JPH0620818A - Rare earth cobalt magnet - Google Patents

Rare earth cobalt magnet

Info

Publication number
JPH0620818A
JPH0620818A JP4177153A JP17715392A JPH0620818A JP H0620818 A JPH0620818 A JP H0620818A JP 4177153 A JP4177153 A JP 4177153A JP 17715392 A JP17715392 A JP 17715392A JP H0620818 A JPH0620818 A JP H0620818A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
earth cobalt
cobalt magnet
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4177153A
Other languages
Japanese (ja)
Inventor
Masanori Akagi
正宣 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4177153A priority Critical patent/JPH0620818A/en
Publication of JPH0620818A publication Critical patent/JPH0620818A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Abstract

PURPOSE:To obtain a rare earth cobalt (R2Co17) type magnet, having excellent magnetic characteristics, with which manufacturing cost can be cut down sharply without substantially impairing temperature characteristics. CONSTITUTION:In an R2Co17 rare earth cobalt magnet containing Sm, Pr and Ce as rare earth element R and Co as transition metal element, the mixing ratio of Sm, Pr and Ce, which constitute rare earth element R, is set in such a manner that Sm becomes 30wt.% or more, Pr becomes 10 to 40wt.% and Ce becomes 5 to 40wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類コバルト磁石に係
り、特に、磁気特性および温度特性を改善し、かつ製造
コストを低減し得る希土類コバルト磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth cobalt magnet, and more particularly to a rare earth cobalt magnet capable of improving magnetic characteristics and temperature characteristics and reducing manufacturing costs.

【0002】[0002]

【従来の技術】従来から高性能磁石としてサマリウム
(Sm)、セリウム(Ce)などの希土類系元素Rとコ
バルト(Co)とを化合せしめて形成した希土類コバル
ト磁石が精密小型モータやヘッドホンなどの家電機器等
に広く使用されている。例えば量産化されている希土類
コバルト磁石としてSm−Co系磁石があり、この磁石
にはCuを含まないR1 Co5 磁石とCuを含む2相分
離型R2 Co17磁石とがある。
2. Description of the Related Art Rare earth cobalt magnets formed by combining rare earth elements R such as samarium (Sm) and cerium (Ce) and cobalt (Co) have been used as high performance magnets for household appliances such as precision small motors and headphones. Widely used in equipment. For example, there are Sm—Co magnets as mass-produced rare earth cobalt magnets, and there are R 1 Co 5 magnets containing no Cu and two-phase separation type R 2 Co 17 magnets containing Cu.

【0003】特に後者のR2 Co17磁石は、磁石特性の
指標である最大磁気エネルギ積(BH)max が200〜
250KJ/m3 と極めて高く、各種小型回転機を始
め、アクチュエータ、スピーカ、計測器等に幅広く使用
されている。
In particular, the latter R 2 Co 17 magnet has a maximum magnetic energy product (BH) max of 200 to 200, which is an index of magnet characteristics.
It is extremely high at 250 KJ / m 3 and is widely used in various small rotating machines, actuators, speakers, measuring instruments, etc.

【0004】しかしながら、希土類磁石は構成原料とな
る希土類元素およびCo金属が非常に高価であるため、
より製造原価を低減する試みがなされている。すなわち
Sm−Co系磁石においてはSmを、より安価なCeや
Ndなどの他の軽希土類元素と置換することにより磁気
特性の改善および製造原価の低減を図っている。特に安
価なCe置換については、磁気特性は低下するものの原
価低減効果が著しいため、広く実施されている。
However, the rare earth element and Co metal, which are the constituent raw materials of the rare earth magnet, are very expensive.
Attempts have been made to further reduce manufacturing costs. That is, in the Sm-Co magnet, Sm is replaced with another light rare earth element such as Ce or Nd, which is cheaper, to improve the magnetic characteristics and reduce the manufacturing cost. In particular, inexpensive Ce replacement is widely used because the magnetic properties are deteriorated but the cost reduction effect is remarkable.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記S
m−Co系磁石において、CeのみでSmを置換した場
合には、製造原価の低減効果は大きいが、磁気特性およ
び温度特性の低下が顕著になる問題点がある。すなわ
ち、Ce置換は残留磁束密度Brおよび保持力Hcを共
に低下せしめ、永久磁石の基本特性となる最大エネルギ
積(BH)max を低下させるとともに、キュリー温度T
cを降下させるため、温度特性も劣化させてしまう。
However, the above S
In the m-Co based magnet, when Sm is replaced by only Ce, the effect of reducing the manufacturing cost is great, but there is a problem that the magnetic characteristics and the temperature characteristics are significantly deteriorated. That is, the Ce substitution lowers both the residual magnetic flux density Br and the coercive force Hc, lowers the maximum energy product (BH) max that is a basic characteristic of the permanent magnet, and reduces the Curie temperature T.
Since c is lowered, the temperature characteristic is also deteriorated.

