JPH01181502A - Manufacture of rare earth permanent magnet - Google Patents

Manufacture of rare earth permanent magnet

Info

Publication number
JPH01181502A
JPH01181502A JP63004505A JP450588A JPH01181502A JP H01181502 A JPH01181502 A JP H01181502A JP 63004505 A JP63004505 A JP 63004505A JP 450588 A JP450588 A JP 450588A JP H01181502 A JPH01181502 A JP H01181502A
Authority
JP
Japan
Prior art keywords
rare earth
magnetic powder
permanent magnet
magnetic
earth permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63004505A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishibashi
利之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63004505A priority Critical patent/JPH01181502A/en
Publication of JPH01181502A publication Critical patent/JPH01181502A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To improve filling properties, to obtain high performance and realize low cost by granulating magnetic powder using mechanical means. CONSTITUTION:After magnetic powder is compacted by compression force or made into a thin plate using a rolling machine or press even without performing granulation, it is lightly cracked to obtain particles. The granulated particles thus obtained has a strength which cannot be broken when handling. But since it has a strength which can be easily broken when an orientation magnetic field for imparting anisotropy within a mold when performing molding, no problem occurs that the degree of orientation is reduced due to granulation. It allows automatic filling into mold to be made on forming powder without reducing magnetic properties of permanent magnet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類永久磁石の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing rare earth permanent magnets.

〔従来の技術〕[Conventional technology]

希土類永久磁石の製造方法としては、いわゆる粉末冶金
学約手□法、すなわち原料を合金化する溶解・鋳造工程
、得られた合金を粉末化する粉砕工程、得られた粉末を
所望の形状とする成形工程、得られた成形体に焼結等を
施す熱処理工程等からなる手法が用いられている。
The method for producing rare earth permanent magnets is the so-called powder metallurgy method, which involves a melting and casting process to alloy the raw materials, a pulverization process to pulverize the resulting alloy, and a process to shape the resulting powder into the desired shape. A method is used that includes a molding process, a heat treatment process in which the obtained molded body is subjected to sintering, etc.

本発明の造粒工程とは、粉砕工程と成形工程の間に行な
う工程で、食品や薬品において粉末を顆粒状とするよう
に、粉末の流動性など取扱を容易にするためのものと同
じりあるが、従来の希土類永久磁石の製造方法において
は、造粒工程を行なうことなく磁性粉末をそのまま成形
するか、有機バインダーを添加することによって造粒で
きていた。
The granulation process of the present invention is a process performed between the crushing process and the molding process, and is similar to the process used to make powder fluid and easy to handle, such as making powder into granules in food and medicine. However, in conventional methods for manufacturing rare earth permanent magnets, magnetic powder can be molded as it is without a granulation step, or granulated by adding an organic binder.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、造粒を施さない磁性粉末ば、かさ密度が
低いことに加えて、金型への充填時に磁性粉末が金型の
中で柴橋(ブリッジ)を作ってしまうために、金型に入
り難いことから、特に量産において磁性粉末を狭いギャ
ップを存する金型中に自動的に充填することができない
といった問題点を有する。
However, ungranulated magnetic powder has a low bulk density, and when it is filled into a mold, the magnetic powder forms a bridge in the mold, making it difficult to fit into the mold. Therefore, especially in mass production, there is a problem that magnetic powder cannot be automatically filled into a mold having a narrow gap.

また、仔機バンイダーを添加して造0粒を行ったものは
、粉末の充填性は改善されるが、育機バインダーと磁性
粉末が焼結時などに反応を起こして、磁気性能を低下を
もたらしてしまうと言った問題点を有する。
In addition, when a child binder is added to make zero grains, the filling properties of the powder are improved, but the binder and the magnetic powder react during sintering, resulting in a decrease in magnetic performance. This has the problem of causing problems.

本発明は以上の問題点を解決するもので、その目的とす
るところは、得られた永久磁石磁気特性を低下させるこ
となく、粉末成形時の金型への自動充填を可能にするな
ど、磁性粉末の充填性を良くする造粒方法を提供するも
のである。
The present invention solves the above-mentioned problems, and its purpose is to make it possible to automatically fill a mold during powder molding without reducing the magnetic properties of the obtained permanent magnet. The present invention provides a granulation method that improves the filling properties of powder.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の希土類永久磁石の製造方法は、磁性粉末を機械
的手段を用い造粒することを特徴とする。□ ここで、機械的手段を用いた造粒とは、磁性粉末を圧縮
力で押し固めることによって、粒子にすることである。
The method for producing a rare earth permanent magnet of the present invention is characterized by granulating magnetic powder using mechanical means. □ Here, granulation using mechanical means means forming particles by compacting magnetic powder with compressive force.

