JPS6044003A - Oxygen gas permselective composite membrane and air electrode comprising the same - Google Patents

Oxygen gas permselective composite membrane and air electrode comprising the same

Info

Publication number
JPS6044003A
JPS6044003A JP58151486A JP15148683A JPS6044003A JP S6044003 A JPS6044003 A JP S6044003A JP 58151486 A JP58151486 A JP 58151486A JP 15148683 A JP15148683 A JP 15148683A JP S6044003 A JPS6044003 A JP S6044003A
Authority
JP
Japan
Prior art keywords
hydroxide
membrane
porous
metal hydroxide
oxygen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58151486A
Other languages
Japanese (ja)
Inventor
Nobukazu Suzuki
鈴木 信和
Shinji Tsuruta
鶴田 慎司
Yuichi Sato
祐一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58151486A priority Critical patent/JPS6044003A/en
Publication of JPS6044003A publication Critical patent/JPS6044003A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide an oxygen gas permselective composite membrane enabled in heavy load discharge over a long time even if thin and excellent in preservability, by coating at least one surface of a porous membrane with a metal hydroxide layer, and impregnating the inner wall of each pore with metal hydroxide. CONSTITUTION:A porous membrane having fine pores each having a pore size of, especially, 1mum or less uniformly distributed therein, for example, a porous fluorine contained resin is prepared. In the next step, the porous membrane is immersed in a salt solution capable of forming metal hydroxide (e.g., tin hydroxide) while the treated membrane is immersed in a basic solution to form a membrane comprising metal hydroxide. Subsequently, the whole of the porous membrane having the membrane formed thereto is dried under vacuum. At this time, in removing moisture, it is pref. to heat the whole of the membrane to about 50-100 deg.C under vacuum and the thickness of the obtained membrane layer is pref. 0.1-10mum. A desired air electrode is obtained by coating an electrode main body with the resulting composite membrane. The aforementioned electrode main body has activity for electrochemically reducing O2-gas and a conductive porous body is used as said electrode main body.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、水素/酸素燃料電池、金属/空気電池、酸素
センサ用の空気電極を製造する際に用いて有効な酸素ガ
ス選択透過性複合膜及びその複合膜からなる空気電極に
関し、更に詳しくは、薄くても長時間に亘シ重負荷放電
が可能で、保存性能にも優れた空気電極用の酸素ガス選
択透過性複合膜及びその複合膜からなる空気電極に関す
る。
Detailed Description of the Invention [Technical Field of the Invention] The present invention provides an oxygen gas selectively permeable composite membrane that is effective for use in manufacturing air electrodes for hydrogen/oxygen fuel cells, metal/air batteries, and oxygen sensors. and an air electrode made of a composite membrane thereof, and more specifically, an oxygen gas selectively permeable composite membrane for an air electrode that can perform heavy load discharge for a long time even if it is thin and has excellent storage performance, and a composite membrane thereof. It relates to an air electrode consisting of.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から、各種の燃料電池、空気/亜鉛電池をはじめと
する空気金属電池中ガルバニ型の酸素センサなどの空気
電極には、ガス拡散電極が用いられてきている。このガ
ス拡散電極としては、初期には均一な孔径分布を有する
浮型の多孔質電極が用いられてきたが、最近では、酸素
ガスに対する電気化学的還元能(酸素をイオン化する)
を有し、かつ集電体機能も併有する多孔質の電極本体と
、該電極本体のガス側表面に一体的に添着される薄膜状
の撥水性層とから成る2層構造の電極が多用されている
Conventionally, gas diffusion electrodes have been used as air electrodes in galvanic-type oxygen sensors and the like in various fuel cells and air/metal batteries such as air/zinc batteries. Initially, floating porous electrodes with a uniform pore size distribution were used as gas diffusion electrodes, but recently, electrochemical reduction ability for oxygen gas (ionization of oxygen) has been used.
Electrodes with a two-layer structure consisting of a porous electrode body that also has a current collector function and a thin film-like water-repellent layer that is integrally attached to the gas side surface of the electrode body are often used. ing.

この場合、電極本体は主として、酸素ガス還元過電圧の
低いニッケルタングステン酸;ノ(ラジウム・コバルト
で被覆された炭化タングステン;ニッケル;銀;白金;
パラジウムなどを活性炭粉末のような導電性粉末に担持
せしめて成る粉末にポリテトラフロロエチレンのような
結着剤を添加した後、これを金属多孔質体、カーボン多
孔質体、カーボン繊維の不織布ガとと一体化したものが
用いられている。
In this case, the electrode body is mainly composed of nickel tungstic acid, which has a low oxygen gas reduction overpotential; tungsten carbide coated with radium and cobalt; nickel; silver; platinum;
After adding a binder such as polytetrafluoroethylene to a powder made by supporting palladium or the like on a conductive powder such as activated carbon powder, this is applied to a porous metal body, a porous carbon body, or a nonwoven fabric made of carbon fiber. A combination of and is used.