【0006】一方、Nd置換は、残留磁束密度Brの増
大効果が大きいが、減磁曲線の角形性を阻害し易いた
め、最大エネルギ積(BH)max の上昇分は小さくな
る。またNd置換はCe置換と同様に磁石の温度特性を
大きく阻害するため、プリンタヘッドやACサーボモー
タ、自動車のエンジンルーム内で使用する各種センサ用
磁石や磁気カップリングなど、特に高温度環境で使用す
る磁石部品としては、充分に機能を発揮することが困難
になる場合もあった。
On the other hand, Nd substitution has a large effect of increasing the residual magnetic flux density Br, but since it is easy to obstruct the squareness of the demagnetization curve, the increase in the maximum energy product (BH) max becomes small. In addition, Nd substitution greatly hinders the temperature characteristics of magnets like Ce substitution, so it is used especially in high temperature environments such as printer heads, AC servo motors, magnets for various sensors used in automobile engine rooms, and magnetic couplings. In some cases, it is difficult for the magnet component to fully function.

【0007】本発明は上記の問題点を解決するためにな
されたものであり、温度特性を大きく阻害することな
く、磁気特性に優れ、製造コストを大幅に低減し得る希
土類コバルト(R2 Co17)型磁石を提供することを目
的とする。
The present invention has been made in order to solve the above-mentioned problems, and is a rare earth cobalt (R 2 Co 17) which is excellent in magnetic characteristics without greatly impairing temperature characteristics and can significantly reduce the manufacturing cost. ) A type magnet is provided.

【0008】[0008]

【課題を解決するための手段】本願発明者らは、Smの
置換元素として従来のCe以外に種々の希土類元素を使
用して各種組成を有するR2 Co17型希土類コバルト磁
石を調製し、その磁気特性および温度特性等について比
較評価した。その結果、Smの置換元素としてCeの他
にPrを複合的に所定量配合することにより、温度特性
を大きく阻害することなく磁気特性に優れ、かつ安価な
2 Co17型希土類コバルト磁石が得られるという知見
を得て本願発明を完成させた。
The present inventors prepared R 2 Co 17 type rare earth cobalt magnets having various compositions by using various rare earth elements other than conventional Ce as a substitution element of Sm, and The magnetic characteristics and temperature characteristics were compared and evaluated. As a result, by compounding a predetermined amount of Pr in addition to Ce as a substitution element of Sm, an inexpensive R 2 Co 17 type rare earth cobalt magnet having excellent magnetic characteristics without greatly impairing temperature characteristics and being inexpensive is obtained. The invention of the present application was completed based on the finding that it can be obtained.

【0009】すなわち本発明に係る希土類コバルト磁石
は、希土類元素RとしてのSm,Pr,Ceと、遷移金
属元素としてのCoとを含むR2 Co17系希土類コバル
ト磁石において、上記希土類元素Rを構成するSm,P
rおよびCeの混合比を、重量百分率でSmが30%以
上、Prが10〜40%、Ceが5〜40%となるよう
に設定したことを特徴とする。
That is, the rare earth cobalt magnet according to the present invention is an R 2 Co 17 series rare earth cobalt magnet containing Sm, Pr, and Ce as the rare earth element R and Co as the transition metal element, and the rare earth element R is formed. Sm, P
The mixing ratio of r and Ce is set such that Sm is 30% or more, Pr is 10 to 40%, and Ce is 5 to 40% in weight percentage.