また、直接粒子としなくても、圧延機やプレスを用い薄
板伏にした後、これを軽(壊して粒子を得ることもでき
る。
Furthermore, instead of forming particles directly, particles can also be obtained by forming a thin plate using a rolling mill or press and then breaking it into pieces.

゛ここで得られた造粒を施した粒子は、取り扱う際には
壊れることがない程度の強度を持つが、成形時に全形中
で異方性を持たせるための配向磁場を加えたときには簡
単に壊れる程度の強度であるので、造粒したために配向
度が低下するといった問題は生じない。
゛The granulated particles obtained here have enough strength that they will not break when handled, but they easily break when an orienting magnetic field is applied to give them anisotropy throughout the entire shape during molding. Since the strength is such that it can be easily broken, there is no problem that the degree of orientation decreases due to granulation.

また、造粒した粒子の粒径に関しては、その大部分が0
.1mm〜5mmであればよい。つまり、0.1mm未
満では粒子が細かすぎて取り扱いにくい等造粒の効果が
得られず、5mmより大きい粒子は金型のギャップに入
らなかったり、充填性が逆に悪くなってしまう。さらに
、充填性など取り扱い性を考慮すると、0.2〜2mm
であることが望ましいが、本発明は造粒した粒子の粒径
に関係なく有効である。
Furthermore, regarding the particle size of the granulated particles, most of them are 0.
.. The length may be 1 mm to 5 mm. That is, if the particle size is less than 0.1 mm, the particles are too fine to be handled and the granulation effect cannot be obtained, and if the particle size is larger than 5 mm, the particles may not fit into the gap of the mold or the filling property may deteriorate. Furthermore, considering ease of handling such as filling properties, 0.2 to 2 mm
However, the present invention is effective regardless of the particle size of the granulated particles.

なお、基本組成が希土類金属およびコバルトからなる希
土類磁石としては、Sm−Co磁石が知られているが、
希土類金属としては、S m # Y +La、Ce、
Pr、Nd、  ミツシュメタルなどの希土類金属群で
あればよい。さらに、SmとC。
Note that Sm-Co magnets are known as rare earth magnets whose basic composition is a rare earth metal and cobalt.
Rare earth metals include S m # Y + La, Ce,
Any rare earth metal group such as Pr, Nd, or Mitsushi metal may be used. Furthermore, Sm and C.

が原子比で1:5であるSmCoaやCoの一部をFe
’PCuなどのCo以外の遷移金属群で置換した、例え
ばSmとCo、Fe、CuおよびZrからなる遷移金属
群との原子比が2:17であるSm*  (Co、Fe
、Cu、Zr)t tなどが知られているが、本発明は
どの組成のものを用いても同じ様な効果が得られるもの
であり、特定の組成に限定されるものではない。
is a part of SmCoa and Co whose atomic ratio is 1:5.
'Sm* (Co, Fe
, Cu, Zr)tt, etc., but the present invention is not limited to a specific composition, as similar effects can be obtained using any composition.

また、基本組成が希土類金属、鉄およびポロンからなる
希土類磁石としては、Nd−Fe−Bが知られているが
、希土類金属としては、Y、La、Ce、Pr、Nd、
Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、ybおよびLuの希土類元素のうちの1種または2
N以上であれば良く、シジム(Pr−Nd)やセリウム
・シジム(Ce−Pr−Nd)でも十分な゛磁気性能が
得られ、供給面・価格面から育利である。さらに、Dy
やTbなどの重希土類元素の少量添加により、保磁力i
Hcを増大させることができ、温度特性の実質的な改善
が達成される。
In addition, Nd-Fe-B is known as a rare earth magnet whose basic composition consists of rare earth metals, iron, and poron, but rare earth metals include Y, La, Ce, Pr, Nd,
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
One or two of the rare earth elements m, yb and Lu
N or more is sufficient, and sufficient magnetic performance can be obtained even with cydium (Pr-Nd) or cerium-cydium (Ce-Pr-Nd), which is advantageous from the standpoint of supply and price. Furthermore, Dy
By adding a small amount of heavy rare earth elements such as and Tb, the coercive force i
Hc can be increased and a substantial improvement in temperature properties is achieved.

