JPS5854564A - Porous catalyst layer for gas diffusion electrode - Google Patents

Porous catalyst layer for gas diffusion electrode

Info

Publication number
JPS5854564A
JPS5854564A JP56153069A JP15306981A JPS5854564A JP S5854564 A JPS5854564 A JP S5854564A JP 56153069 A JP56153069 A JP 56153069A JP 15306981 A JP15306981 A JP 15306981A JP S5854564 A JPS5854564 A JP S5854564A
Authority
JP
Japan
Prior art keywords
metal
catalyst layer
thin layer
layer
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56153069A
Other languages
Japanese (ja)
Inventor
Toshiaki Nakamura
中村 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56153069A priority Critical patent/JPS5854564A/en
Publication of JPS5854564A publication Critical patent/JPS5854564A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a porous catalyst layer for a gas diffusion electrode capable of heavy load discharge, and having excellent leakage resistance, and long life by forming the porous catalyst layer into a double layer construction comprising a conductive porous body having reducing power to an oxygen gas, and a thin layer of a metal or metal oxide which accelerates the reducing power, formed on the surface of gas side of said conductive porous body. CONSTITUTION:A conductive porous body constituting a base material is made by forming conductive power having electrochemically reducing power to an oxygen gas, practically, formed by binding active carbon powder with a polytetrafluoroethylene binder. On the surface of the gas side of the conductive porous body, a thin layer of a metal or a metal oxide which accalerates the electrochemically reducing power to an oxygen gas is formed. A noble such as platinum, palladium, silver is used as this metal. As this metal oxide, a metal oxide such as MnO2, CuO: or perovskite type oxide such as CaTi O3, BaTi O3: or other perovskite type oxide such as La1-xSrxNiO3 obtained by adding small amount of other metal to above perovskite type oxide: or spinel type oxide such as MnAl2O4, FeAl2O4 is used. This thin layer is formed by a plasma spray process or a sputtering process. The thickness of this thin layer is limited to a range of 0.5-80mum.

Description

【発明の詳細な説明】 本発明は、水素/酸素燃料電池、金属/空気電池、又は
酸素センサ等に用いる空気電極に適用して有効なガス拡
散電極用多孔質触媒層に闘し、更に詳しくは、重負荷放
電が可能で、耐銅融にすぐれ、その結果、長期に亘る安
定した使用寿命を有するガス拡散電極用多孔質触媒層に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a porous catalyst layer for gas diffusion electrodes that is effective when applied to air electrodes used in hydrogen/oxygen fuel cells, metal/air cells, oxygen sensors, etc. The present invention relates to a porous catalyst layer for a gas diffusion electrode that is capable of heavy load discharge, has excellent resistance to copper melting, and as a result has a stable service life over a long period of time.

従来から、各種の空気電極にはガス拡散電極が用いられ
て−るoi&近、このガス拡散電極は、酸素ガスに対し
て電気化学的還元能を有する導電性の多孔質触媒層と、
該触媒層のガス側の表面K 一体的に添着される撥水性
層とから成る2層構造の電極として構成されてψる。
Conventionally, gas diffusion electrodes have been used for various air electrodes, and these gas diffusion electrodes include a conductive porous catalyst layer that has an electrochemical reduction ability for oxygen gas,
The electrode has a two-layer structure consisting of a gas-side surface K of the catalyst layer and an integrally attached water-repellent layer.

この場合、該触媒層として社、酸素還元過電圧の低いニ
ッケルタングステン酸、ノ譬ラジウム・コバルトで被覆
された炭化タングステン、ニッケル、銀、白金、ノ臂ラ
ジウムなどを活性炭粉末などの導電性粉末に相持せしめ
て成る粉末に、例えばポリテトラフロロエチレンを結着
剤として添加した後、これを金属多孔質体、カーボン多
孔質体、カーメン繊維不織布等と一体化することによっ
て作成される酸素ガス還元能を有する導電性の多孔質体
である。
In this case, as the catalyst layer, nickel tungstic acid with low oxygen reduction overpotential, tungsten carbide coated with radium and cobalt, nickel, silver, platinum, radium, etc. are combined with conductive powder such as activated carbon powder. For example, polytetrafluoroethylene is added as a binder to the powder, and then this is integrated with a porous metal body, a porous carbon body, a carmen fiber nonwoven fabric, etc. to reduce oxygen gas. It is an electrically conductive porous body.