【0010】ここでSmは前記の通り高価な希土類元素
であるため、可及的に他の安価な元素と置換される方が
好ましいが、磁石の保磁力(Hc)を高めるために希土
類元素(R)全体の30重量%以上、好ましくは40重
量%以上配合するとよい。配合比が30%未満の場合に
は保磁力が充分に出ないため、磁石としての特性が低下
してしまう。
Since Sm is an expensive rare earth element as described above, it is preferable to replace it with another inexpensive element as much as possible. However, in order to enhance the coercive force (Hc) of the magnet, rare earth element ( It is advisable to add 30% by weight or more, preferably 40% by weight or more of R) as a whole. If the compounding ratio is less than 30%, the coercive force will not be sufficient and the properties as a magnet will deteriorate.

【0011】またPrは角形性を阻害せずに残留磁束密
度(Br)を改善する効果があり、希土類元素(R)全
体に対して10〜40%の配合比で添加される。配合比
が10%未満の場合は、残留磁束密度(Br)の改善効
果が少ない一方、配合比が40%を超える場合には、保
磁力(Hc)が低下してしまうため、配合比は上記範囲
に設定されるが、より好ましい配合比は20〜30%の
範囲である。
Further, Pr has the effect of improving the residual magnetic flux density (Br) without impairing the squareness, and is added in a compounding ratio of 10 to 40% with respect to the entire rare earth element (R). When the compounding ratio is less than 10%, the effect of improving the residual magnetic flux density (Br) is small, while when the compounding ratio exceeds 40%, the coercive force (Hc) decreases, so the compounding ratio is above. Although it is set in the range, a more preferable compounding ratio is in the range of 20 to 30%.

【0012】SmをPrで置換した場合、磁気特性は向
上する一方、温度特性は僅かに低下する欠点があるが、
その低下割合は後述するCe置換ほどに顕著ではない。
したがって、Ce配合量を抑制する一方、Pr添加量を
相対的に増加せしめることにより、Ceの単独置換の場
合と比較して磁気特性および温度特性の低下を効果的に
防止できる。そのため、プリンタヘッド、ACサーボモ
ータ用磁石、自動車エンジンルーム内センサ用磁石、磁
気カップリングなど使用温度が高い機器の磁石材料とし
て極めて有用である。
When Sm is replaced by Pr, the magnetic characteristics are improved, but the temperature characteristics are slightly deteriorated.
The rate of decrease is not so remarkable as the Ce substitution described later.
Therefore, by suppressing the Ce compounding amount and relatively increasing the Pr adding amount, it is possible to effectively prevent the deterioration of the magnetic characteristics and the temperature characteristics as compared with the case of the single substitution of Ce. Therefore, it is extremely useful as a magnet material for equipment such as printer heads, magnets for AC servomotors, magnets for sensors in automobile engine rooms, and magnetic couplings that have high operating temperatures.

【0013】さらにCeはSm,Prと比較して安価な
希土類元素であり、磁石コストの低減効果を発揮すると
ともに、磁石製造時における熱処理条件を緩和する効果
があり、製造工程を簡素化し、熱処理時間を短縮するた
めに、希土類元素(R)全体に対して5〜40%の割合
で配合される。配合量が5%未満の場合には、原料コス
ト低減効果が少ない一方、配合量が40%を超える場合
には、残留磁束密度(Br)および保磁力(Hc)が共
に低下し、磁気特性が低下するとともに温度特性の低下
も顕著になる。磁気特性を大きく損うことなく原料コス
トを低減するためには、Ceの配合比を10〜30%に
設定することが、より望ましい。
Furthermore, Ce is a rare earth element that is cheaper than Sm and Pr, and has the effect of reducing the magnet cost and the effect of relaxing the heat treatment conditions at the time of magnet production, which simplifies the manufacturing process and improves the heat treatment. In order to shorten the time, it is mixed in a ratio of 5 to 40% with respect to the entire rare earth element (R). When the blending amount is less than 5%, the raw material cost reduction effect is small, while when the blending amount exceeds 40%, both the residual magnetic flux density (Br) and the coercive force (Hc) decrease, and the magnetic properties are As the temperature decreases, the temperature characteristics also decrease significantly. In order to reduce the raw material cost without significantly impairing the magnetic properties, it is more desirable to set the Ce compounding ratio to 10 to 30%.