また、電極本体のガス側表面に、添着される撥水性層と
しては主にポリテトラフロロエチレン、テトラフロロエ
チレン−ヘキサフロロプロピレン共重合体、エチレン−
テトラフロロエチレン共重合体などのフッ素樹脂、又は
ポリプロピレン々どの樹脂から構成される薄膜であって
、例えば、粒径0.2〜40μmのこれら樹脂粉末の焼
結体;これら樹脂の繊維を加熱処理して不織布化した紙
状のもの;同じく繊維布状のもの;これら樹脂の粉末の
一部をフッ化黒鉛で置きかえたもの;こわらの微粉末を
増孔剤・潤滑油などと共にロール加圧してから加熱処理
したフィルム状のもの、もしくはロール加圧後加熱処理
をしないフィルム状のもの;などの微細孔を分布する多
孔性の薄膜である。
In addition, the water-repellent layer attached to the gas side surface of the electrode body is mainly made of polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, or ethylene-hexafluoropropylene copolymer.
A thin film composed of a fluororesin such as a tetrafluoroethylene copolymer or a resin such as polypropylene, for example, a sintered body of powder of these resins with a particle size of 0.2 to 40 μm; fibers of these resins are heat-treated. A paper-like material that is made into a non-woven fabric; A fiber-cloth-like material that is also made of fiber cloth; A part of these resin powders is replaced with fluorinated graphite; These are porous thin films that have fine pores distributed, such as film-like films that are heat-treated after rolling, or film-like films that are not heat-treated after being rolled.

しかしながら、上記した従来構造の空気電極において、
電極本体のガス側表面に添着されている撥水性層は、電
解液に対しては不透過性であるが、空気又は空気中の水
蒸気に対しては不透過性ではない。
However, in the air electrode of the conventional structure described above,
The water-repellent layer attached to the gas-side surface of the electrode body is impermeable to the electrolyte, but not to air or water vapor in the air.

そのため、例えば空気中の水蒸気が撥水性層金通過して
電極本体に侵入し、その結果、電解液を稀釈したり、ま
たは逆に、電解液中の水が水蒸気として撥水性層から放
散してしまい電解液を濃縮(3) することがある。この結果、電解液の濃度が変動してし
まい安定した放電を長時間に亘ル維持することができな
くなるという事態を生ずる。
Therefore, for example, water vapor in the air may pass through the water-repellent layer and enter the electrode body, thereby diluting the electrolyte, or conversely, water in the electrolyte may evaporate from the water-repellent layer as water vapor. The electrolyte may be concentrated (3). As a result, the concentration of the electrolyte fluctuates, resulting in a situation where stable discharge cannot be maintained for a long period of time.

空気中の炭酸ガスが撥水性層を通過して電極本体内に侵
入して活性層に吸着した場合、その部位の酸素ガスに対
する電気化学的還元能は低下して重負荷放電が阻害され
る。また、電解液がアルカリ電解液の場合には、電解液
の変質、濃度の低下又は陰極が亜鉛のときには該亜鉛陰
極の不働態化などの現象を引き起こす。更には、活性層
(1!極本体の多孔質部分)で、炭酸塩を生成して孔を
閉塞し、電気化学的還元が行なわれる領域を減少させる
ので重負荷放電が阻害される。
When carbon dioxide gas in the air passes through the water-repellent layer, enters the electrode body, and is adsorbed on the active layer, the electrochemical reduction ability for oxygen gas at that location decreases, and heavy load discharge is inhibited. In addition, when the electrolyte is an alkaline electrolyte, phenomena such as deterioration of the electrolyte, decrease in concentration, or passivation of the zinc cathode when the cathode is zinc are caused. Furthermore, in the active layer (the porous part of the 1! electrode body), carbonate is generated to block the pores and reduce the area where electrochemical reduction takes place, thereby inhibiting heavy load discharge.

このようなことは、製造した電池を長期間保存しておく
場合、又は、長期間使用する場合、電池の性能が設計規
準から低下するという事態を招く。
This causes a situation in which the performance of the battery deteriorates from the design standard when the manufactured battery is stored or used for a long period of time.