また、上記多孔質体のガス側の表面に添着される撥水性
層は、ポリテトラ70ロエチレン、ポリテトラ7シロエ
チレンーヘキサフロロプロピレン共重合体、?リエチレ
ンーテトラ7aロエチレン共重合体等のフッ素樹脂又は
/ リプルピレン等から成る薄層であって、たとえば0
.2〜40μ粒径のこれら粉末の焼結体;これらの繊維
を加熱処理して不織布化した紙状のもの;同じく繊維布
状にしたもの;これらの粉末の一部を7フ化黒鉛に置き
かえたもの;これらの微粉末な増孔剤・潤滑油などと共
にロール加圧した後、加熱処理をしたフィルム状のもの
;あるいはロール加圧後熱処理をしないフィルム状のも
の等の多孔質薄層である。
The water repellent layer attached to the gas side surface of the porous body is made of polytetra 70 ethylene, polytetra 7 siloethylene-hexafluoropropylene copolymer, ? A thin layer made of a fluororesin such as polyethylene-tetra-7a polyethylene copolymer or /ripurpyrene, for example, 0
.. A sintered body of these powders with a particle size of 2 to 40μ; A paper-like product made by heating these fibers and made into a non-woven fabric; A similar product made into a fiber cloth; A part of these powders is replaced with graphite heptafluoride. A thin porous layer such as a film that is heat-treated after being rolled with these fine powder pore-forming agents and lubricating oil; or a film that is not heat-treated after being rolled. be.

また逆にこれら撥水性層の上に、上記した多孔質触媒層
の構成材料を、例えば塗着して触媒層を形成することも
行なわれている。
Conversely, it has also been practiced to form a catalyst layer by, for example, applying the above-mentioned constituent material of the porous catalyst layer onto these water-repellent layers.

しかしながら、このような構造のガス拡散電極にあって
は、重負荷放電、耐漏液性の点で難点がある。例えば、
フッ素樹脂の粉末を焼結した撥水性層を添着して成るガ
ス拡散電極にあっては、約2onIA/a1〜というか
なり重負荷の連続放電が可能となるが、その孔径分布は
不均一でかつ大孔径の孔が存在するため、対極における
体積膨張等が起る。その結果、電池内圧が上昇し、特に
密閉型の電池の場合には、漏液現象を引き起す傾向が大
となる◎更には、該電極全体の厚みが0.125〜0.
50.となり電池全体が大型化するという#1造面にお
ける欠点も生ずる。
However, a gas diffusion electrode having such a structure has drawbacks in terms of heavy load discharge and leakage resistance. for example,
A gas diffusion electrode made of a water-repellent layer made of sintered fluororesin powder is capable of continuous discharge under a fairly heavy load of about 2 onIA/a1, but its pore size distribution is uneven and Due to the presence of large-diameter pores, volume expansion and the like occur at the opposite electrode. As a result, the internal pressure of the battery increases, and especially in the case of a sealed battery, there is a strong tendency to cause a leakage phenomenon.Furthermore, the thickness of the entire electrode is 0.125~0.
50. Therefore, there is also a drawback in #1 construction that the entire battery becomes larger.

一方、撥水性層として耐電解液性・ガスろ過性の薄い無
孔フィルム(例えばFEP無孔M)を触媒層のガス側に
添着して成るガス拡散1!極は、その厚みを約12.5
μmtで薄くすることができるが、このときには、10
mA/cst以上の大電流を連続して放電することが極
めて困難となる。
On the other hand, gas diffusion 1 is made by attaching a thin nonporous film (for example, FEP nonporous M) with electrolyte resistance and gas filtration properties to the gas side of the catalyst layer as a water repellent layer! The pole has a thickness of about 12.5
It can be made thinner by μmt, but in this case, 10
It becomes extremely difficult to continuously discharge a large current of mA/cst or more.

また、活性飲、ニッケル等の粉末を主成分とLlこれに
ポリテトラフローエチレンの粉末を分散せしめてなるψ
わゆる享−″7oン結着型電極も知られているが、この
電極上親水性の表面がかなり施用しており、そのため該
露出面を通して電解液が徐々に触媒層を濡らすので、重
負荷放電特性の安宇性が阻害されるとともに1漏液を防
ぎ得ないと−う欠点があった。
In addition, ψ is made by dispersing polytetraflow ethylene powder into Ll, which is mainly composed of powders such as activated nickel and nickel.
A so-called 7-on bonded electrode is also known, but this electrode has a considerable amount of hydrophilic surface applied on it, so that the electrolyte gradually wets the catalyst layer through the exposed surface, so that heavy loads are not possible. There were disadvantages in that the stability of discharge characteristics was impaired and leakage could not be prevented.

これらの欠点の解消、とりゎけ重、負荷放電を可能とす
るために、多孔質触媒層の調製に当って、酸素ガスに対
して電気化学的還元能を有する導電性粉末の外に、更に
、該還元能を助長する触2′作用を示す白金、銀等の金
属;二酸化マンガン、酸化銅のような金属酸化物; C
aTi0. s BaTi0.のようなペロプスカイト
型金iI!酸化物又14 CoFe、 O,のようなス
ピネル型金属酸化勢で示される複合金属酸化物を添加し
て多孔質触媒層にすることが提案されている。複合金属
酸化物の場合、それ自体の微粉末を加圧成形して、多孔
質触媒層とすることも試みられている。
In order to eliminate these drawbacks, especially to enable heavy and load discharge, in addition to conductive powder that has an electrochemical reduction ability for oxygen gas, in addition to the conductive powder that has the ability to electrochemically reduce oxygen gas. , metals such as platinum and silver that exhibit a catalytic action that promotes the reducing ability; metal oxides such as manganese dioxide and copper oxide; C
aTi0. s BaTi0. Peropskite type gold II like! It has been proposed to form a porous catalyst layer by adding an oxide or a composite metal oxide exhibiting spinel-type metal oxidation potential, such as 14 CoFe, 2 O,. In the case of composite metal oxides, attempts have also been made to pressure mold fine powder of the composite metal oxide to form a porous catalyst layer.