【0014】本発明に係る希土類コバルト磁石は、前記
の元素から成る組成物を粉末冶金法により溶解、鋳造、
粉砕、磁場中成形、焼結熱処理することにより製造する
ことができる。
The rare-earth cobalt magnet according to the present invention is obtained by melting, casting, and casting a composition containing the above-mentioned elements by powder metallurgy.
It can be manufactured by crushing, molding in a magnetic field, and sintering heat treatment.

【0015】[0015]

【作用】本発明に係る希土類コバルト磁石によれば、角
形性および温度特性を大きく阻害せずに磁気特性を高め
るPrを安価なCeとともに配合しているため、温度特
性を大きく阻害することなく磁気特性が優れ、かつ製造
コストが安価な希土類コバルト磁石を提供することがで
きる。
In the rare earth cobalt magnet according to the present invention, Pr which enhances the magnetic properties without significantly impairing the squareness and temperature characteristics is compounded with inexpensive Ce, so that the magnetic properties are not significantly impaired. It is possible to provide a rare earth cobalt magnet having excellent characteristics and low manufacturing cost.

【0016】[0016]

【実施例】次に本発明に係る希土類コバルト磁石につい
て以下の実施例を参照してより具体的に説明する。
EXAMPLES Next, the rare earth cobalt magnet according to the present invention will be described more specifically with reference to the following examples.

【0017】実施例1〜5 各々純度99.9%のSm,Pr,Ce,Fe,Cu,
Zr,Co元素を表1に示す原料組成を有するように秤
量後、高周波溶解炉で溶解し、銅鋳型に溶湯を注入し
て、5種類のインゴットを調製した。次に得られた各イ
ンゴットをN2ガス雰囲気において粗粉砕した後に、さ
らにジェットミルにより平均粒径3.5〜4.5μmの
大きさに微粉砕した。次に得られた微粉を粉末焼結法に
より、15KOeの磁場中で配向後、油圧プレスにて1
500Kg/cm2 の圧力でプレス成形し、14×12×1
4(磁化方向)mmの成形体とし、この成形体をArガス
中で1170〜1210℃で2時間、焼結後、1140
〜1190℃にて3〜6時間溶体化処理を実施した。さ
らに各焼結体を820〜840℃で5時間時効処理後、
冷却速度1℃/min で600℃まで徐冷した後にアルゴ
ンガスで急冷してそれぞれ実施例1〜5の測定用磁石サ
ンプルとした。
Examples 1 to 5 Sm, Pr, Ce, Fe, Cu, each having a purity of 99.9%,
The Zr and Co elements were weighed so as to have the raw material compositions shown in Table 1, melted in a high frequency melting furnace, and the molten metal was poured into a copper mold to prepare five types of ingots. Next, each of the obtained ingots was roughly pulverized in an N 2 gas atmosphere and then finely pulverized by a jet mill to an average particle size of 3.5 to 4.5 μm. Next, the obtained fine powder is oriented by a powder sintering method in a magnetic field of 15 KOe, and then 1 by a hydraulic press.
Press-formed at a pressure of 500 kg / cm 2 , 14 × 12 × 1
A molded body of 4 (magnetization direction) mm was prepared, and this molded body was sintered in Ar gas at 1170 to 1210 ° C. for 2 hours and then sintered at 1140.
Solution treatment was carried out at ˜1190 ° C. for 3 to 6 hours. Furthermore, after aging treatment of each sintered body at 820 to 840 ° C. for 5 hours,
The sample was gradually cooled to 600 ° C. at a cooling rate of 1 ° C./min and then rapidly cooled with argon gas to obtain measurement magnet samples of Examples 1 to 5, respectively.