このため、空気電極の撥水性層のガス側(空気側)に更
に塩化カルシウムのよう表水分吸収剤又はアルカリ土類
金属の水酸化物のよう々炭酸ガス吸収剤の層を設けた構
造の電池が提案されている。
For this reason, a battery with a structure in which a layer of a surface moisture absorbent such as calcium chloride or a carbon dioxide gas absorbent such as alkaline earth metal hydroxide is further provided on the gas side (air side) of the water-repellent layer of the air electrode. is proposed.

(4) これは、上記したような不都合な事態をある程度防止す
ることはできるが、ある時間経過後、これら吸収剤が飽
和状態に達しその吸収能力を喪失すれば、その効果も消
滅するので何ら本質的な解決策ではあシ得々い。
(4) This can prevent the above-mentioned inconveniences to some extent, but if these absorbents reach a saturated state and lose their absorption capacity after a certain period of time, the effect disappears, so there is no effect. As for the essential solution, it's a good idea.

また、上記した撥水性層の上に、更に、ポリシロキサン
膜等の酸素ガス選択透過性の薄膜を一体的に積層するこ
とが試みられている。しかしながら、現在までのところ
、充分に有効な酸素ガス選択透過性複合膜及びその複合
膜からなる空気電極は開発されてい危い。
Furthermore, attempts have been made to further integrally laminate a thin film selectively permeable to oxygen gas, such as a polysiloxane film, on the water-repellent layer described above. However, to date, a sufficiently effective oxygen gas selectively permeable composite membrane and an air electrode made of the composite membrane have not been developed.

〔発明の目的〕[Purpose of the invention]

本発明は、酸素ガスの選択透過能に優れ、したがって、
空気電極に適用した場合、酸素ガスを選択的に透過して
空気中の水蒸気又は炭酸ガスを電極本体内に侵入させる
ことがなく、それゆえ、長期に亘る重負荷放電が可能で
保存性能にも優れた空気電極の製造に好適な酸素ガス選
択透過性複合膜及びその複合膜からなる空気電極の提供
を目的とする。
The present invention has excellent selective permeability for oxygen gas, and therefore,
When applied to air electrodes, it selectively permeates oxygen gas and does not allow water vapor or carbon dioxide in the air to enter the electrode body. Therefore, long-term heavy load discharge is possible and storage performance is also improved. The object of the present invention is to provide an oxygen gas permselective composite membrane suitable for manufacturing an excellent air electrode, and an air electrode made of the composite membrane.

〔発明の概要〕[Summary of the invention]

本発明の酸素ガス選択透過性複合膜(以下、「複合膜」
という)及びその複合膜からなる空気電極は、多孔性膜
の少なくとも片面が金属水酸化物の薄層で被覆され、か
つ、孔の内壁が金属水酸化物で含浸せしめられてなるこ
とを、及び、酸素ガスに対する電気化学的還元能を有し
、かつ集電体機能も併用する多孔質の電極本体と、該電
極本体のガス側表面に、孔の内壁が金属水酸化物で含浸
された多孔性膜を介して被覆された金属水酸化物の薄層
とからなることを特徴とするものである。
Oxygen gas selectively permeable composite membrane of the present invention (hereinafter referred to as “composite membrane”)
) and its composite membrane, at least one side of the porous membrane is coated with a thin layer of metal hydroxide, and the inner walls of the pores are impregnated with metal hydroxide. , a porous electrode body that has electrochemical reduction ability for oxygen gas and also serves as a current collector, and a porous electrode body whose inner wall is impregnated with metal hydroxide on the gas side surface of the electrode body. It is characterized by consisting of a thin layer of metal hydroxide coated with a transparent film.

本発明の複合膜に使用される多孔性膜は、その材質は問
わないが、電極本体に添着することを考慮すれば、可撓
性に富むものであることが好ましい。なお、その孔径に
は特に制限はないが、好ましくは1μm以下である。 
また、該多孔性膜は、上記した微細孔が均一に分布する
ものが好ましく、その微細孔の空孔容積が換金容積に対
し0.1〜909Gの範囲にあるものが好適である。
The material of the porous membrane used in the composite membrane of the present invention does not matter, but it is preferably highly flexible in view of attachment to the electrode body. Note that the pore diameter is not particularly limited, but is preferably 1 μm or less.
Further, the porous membrane preferably has the above-mentioned fine pores distributed uniformly, and preferably has a pore volume of the fine pores in a range of 0.1 to 909 G relative to the conversion volume.