さらに、鉄の一部をコバルトで置換することにより、キ
ュー9−温度の向上が計られる。ジルコニウムは希土類
金属を置換することから低希土類組成で実用となる磁気
特性が得られ低コストとなるだけでなく、問題となって
いる耐食性も大幅に向上する。他の遷移金属群で置換し
ても磁気性能や耐食性などが改善される。
Furthermore, by substituting part of the iron with cobalt, an improvement in the cue 9 temperature can be achieved. Since zirconium replaces rare earth metals, it not only provides practical magnetic properties with a low rare earth composition, resulting in lower costs, but also greatly improves corrosion resistance, which has been a problem. Substitution with other transition metal groups also improves magnetic performance, corrosion resistance, etc.

(実施例〕 以下、本発明について実施例に基づいて詳細に説明す木
(Example) Hereinafter, the present invention will be described in detail based on an example.

(実施例−1) Nds s F ex t Beの組成となるように、
高周波溶解炉を用いアルゴンガス雰囲気下で溶解−鋳造
し、スタンプミル・ボールミルを用い粉砕して、平均粒
径で3〜5μmの磁性粉末を得た。これを比較例とする
(Example-1) So as to have a composition of NdssFextBe,
The mixture was melted and cast in an argon gas atmosphere using a high frequency melting furnace, and ground using a stamp mill/ball mill to obtain magnetic powder with an average particle size of 3 to 5 μm. This is taken as a comparative example.

本発明として、この磁性粉末を表面に多数の凹凸を持た
せたパンチで挟み、プレスを用い圧縮することによって
、平均粒径で約0..5mm1大部分が0.2〜2mm
である粒子を得た。
According to the present invention, this magnetic powder is sandwiched between punches with many irregularities on the surface and compressed using a press, so that the average particle size is about 0. .. 5mm1 most of it is 0.2~2mm
We obtained particles with .

本発明の造粒した粒子と比較例の磁性粉末を、20cc
のメスシリンダーに自然に充、填させた。
The granulated particles of the present invention and the magnetic powder of the comparative example were mixed at 20 cc.
The graduated cylinder was filled naturally.

本発明が83g充填できたのに対し、比較例は38gだ
けであった。
While the present invention was able to fill 83g, the comparative example was able to fill only 38g.

また、ギャップ1.5mm、長さ5mmの金型に本発明
の造粒した粒子と、比較例の磁性粉末を各々充填させた
が、本発明がなんら問題なく充填できたのに対し、比較
例ではほとんど全く充填できなかった。
In addition, a mold with a gap of 1.5 mm and a length of 5 mm was filled with the granulated particles of the present invention and the magnetic powder of the comparative example, but the present invention could be filled without any problems, whereas the comparative example It was almost impossible to fill it at all.

以上のことから、本発明が充填性を大幅に改善させるこ
とが分かる。
From the above, it can be seen that the present invention significantly improves the filling property.

(実施例−2) CCe、  #  Pr、  *Nd−5DV−1)I
I  Fes a Cot @ Baの組成となるよう
に、実施例−1と同様な方法を用い磁性粉末を作成した
。この磁性粉末をプレスを用い約3mmの薄板状とし、
軽(壊すことによって、同様の粒子を得た。
(Example-2) CCe, #Pr, *Nd-5DV-1)I
Magnetic powder was prepared using the same method as in Example-1 so as to have the composition of I Fesa Cot@Ba. This magnetic powder was made into a thin plate shape of about 3 mm using a press,
Similar particles were obtained by breaking (light).

