efficiency. Therefore, it has the effect of being widely applicable as a component of rotating machines such as motors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は各々Nd−Fe−B系急冷薄片磁
石の残留磁束密度および保磁力の組成依存性を示す図、
第3図は残留磁束密度および保磁力のCo置換量依存性
を示す図、第4図は温度と不可逆減磁率との関係を示す
図である。
Figures 1 and 2 are diagrams showing the composition dependence of the residual magnetic flux density and coercive force of Nd-Fe-B based rapidly solidified flake magnets, respectively;
FIG. 3 is a diagram showing the dependence of residual magnetic flux density and coercive force on the amount of Co substitution, and FIG. 4 is a diagram showing the relationship between temperature and irreversible demagnetization rate.

Claims (2)

【特許請求の範囲】[Claims] (1)平均結晶粒径が0.01〜0.5μmであるR−
Fe−B系合金(RはYを含む1種または2種以上の希
土類元素並びにFeの一部をCoで置換したR−Fe−
Co−B系合金を含む)と、体積構成比で15〜40%
のバインダーからなることを特徴とするボンド磁石。
(1) R- with an average crystal grain size of 0.01 to 0.5 μm
Fe-B alloy (R is one or more rare earth elements including Y and R-Fe- in which a part of Fe is replaced with Co)
(including Co-B alloy) and 15 to 40% volume composition ratio
A bonded magnet characterized by comprising a binder.
(2)R−Fe−B系合金が、原子百分率において、R
:11〜18%、B:4〜11%、Co:30%以下、
残部Feおよび不可避不純物からなる特許請求の範囲第
1項記載のボンド磁石。
(2) The R-Fe-B alloy has an atomic percentage of R
: 11 to 18%, B: 4 to 11%, Co: 30% or less,
The bonded magnet according to claim 1, wherein the balance is Fe and unavoidable impurities.
JP60211546A 1985-09-25 1985-09-25 Bond magnet Pending JPS6271201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60211546A JPS6271201A (en) 1985-09-25 1985-09-25 Bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211546A JPS6271201A (en) 1985-09-25 1985-09-25 Bond magnet

Publications (1)

Publication Number Publication Date
JPS6271201A true JPS6271201A (en) 1987-04-01

Family

ID=16607613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211546A Pending JPS6271201A (en) 1985-09-25 1985-09-25 Bond magnet

Country Status (1)

Country Link
JP (1) JPS6271201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251702A (en) * 1988-03-31 1989-10-06 Tokin Corp Plastic magnet and manufacture thereof
JPH0246704A (en) * 1988-08-09 1990-02-16 Tokin Corp Manufacture of compound magnet
WO2003017293A1 (en) * 2001-08-14 2003-02-27 General Electric Company Permanent magnet for electromagnetic device and method of making

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251702A (en) * 1988-03-31 1989-10-06 Tokin Corp Plastic magnet and manufacture thereof
JPH0246704A (en) * 1988-08-09 1990-02-16 Tokin Corp Manufacture of compound magnet
WO2003017293A1 (en) * 2001-08-14 2003-02-27 General Electric Company Permanent magnet for electromagnetic device and method of making

Similar Documents

Publication Publication Date Title
JPH0510806B2 (en)
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPH0316761B2 (en)
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPH0353505A (en) Bonded magnet and magnetization thereof
JPS6271201A (en) Bond magnet
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPH066775B2 (en) Rare earth permanent magnet
JPH06338407A (en) Raw material of rare-earth permanent magnet
JPH068488B2 (en) Permanent magnet alloy
JPH0536495B2 (en)
JPH0152469B2 (en)
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPS6365742B2 (en)
JPH10135020A (en) Radial anisotropic bond magnet
JPH0536494B2 (en)
JP2868963B2 (en) Permanent magnet material, bonded magnet raw material, bonded magnet raw material powder, and method for producing bonded magnet
JPS62291903A (en) Permanent magnet and manufacture of the same
JPH0513207A (en) Manufacture of r-t-b-based permanent magnet
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JP2746111B2 (en) Alloy for permanent magnet
KR930011237B1 (en) Re-magnetic materials
JP2975333B2 (en) Raw material for sintered permanent magnet, raw material powder for sintered permanent magnet, and method for producing sintered permanent magnet
JP6278192B2 (en) Magnet powder, bonded magnet and motor