このような多孔性膜としては、例えば、多孔性フッ素樹
脂膜(商品名、70ロボア;住人電工■製)、多孔性ポ
リカーボネート膜(商品名、ニュクリボア;ニュクリボ
ア・コーポレーションM)、多孔性セルロースエステル
膜(商品名、ミリボアメンブランフィルタ−;ミリボア
コーポレーション製)、多孔性ポリプロピレン膜(商品
名、セルガード;セラニーズ・プラスチック社製)を挙
げることができる。
Such porous membranes include, for example, porous fluororesin membranes (trade name, 70 Roba; manufactured by Sumidenko ■), porous polycarbonate membranes (trade name, Nucribore; Nucribore Corporation M), porous cellulose ester membranes. (trade name, Millibore Membrane Filter; manufactured by Millibore Corporation), and porous polypropylene membrane (trade name, Celguard; manufactured by Celanese Plastics Co., Ltd.).

本発明の複合膜に使用される金属水酸化物は、塩基性溶
液中において溶解しにくいものであれば格別に限定され
るものではない。この金属水酸化物の好適な具体例とし
ては、水酸化スズ、水酸化亜鉛、水酸化アル建ニウム、
水酸化マグネシウム、水酸化カルシウム、水酸化ストロ
ンチウム及び水酸化バリウム等が挙げられ、これらから
なる群よシ選ばれる1種もしくは2種以上のものである
The metal hydroxide used in the composite membrane of the present invention is not particularly limited as long as it is difficult to dissolve in a basic solution. Preferred specific examples of this metal hydroxide include tin hydroxide, zinc hydroxide, aluminum hydroxide,
Magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, etc. may be mentioned, and one or more types selected from the group consisting of these may be mentioned.

本発明の複合膜は次のようにして製造することができる
。まず、多孔性膜を本発明にかかる金属水酸化物を生成
しうる塩溶液に浸し、その後、この多孔性膜を塩基性液
に浸して金属水酸化物の薄(7) 膜を形成する。
The composite membrane of the present invention can be manufactured as follows. First, a porous membrane is immersed in a salt solution capable of producing a metal hydroxide according to the present invention, and then the porous membrane is immersed in a basic liquid to form a thin (7) membrane of metal hydroxide.

薄膜の形成の方法としては、他に例えば、塗布法、スプ
レー法、ディップ法等を適用するととができる。また、
金属水酸化物を生成しうる塩溶液に使用する溶媒として
は、通常水を用いる塩基性液として、例えば水酸化す)
 IJウム水溶液、水酸化カリウム水溶液等が挙げられ
る。
Other methods for forming the thin film include a coating method, a spray method, a dipping method, and the like. Also,
As a solvent used for a salt solution that can generate metal hydroxides, water is usually used as a basic liquid (for example, hydroxide).
Examples include IJium aqueous solution and potassium hydroxide aqueous solution.

次いで、全体を真空乾燥して薄層を形成する。The whole is then vacuum dried to form a thin layer.

このとき、水分等の除去に際しての加熱及び減圧は、そ
れぞれ、例えば、50〜100℃程度に加熱して、水分
等が蒸発するように減圧することが好ましい。かくして
、得られた本発明の複合膜において、形成された薄層の
厚みは0.1μm〜1011mであることが好ましく、
この厚みが0.1μm未満の場合には、薄層にピンホー
ルが発生しゃすくなシガス選択透過性が失われる。また
、逆に、10μmを超える場合には、空気電極に充分な
酸素ガスが供給され力くなる。
At this time, it is preferable to heat and reduce the pressure when removing moisture and the like by respectively heating to about 50 to 100° C. and reducing the pressure so that the moisture and the like evaporate. In the thus obtained composite membrane of the present invention, the thickness of the formed thin layer is preferably 0.1 μm to 1011 m,
When this thickness is less than 0.1 μm, pinholes are easily generated in the thin layer, and the gas selective permselectivity is lost. On the other hand, when the thickness exceeds 10 μm, sufficient oxygen gas is supplied to the air electrode, resulting in a strong force.

本発明の空気電極は、電極本体を上記した複合膜で被覆
した構造のものである。
The air electrode of the present invention has a structure in which the electrode body is covered with the above-mentioned composite membrane.