この粒子を15〜20 k g/mm’の成形圧で圧縮
成形し、これをアルゴンガス雰囲気中で1000〜12
50°CのR適温度で焼結を施し、必要に応じて400
〜1250”Cの最適温度で熱処理を施した。(本発明
) また、比較例として、磁性粉末にオレイン酸、0.8w
t%を添加し充分混練した後、ふるいの目を押し付ける
ようにして通した後、振動を与えて同様の粒径を持つ粒
子を得、同様に圧縮成形、焼結、時効を施した。
The particles were compression molded at a molding pressure of 15 to 20 kg/mm', and then heated to 1000 to 12 kg in an argon gas atmosphere.
Sintering is carried out at R suitable temperature of 50°C, and 400°C is applied as necessary.
Heat treatment was performed at the optimum temperature of ~1250"C. (Invention) Also, as a comparative example, magnetic powder was treated with oleic acid, 0.8w
After adding t% and sufficiently kneading, the mixture was passed through a sieve by pressing it against the mesh, and then vibrated to obtain particles having the same particle size, and subjected to compression molding, sintering, and aging in the same manner.

本発明と比較例から得られた永久磁石の代表的な磁気特
性を示すと、本発明が(BH)max(最大エネルギー
積)=42.6MGOe、1HC(保磁力)=15.8
kOeであるのに対し、比較例では各々28.3MGO
e、7.1kOeと低い値となっており、本発明が高い
磁気特性を維持したまま、造粒を可能にしたことは明ら
かである。
Typical magnetic properties of permanent magnets obtained from the present invention and comparative examples show that the present invention has (BH)max (maximum energy product) = 42.6 MGOe, 1HC (coercive force) = 15.8
kOe, whereas in the comparative example each 28.3MGO
It is clear that the present invention has made granulation possible while maintaining high magnetic properties.

(実施例−3) Z ra Nds @ F es 會I3yの組成とな
るようニ、実施例−1と同様な方法を用い磁性粉末を作
成した。この磁性粉末を圧延機を用い約2.8mmの薄
板状とし、軽く壊して同様の粒子を得た。
(Example 3) Magnetic powder was prepared using the same method as in Example 1 so as to have the composition of Z ra Nds @ Fes I3y. This magnetic powder was formed into a thin plate shape of about 2.8 mm using a rolling mill, and was slightly broken to obtain similar particles.

ここで得られた粒子は、充填性もよ(、実施例−2と°
同様な方法を用い永久磁石に作成したが、磁気性能も高
いものが得られた。
The particles obtained here had good filling properties (, Example 2 and °
A permanent magnet was created using a similar method, and one with high magnetic performance was obtained.

(実施例−4) Sm (Co、s s re、s a Cu、e * 
Zr。
(Example-4) Sm (Co, s s re, s a Cu, e *
Zr.

。*)f、ffの組成となるように実施例−1と同様の
方法を用い磁性粉末を作成した。この磁性粉末を実施例
−1,2および3と同様の方法を用い同様の粒子を得た
. *) Magnetic powder was prepared using the same method as in Example-1 so as to have the compositions f and ff. This magnetic powder was used in the same manner as in Examples 1, 2, and 3 to obtain similar particles.

ここで得られた粒子も、充填性が良好で、実施例−2と
同様の方法を用いて得られた永久磁石の磁気特性も(B
H)max=28.3MGOe。
The particles obtained here also had good filling properties, and the magnetic properties of the permanent magnet obtained using the same method as in Example 2 were also good (B
H) max=28.3MGOe.

1Hc=10.2kOeと高いものであツタ。1Hc = 10.2kOe, which is high.

すなわち、本発明がいかなる機械的手段を用いても、ま
たどんな組成の永久磁石に対してもを効であることは明
確であり、機械的手段や組成に限定されるものではない
In other words, it is clear that the present invention is effective for permanent magnets of any composition using any mechanical means, and is not limited to any mechanical means or composition.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、磁性粉末を圧延機
やプレスなど機械的手段を用い造粒することにより、磁
性粉末をそのまま使うのと比べると充填性に大きな改善
をもたらし、かつ、従来のように有機バインダーを添加
して造粒した場合にみられるような永久磁石の磁気特性
を低下させることがないので、単に圧縮成形の際の磁性
粉末の自動充填を可能とするだけでなく、特に時計用な
どの小物や薄肉のリング状ラジアル異方性焼結磁石を得
るためのギャップが1〜3mmの金型への磁性粉末の自
動充填さえも可能とし、得られる永久磁石の高性能、低
コスト化を実現するにとどまらず、ここで得られた高性
能磁石は、ステッピングモータ、ボイスコイルモータ(
VCM)、各種外部記tj1装置のへラドアクチュエー
タなど電子機器の主要パーツのさらなる小型化、高性能
化を実現するなど応用面に多大の効果を一存するもので
ある。
As described above, according to the present invention, by granulating the magnetic powder using mechanical means such as a rolling mill or a press, the filling property is greatly improved compared to using the magnetic powder as it is, and Because it does not degrade the magnetic properties of permanent magnets, unlike conventional granulation with the addition of an organic binder, it not only enables automatic filling of magnetic powder during compression molding. In particular, it is possible to automatically fill magnetic powder into molds with a gap of 1 to 3 mm to obtain small items such as watches and thin ring-shaped radial anisotropic sintered magnets, and the resulting permanent magnets have high performance. In addition to realizing cost reduction, the high-performance magnet obtained here is also useful for stepping motors, voice coil motors (
VCM), helad actuators for various external recording devices, and other main parts of electronic devices can be further miniaturized and have higher performance.