【0018】比較例1〜3 一方、比較例1〜3としてPrを添加せずに表1左欄に
示すような磁石原料組成を有するように原料を調製した
以外は実施例1〜5と同一条件で処理して従来例の希土
類コバルト磁石サンプルを調製した。
Comparative Examples 1 to 3 On the other hand, as Comparative Examples 1 to 3, the same as Examples 1 to 5 except that the raw materials were prepared so as to have the magnet raw material composition shown in the left column of Table 1 without adding Pr. A rare earth cobalt magnet sample of a conventional example was prepared by treating under the conditions.

【0019】こうして得られた実施例1〜5および比較
例1〜3の各磁石サンプルについて、残留磁束密度(B
r)、保磁力(iHc)、最大エネルギ積(BH)max
を測定するとともに、温度特性として残留磁束密度(B
r)の可逆温度係数を測定し、下記表1右欄に示す結果
を得た。
With respect to each of the magnet samples of Examples 1 to 5 and Comparative Examples 1 to 3 thus obtained, the residual magnetic flux density (B
r), coercive force (iHc), maximum energy product (BH) max
And the residual magnetic flux density (B
The reversible temperature coefficient of r) was measured, and the results shown in the right column of Table 1 below were obtained.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示す結果から明らかなようにPrと
Ceとの複合置換により形成した実施例1〜5の希土類
コバルト磁石は、Ceの単独置換による比較例2および
3の磁石およびPr,Ceを配合していない比較例1の
磁石と比較して、温度特性を大きく損なうことなく、高
い最大エネルギ積を保持しており、永久磁石としての特
性が極めて優れていることが判明した。例えば実施例1
〜3の場合、比較例1の純Sm系に比較して、若干温度
特性は低下しているものの、高い磁気特性が得られてい
る。さらに、実施例2と比較例2、実施例4と比較例3
を比較すると各々Smの置換率は、30%、および50
%と等しいが、実施例の方が磁気特性が高くかつ温度特
性も優れていることが実証される。
As is clear from the results shown in Table 1, the rare earth cobalt magnets of Examples 1 to 5 formed by the composite substitution of Pr and Ce are the magnets of Comparative Examples 2 and 3 and the Pr and Ce by the single substitution of Ce. It was found that, as compared with the magnet of Comparative Example 1 in which No. 1 was not mixed, a high maximum energy product was maintained without significantly impairing the temperature characteristics, and the characteristics as a permanent magnet were extremely excellent. Example 1
In the cases of to 3, the temperature characteristics are slightly lowered as compared with the pure Sm system of Comparative Example 1, but high magnetic characteristics are obtained. Furthermore, Example 2 and Comparative Example 2, and Example 4 and Comparative Example 3
The Sm substitution rates are 30% and 50%, respectively.
%, But it is demonstrated that the example has higher magnetic properties and better temperature properties.

【0022】特に実施例に係る希土類コバルト磁石によ
れば可逆温度係数の劣化が少ないため、使用温度が高い
機器用の磁石として極めて有用である。
In particular, the rare earth cobalt magnets according to the examples show little deterioration in the reversible temperature coefficient, and are therefore extremely useful as magnets for equipment having high operating temperatures.

【0023】[0023]