(8) 本発明の空気電極に用いる電極本体は、酸素ガスを電気
化学的に還元する(酸素ガスをイオン化する)活性能を
有し、かつ導電性の多孔質体である。具体的には、前述
したようなものの外に、銀フィルター、ラネーニッケル
、銀又はニッケルの焼結体、各種の発泡メタル、ニッケ
ルメッキしたステンレススチール細線の圧縮体、及びこ
れに金、パラジウム、銀などをメッキして成る金属多孔
質体まどを挙げることができる。なお、このとき、電極
本体の細孔内で進行する電極反応によって生成し九酸素
ガスの還元生成物イオンを該細孔(反応領域)から迅速
に除去して例えば50 mA/cd以上の重負荷放電を
円滑に継続させるために、該電極本体の細孔の孔径は0
.1〜lOμm程度の範囲で分布していることが好まし
い。
(8) The electrode body used in the air electrode of the present invention is a porous body that has an active ability to electrochemically reduce oxygen gas (ionize oxygen gas) and is electrically conductive. Specifically, in addition to the items mentioned above, silver filters, Raney nickel, sintered bodies of silver or nickel, various foamed metals, compressed bodies of nickel-plated fine stainless steel wire, and gold, palladium, silver, etc. Examples include porous metal windows made by plating. At this time, the reduction product ions of nine oxygen gas generated by the electrode reaction proceeding within the pores of the electrode body are quickly removed from the pores (reaction region), and a heavy load of, for example, 50 mA/cd or more is applied. In order to continue the discharge smoothly, the pore diameter of the electrode body is 0.
.. It is preferable that the thickness is distributed in a range of about 1 to 10 μm.

本発明の空気電極祉次のようにして製造することができ
る。すなわち、上記した電極本体に前記した本発明の複
合膜を常法に従い圧着すればよい。
The air electrode of the present invention can be manufactured as follows. That is, the composite membrane of the present invention described above may be pressure-bonded to the electrode body according to a conventional method.

このとき、圧着の条件としては、例えば30〜50麺/
−の圧力で2〜3分の範囲で行なうことが好ましい。
At this time, the crimping conditions are, for example, 30 to 50 noodles/
It is preferable to carry out the reaction at a pressure of - for 2 to 3 minutes.

このようにして製造された本発明の空気電極は常法にし
たがって電池に組込まれる。乙の場合、断続的放電を行
うときに、酸素ガスの電気化学的還元以外に電極構成要
素自体の電気化学的還元によって瞬間的な大電流供給を
可能とするため、酸素の酸化還元平衡電位よりも0.4
v以内の範囲で卑な電位によって酸化状態を変化する金
属、酸化物又は水酸化物を少くとも含有する多孔質層を
、電極本体の電解液側に一体的に付設することが好まし
い。この多孔質層は、軽負荷で放電中又は開路時にあっ
てはローカルセルアクションで酸素ガスによって酸化さ
れ、もとの酸化状態に復帰する。
The air electrode of the present invention thus manufactured is incorporated into a battery according to a conventional method. In the case of B, in order to enable instantaneous large current supply by electrochemical reduction of the electrode components themselves in addition to electrochemical reduction of oxygen gas, when performing intermittent discharge, the redox equilibrium potential of oxygen Also 0.4
It is preferable to integrally attach a porous layer containing at least a metal, oxide, or hydroxide whose oxidation state changes depending on a base potential within a range of V to the electrolyte side of the electrode body. This porous layer is oxidized by oxygen gas by local cell action during discharge under light load or when the circuit is opened, and returns to the original oxidized state.

このような多孔質層の構成材料としては、ムf!0゜M
nO,、Co、O,、pbQ!、各種プロブスカイト型
酸化物、スピネル型酸化物などを挙げることができる。
As a constituent material of such a porous layer, Mf! 0゜M
nO,, Co, O,, pbQ! , various provskite type oxides, spinel type oxides, etc.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜7 平均孔径0.05μmo微細孔を有する厚さ125μm
の多孔性セルロースエステル膜(商品名二ミリポアメン
ブランフィルタ−;ミリボアコーポレーション■製)に
、各種金属水酸化物を生成しうる塩溶液(溶媒:水)を
含浸し、引き続き、全体をKOI(水溶液 に浸漬して
薄膜を形成し、真空乾燥して厚さ約200OAの薄層を
形成させることにより複合膜を作成した。
Examples 1 to 7 Thickness 125 μm with micropores having an average pore size of 0.05 μm
A porous cellulose ester membrane (trade name: 2 Millipore Membrane Filter; manufactured by Millibore Corporation) is impregnated with a salt solution (solvent: water) capable of producing various metal hydroxides, and then the whole is soaked in KOI (aqueous solution). A composite membrane was prepared by immersing it in water to form a thin film, and vacuum drying it to form a thin layer with a thickness of about 200 OA.