以  上 出願人 セイコーエプン/株式会社that's all Applicant: Seiko Epun/Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)磁性粉末を機械的手段を用い造粒することを特徴
とする希土類永久磁石の製造方法。
(1) A method for producing a rare earth permanent magnet, which comprises granulating magnetic powder using mechanical means.
(2)前記機械的手段が、圧延機またはプレスである特
許請求の範囲第1項記載の希土類永久磁石の製造方法。
(2) The method for manufacturing a rare earth permanent magnet according to claim 1, wherein the mechanical means is a rolling mill or a press.
(3)前記磁性粉末が、希土類金属、鉄およびポロンを
基本組成とする特許請求の範囲第1項記載の希土類永久
磁石の製造方法。
(3) The method for producing a rare earth permanent magnet according to claim 1, wherein the magnetic powder has a basic composition of rare earth metal, iron, and poron.
(4)前記鉄の一部を、コバルトやジルコニウムなどの
鉄以外の遷移金属群から選ばれた少なくとも一種以上の
遷移金属群で置換した特許請求の範囲第3項記載の希土
類永久磁石の製造方法。
(4) The method for manufacturing a rare earth permanent magnet according to claim 3, wherein a part of the iron is replaced with at least one transition metal group selected from a group of transition metals other than iron, such as cobalt and zirconium. .
(5)前記磁性粉末が、希土類金属およびコバルトを基
本組成とする特許請求の範囲第1項記載の希土類永久磁
石の製造方法。
(5) The method for producing a rare earth permanent magnet according to claim 1, wherein the magnetic powder has a basic composition of a rare earth metal and cobalt.
JP63004505A 1988-01-12 1988-01-12 Manufacture of rare earth permanent magnet Pending JPH01181502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004505A JPH01181502A (en) 1988-01-12 1988-01-12 Manufacture of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004505A JPH01181502A (en) 1988-01-12 1988-01-12 Manufacture of rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH01181502A true JPH01181502A (en) 1989-07-19

Family

ID=11585910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004505A Pending JPH01181502A (en) 1988-01-12 1988-01-12 Manufacture of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH01181502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927514A (en) * 2018-08-17 2018-12-04 曾爱华 A kind of production method of powder metallurgy spherolite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927514A (en) * 2018-08-17 2018-12-04 曾爱华 A kind of production method of powder metallurgy spherolite

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JP4089212B2 (en) Method for producing granulated powder of rare earth alloy and method for producing sintered rare earth alloy
JPH01181502A (en) Manufacture of rare earth permanent magnet
GB2206241A (en) Method of making a permanent magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH04240703A (en) Manufacture of permanent magnet
JP2004131815A (en) Method and apparatus for manufacturing granulated powder of rare earth alloy, and method for manufacturing rare earth alloy sintered compact
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JP2003031408A (en) Magnetic powder for rate-earth bonded magnet, its manufacturing method, and bonded magnet
JPH02156603A (en) Manufacture of magnetic powder
JPH04304380A (en) Production of magnetic powder for anisotropic bonded magnet
JPH0474421B2 (en)
JPH033204A (en) Manufacture of magnetic powder
JPH01245503A (en) Manufacture of rare-earth magnet
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPH0195502A (en) Manufacture of magnetic powder for bond magnet
JPH04144206A (en) Rare earth bonded magnet