【発明の効果】以上説明の通り本発明に係る希土類コバ
ルト磁石によれば、角形比および温度特性を大きく阻害
せずに残留磁束密度を高めるPrをCeとともに配合し
ているため、温度特性を大きく阻害することなく磁気特
性が優れ、かつ製造コストが安価な希土類コバルト磁石
を提供することができる。
As described above, according to the rare earth cobalt magnet according to the present invention, Pr is added together with Ce for increasing the residual magnetic flux density without largely impairing the squareness ratio and the temperature characteristic, so that the temperature characteristic is increased. It is possible to provide a rare earth cobalt magnet which has excellent magnetic properties without obstruction and which is inexpensive to manufacture.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display part H01F 1/06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素RとしてのSm,Pr,Ce
と、遷移金属元素としてのCoとを含むR2 Co17系希
土類コバルト磁石において、上記希土類元素Rを構成す
るSm,PrおよびCeの混合比を、重量百分率でSm
が30%以上、Prが10〜40%、Ceが5〜40%
となるように設定したことを特徴とする希土類コバルト
磁石。
1. Sm, Pr, Ce as rare earth element R
In the R 2 Co 17 series rare earth cobalt magnet containing Rd and Co as a transition metal element, the mixing ratio of Sm, Pr and Ce constituting the rare earth element R is Sm in terms of weight percentage.
Is 30% or more, Pr is 10-40%, Ce is 5-40%
The rare earth cobalt magnet is characterized in that
JP4177153A 1992-07-03 1992-07-03 Rare earth cobalt magnet Pending JPH0620818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4177153A JPH0620818A (en) 1992-07-03 1992-07-03 Rare earth cobalt magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4177153A JPH0620818A (en) 1992-07-03 1992-07-03 Rare earth cobalt magnet

Publications (1)

Publication Number Publication Date
JPH0620818A true JPH0620818A (en) 1994-01-28

Family

ID=16026121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4177153A Pending JPH0620818A (en) 1992-07-03 1992-07-03 Rare earth cobalt magnet

Country Status (1)

Country Link
JP (1) JPH0620818A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074084A (en) * 2008-09-22 2010-04-02 Toshiba Corp Permanent magnet and method for manufacturing permanent magnet
CN102760545A (en) * 2012-07-24 2012-10-31 钢铁研究总院 High-remanence low-coercivity samarium cobalt permanent magnetic material and preparation method
JP2014005539A (en) * 2013-07-26 2014-01-16 Toshiba Corp Permanent magnet, variable magnetic flux motor using the same and generator
US9774219B2 (en) 2009-08-06 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet, motor and electric generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074084A (en) * 2008-09-22 2010-04-02 Toshiba Corp Permanent magnet and method for manufacturing permanent magnet
US9774219B2 (en) 2009-08-06 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet, motor and electric generator
CN102760545A (en) * 2012-07-24 2012-10-31 钢铁研究总院 High-remanence low-coercivity samarium cobalt permanent magnetic material and preparation method
CN102760545B (en) * 2012-07-24 2015-10-28 钢铁研究总院 High-remanence low-coercivity samarium cobalt permanent magnetic material and preparation method
JP2014005539A (en) * 2013-07-26 2014-01-16 Toshiba Corp Permanent magnet, variable magnetic flux motor using the same and generator

Similar Documents

Publication Publication Date Title
US5589009A (en) RE-Fe-B magnets and manufacturing method for the same
JP2003510467A (en) Nd-Fe-B alloy containing less boron and method for producing permanent magnet made of the alloy
JPH01219143A (en) Sintered permanent magnet material and its production
JPS61195954A (en) Permanent magnet alloy
US4721538A (en) Permanent magnet alloy
JPH0620818A (en) Rare earth cobalt magnet
JPH04241402A (en) Permanent magnet
JPH0831626A (en) Rare earth magnetic powder, permanent magnet thereof, and manufacture of them
JPH0146575B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPS5945745B2 (en) Permanent magnet material and its manufacturing method
JP2000331810A (en) R-Fe-B RARE EARTH PERMANENT MAGNET MATERIAL
JPH0152469B2 (en)
US4789521A (en) Permanent magnet alloy
JP3736830B2 (en) Rare earth-Fe-Co-B magnet powder and bonded magnet excellent in squareness and thermal stability
JP2746111B2 (en) Alloy for permanent magnet
JPH04240703A (en) Manufacture of permanent magnet
JPS6271201A (en) Bond magnet
JPH06322465A (en) Permanent magnet material
JPH0362775B2 (en)
JPH044725B2 (en)
JPH0241574B2 (en)
JPH06295808A (en) Sintered rare earth magnet
JPS62156247A (en) Material for alloy permanent magnet
JPS6014407A (en) Permanent magnet material