実施例8〜14 実施例1〜7の複合膜の多孔性膜側を電極本体である平
均孔径5μm1多孔度80チの ラネーニッケル板(厚
み:200μm)の片面に圧着した。
Examples 8 to 14 The porous membrane side of the composite membranes of Examples 1 to 7 was press-bonded to one side of a Raney nickel plate (thickness: 200 μm) having an average pore diameter of 5 μm and a porosity of 80 mm, which was the electrode body.

ついで、これらを2−塩化パラジウム溶液中に浸漬して
陰分極し、ラネーニッケル板の空孔内も含めて約0.5
μmの厚みでパラジウムを析出させ本発明の空気電極と
した。
Next, these were immersed in a 2-palladium chloride solution and cathodically polarized to give a polarization of about 0.5
Palladium was deposited to a thickness of μm to obtain an air electrode of the present invention.

比較例1〜5 厚み50μmのポリシロキサン膜(比較例1)、厚み2
0 Amの中密度ポリエチレン膜(比較例2)、厚み2
0 #ffiの二軸配向性ポリプロピレン膜(比較例3
)、厚み20μmのポリテトラフロロエチレン膜(比較
例4)、厚み20μmの市販FEP膜(比較例5)を用
いた。
Comparative Examples 1 to 5 Polysiloxane film with a thickness of 50 μm (Comparative Example 1), thickness 2
0 Am medium density polyethylene membrane (comparative example 2), thickness 2
0 #ffi biaxially oriented polypropylene film (Comparative Example 3
), a polytetrafluoroethylene membrane with a thickness of 20 μm (Comparative Example 4), and a commercially available FEP membrane with a thickness of 20 μm (Comparative Example 5) were used.

比較例6 塩化パラジウムの水溶液に活性炭粉末を懸濁した後、ホ
ルマリンで還元してパラジウム付活性炭粉末とした。つ
いで、この粉末を10〜15チのポリテトラフロロエチ
レンディスバージョンで防水処理を施し、更に結着剤と
してPTFE粉末を混合した後ロール圧延してシートと
した。このシートをニッケルネットに圧着して厚み0.
6.0電極本体とした。次に人造黒鉛粉末にPTFEデ
ィスパージョンを混合した後加熱処理して防水黒鉛粉末
とし、これに結着剤としてPTFE粉末を混合してロー
ル圧延した。得られたシートを上記した電極本体と圧着
して厚み1.6 vmの空気電極とした。
Comparative Example 6 Activated carbon powder was suspended in an aqueous solution of palladium chloride, and then reduced with formalin to obtain palladium-attached activated carbon powder. This powder was then waterproofed with 10 to 15 inches of polytetrafluoroethylene dispersion, mixed with PTFE powder as a binder, and rolled into a sheet. This sheet is crimped onto a nickel net to a thickness of 0.
6.0 electrode body. Next, the artificial graphite powder was mixed with a PTFE dispersion and then heat-treated to obtain a waterproof graphite powder, which was mixed with PTFE powder as a binder and rolled. The obtained sheet was crimped to the above-mentioned electrode main body to form an air electrode having a thickness of 1.6 vm.

比較例7 酸素ガス選択透過膜であるポリシロキサン膜(厚み50
μm)を平均孔径5μmで多孔度8〇−のラネーニッケ
ル板(厚み200μm)の片面に圧着した後、全体を2
%塩化パラジウム溶液中で陰分極してラネーニッケル板
の空孔内も含めて0.5μmのパラジウムを析出させ空
気電極とした。
Comparative Example 7 Polysiloxane membrane (thickness 50
μm) on one side of a Raney nickel plate (thickness: 200 μm) with an average pore diameter of 5 μm and a porosity of 80, and then
% palladium chloride solution to deposit palladium of 0.5 μm including inside the pores of the Raney nickel plate to form an air electrode.

比較例8 比較例6で製造した空気電極の空気側に塩化カルシウム
の水蒸気吸収層を付設した。
Comparative Example 8 A water vapor absorbing layer of calcium chloride was attached to the air side of the air electrode manufactured in Comparative Example 6.

実施例1〜7及び比較例1〜5に関しては、その膜のガ
ス透過性評価方法としてその複合膜の酸素透過速度(J
o、 : tri/wh−cd ・ashy ) をガ
スクロマトグラフを検出手段とする郷圧法で測定し、ま
た、水蒸気透過速度(JHlo : d/Ith・cr
l ・cIncy )をJISZ 0208(カップ法
)に準じた方法で測定し、この両者の比(Jon/ J
lI!o ) をガス透過比として算出した。
Regarding Examples 1 to 7 and Comparative Examples 1 to 5, the oxygen permeation rate (J
o, : tri/wh-cd・ashy) was measured by the pressure method using a gas chromatograph as a detection means, and the water vapor permeation rate (JHlo: d/Ith・cr
l ・cIncy) was measured according to JISZ 0208 (cup method), and the ratio of the two (Jon/J
lI! o) was calculated as the gas permeation ratio.

また、実施例8〜14及び比較例6〜8に関しては、そ
の評価方法として対極を重量比で3%の水銀アマルガム
化したゲル状亜鉛、電解液を水酸化カリウム、セパレー
タをボリアミド不織布として空気−亜鉛電池を組立てた
Regarding Examples 8 to 14 and Comparative Examples 6 to 8, the evaluation method was as follows: the counter electrode was a gelled zinc amalgamated with 3% mercury by weight, the electrolyte was potassium hydroxide, the separator was a polyamide nonwoven fabric, and air- I assembled a zinc battery.

これら10個の電池を25℃の空気中で16時間放置し
た後、各種電流で5分間放電し、5分後の端子電圧が1
.0v以下となるときの電流密度を測定した。また、4
5℃、90チの相対湿度の雰囲気中にこれら電池を保存
して電解液の漏洩状態を観察した。
After leaving these 10 batteries in air at 25°C for 16 hours, they were discharged with various currents for 5 minutes, and the terminal voltage after 5 minutes was 1.
.. The current density was measured when the current density was 0 V or less. Also, 4
These batteries were stored in an atmosphere of 5° C. and 90° relative humidity, and leakage of the electrolyte was observed.

更に、保存後の電池につき、上記と同様の放電試験を行
ない、そのときの電流値の初期電流値に対する比(イ)
を算出した。この算出値は、各電池の空気電極の劣化状
態の程度を表わし放電特性維持率といい得るものである
。この値の大きい電極#1ど劣化が小さいことを表わす
Furthermore, the battery after storage was subjected to a discharge test similar to the above, and the ratio of the current value to the initial current value (A) was calculated.
was calculated. This calculated value represents the degree of deterioration of the air electrode of each battery and can be called the discharge characteristic maintenance rate. This indicates that electrode #1 having a larger value has less deterioration.

また、各電極に添着されている被膜に関し、酸素ガス透
過速度をガスクロマトグラフをガス検出手段とする等圧
法で測定し、水蒸気透過速度をJISZO208(カッ
プ法) に準じた方法で測定し、両者の比を算出した。
In addition, regarding the coating attached to each electrode, the oxygen gas permeation rate was measured using an isobaric method using a gas chromatograph as the gas detection means, and the water vapor permeation rate was measured using a method based on JIS ZO208 (cup method). The ratio was calculated.

以上の結果を一括して、それぞれ、第1表及び第2表に
示した。
The above results are collectively shown in Table 1 and Table 2, respectively.

第1表 (15) 第2表 (16) 〔発明の効果〕 以上の説明で明らかなように、本発明の複合膜及びその
複合膜からなる空気電極は、空気中の水蒸気の透過を許
さず、酸素ガス選択透過能が大きいので、これを電極本
体と組合せて成る空気電極は、長時間に亘シ重負荷放電
が可能になるとともに、その保存性能も向上する。
Table 1 (15) Table 2 (16) [Effects of the Invention] As is clear from the above explanation, the composite membrane of the present invention and the air electrode made of the composite membrane do not allow the permeation of water vapor in the air. , has a high oxygen gas selective permeability, so an air electrode made by combining this with the electrode body can perform heavy load discharge over a long period of time, and its storage performance is also improved.

したがって、本発明の複合膜及びその複合膜からなる空
気電極の工業的価値は極めて大である。
Therefore, the industrial value of the composite membrane of the present invention and the air electrode made of the composite membrane is extremely large.

Claims (1)

【特許請求の範囲】 1、 多孔性膜の少なくとも片面が金属水酸化物の薄層
で被覆され、かつ、孔の内壁が金属水酸化物で含浸せし
められてなることを特徴とする酸素ガス選択透過性複合
膜。 2、該金属水酸化物が、水酸化スズ、水酸化亜鉛、水酸
化アルミニウム、水酸化マグネシウム、水酸化カルシウ
ム、水酸化ストロンチウム及び水酸化バリウムからなる
群より選ばれる少なくとも1種の化合物である特許請求
の範囲第1項記載の酸素ガス選択透過性複合膜。 3、 酸素ガスに対する電気化学的還元能を有し、かつ
集電体機能も併有する多孔質の電極本体と、該電極本体
のガス側表面に、孔の内壁が金属水酸化物で含浸された
多孔性膜を介して被覆された金属水酸化物の薄層とから
なることを特徴とする空気電極。 4、該金属水酸化物が、水酸化スズ、水酸化亜鉛、水酸
化アルミニウム、水酸化マグネシウム、水It化カルシ
ウム、水酸化ストロンチウム及び水酸化バリウムからな
る群よシ選ばれる少なくとも1種の化合物である特許請
求の範囲第3項記載の空気電極。
[Claims] 1. Oxygen gas selection, characterized in that at least one side of the porous membrane is coated with a thin layer of metal hydroxide, and the inner walls of the pores are impregnated with metal hydroxide. Permeable composite membrane. 2. A patent in which the metal hydroxide is at least one compound selected from the group consisting of tin hydroxide, zinc hydroxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide. The oxygen gas selectively permeable composite membrane according to claim 1. 3. A porous electrode body that has an electrochemical reduction ability for oxygen gas and also has a current collector function, and the inner wall of the pores on the gas side surface of the electrode body is impregnated with metal hydroxide. An air electrode characterized in that it consists of a thin layer of metal hydroxide coated via a porous membrane. 4. The metal hydroxide is at least one compound selected from the group consisting of tin hydroxide, zinc hydroxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide. An air electrode according to claim 3.
JP58151486A 1983-08-22 1983-08-22 Oxygen gas permselective composite membrane and air electrode comprising the same Pending JPS6044003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58151486A JPS6044003A (en) 1983-08-22 1983-08-22 Oxygen gas permselective composite membrane and air electrode comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58151486A JPS6044003A (en) 1983-08-22 1983-08-22 Oxygen gas permselective composite membrane and air electrode comprising the same

Publications (1)

Publication Number Publication Date
JPS6044003A true JPS6044003A (en) 1985-03-08

Family

ID=15519550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58151486A Pending JPS6044003A (en) 1983-08-22 1983-08-22 Oxygen gas permselective composite membrane and air electrode comprising the same

Country Status (1)

Country Link
JP (1) JPS6044003A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240473A (en) * 1992-09-01 1993-08-31 Air Products And Chemicals, Inc. Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture
US5240480A (en) * 1992-09-15 1993-08-31 Air Products And Chemicals, Inc. Composite mixed conductor membranes for producing oxygen
US5261932A (en) * 1992-09-01 1993-11-16 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs ion transport membranes
US5269822A (en) * 1992-09-01 1993-12-14 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs barium-containing ion transport membranes
WO2000036676A1 (en) * 1998-12-15 2000-06-22 Electric Fuel Limited An air electrode providing high current density for metal-air batteries

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240473A (en) * 1992-09-01 1993-08-31 Air Products And Chemicals, Inc. Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture
US5261932A (en) * 1992-09-01 1993-11-16 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs ion transport membranes
US5269822A (en) * 1992-09-01 1993-12-14 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs barium-containing ion transport membranes
US5240480A (en) * 1992-09-15 1993-08-31 Air Products And Chemicals, Inc. Composite mixed conductor membranes for producing oxygen
WO2000036676A1 (en) * 1998-12-15 2000-06-22 Electric Fuel Limited An air electrode providing high current density for metal-air batteries

Similar Documents

Publication Publication Date Title
US4483694A (en) Oxygen gas permselective membrane
US4599157A (en) Oxygen permeable membrane
EP0510107A1 (en) Electrochemical cathode and materials therefor
JPS6044003A (en) Oxygen gas permselective composite membrane and air electrode comprising the same
JPS59150508A (en) Preparation of oxygen gas permselective composite membrane
JPS5854564A (en) Porous catalyst layer for gas diffusion electrode
JPS6051505A (en) Gas selective composite membrane
JPS5998706A (en) Oxygen gas permselective composite membrane
JPS6051502A (en) Gas permselective composite membrane
JPS58225573A (en) Air electrode and its production method
JPS60133675A (en) Air electrode
JPS58225570A (en) Air electrode and its production method
JPS58225575A (en) Air electrode and its production method
JPS5999677A (en) Air electrode
JPS58225572A (en) Air electrode and its production method
JPS5933762A (en) Air electrode and its manufacture
JPS59151767A (en) Manufacture of air electrode
JPS58225571A (en) Air electrode and its production method
JPS58225574A (en) Air electrode and its production method
JPS5954175A (en) Manufacture of air electrode
JPS5994376A (en) Manufacture of air electrode
JPS58115768A (en) Air electrode and its manufacture
JPS60253161A (en) Air electrode
JPS60180063A (en) Air electrode
JPS5994377A (en) Manufacture of air electrode