しかしながら、これらの触媒層の調製においても種々の
問題点が指摘されている。例えば、活性炭粉末などの導
電性粉末に触媒作用を示す金属を担持せしめる場合、該
導電性粉末と該金属の塩溶液とを混合し、これを還元若
しくは加熱処理して該金属基しくはその酸化物を該導電
性粉末に付着せしめるという方法が一般には行なわれる
が、このとき、該導電性粉末の表面を該金属の塩溶液で
均一に潟らすことがはなはだ困難であり、そのため、触
媒の分布が不均一になる。その結果、多孔質触媒層を成
形したとき、触媒層の有効反応面積が小さくなり、重負
荷放電特性が予想に反し息くなるという事態を招いてい
る。
However, various problems have been pointed out in the preparation of these catalyst layers. For example, when supporting a metal that exhibits a catalytic action on a conductive powder such as activated carbon powder, the conductive powder and a salt solution of the metal are mixed, and this is reduced or heat-treated to remove the metal group or its oxidation. Generally, a method is used in which a substance is attached to the conductive powder, but at this time, it is extremely difficult to coat the surface of the conductive powder uniformly with the salt solution of the metal. The distribution becomes uneven. As a result, when the porous catalyst layer is formed, the effective reaction area of the catalyst layer becomes small, resulting in a situation where the heavy load discharge characteristics become unexpectedly poor.

また、二酸化マンガンなどの金属酸化物を導電性粉末に
添加する場合、一般にこれら金ji1m化物の微粉末と
該導電性粉末とを混合し、得られた混合物を成形すると
いう方法が採られる。このとき、金属酸化物の微粉末と
導電性粉末とけ互いに分散しあっているが、この分散状
態は必ずしも均一ではないので、得られた触媒層の重負
荷放電特性の顕著な改善社みられず、むしろ悪化する場
合か生ずる。
Furthermore, when adding a metal oxide such as manganese dioxide to conductive powder, a method is generally adopted in which the fine powder of gold jiimide and the conductive powder are mixed and the resulting mixture is molded. At this time, the metal oxide fine powder and the conductive powder are dispersed with each other, but this dispersion state is not necessarily uniform, so there is no significant improvement in the heavy load discharge characteristics of the resulting catalyst layer. In fact, it may even get worse.

更に、各種の複合金属酸化物それ自体を加圧成形して多
孔質触媒層にすることも行なわれているが、この場合は
、導電性粉末か存在しないので得られ念触媒層の電子伝
導性が低下し、その結果、重負荷放電の低下をもたらす
という事態も拍〈。
Furthermore, various composite metal oxides themselves have been pressure-molded to form porous catalyst layers, but in this case, since there is no conductive powder, the electronic conductivity of the resulting psychocatalyst layer is low. There is also a situation where the discharge rate decreases, resulting in a decrease in heavy load discharge.

なお、上記の方法はいずれも多孔質触媒層の耐漏液性の
改善という点では資することがない。
Note that none of the above methods contributes to improving the leakage resistance of the porous catalyst layer.

そこで、本発明者は、 多孔質触媒層の中に、酸素ガス
に対して電気化学的還元能を有する導電性粉末の該還元
能を助長する触媒作用を示す物質を分散担持させるので
はなく、該触媒作用を示す物質を該触媒層のガス(空気
)側表面に添着すれば、導電性粉末と該触媒作用を示す
物質の特性をそれぞれ生かし得るとの着想を得、鋭意研
究を重ねた結果、本発明を完成するに到った。
Therefore, the inventor of the present invention did not disperse and support in the porous catalyst layer a substance that exhibits a catalytic action that promotes the reducing ability of a conductive powder that has the ability to electrochemically reduce oxygen gas. After intensive research, we came up with the idea that by attaching a substance that exhibits catalytic activity to the gas (air) side surface of the catalyst layer, we could take advantage of the characteristics of both the conductive powder and the substance that exhibits catalytic activity. , we have completed the present invention.

本発wAF1、重負荷放電が可能でかつ耐漏液性にすぐ
れ翫その結果、使用寿命の永いガス拡散電極の多孔質触
媒層の提供を目的とする。
The object of the present invention is to provide a porous catalyst layer for a gas diffusion electrode that is capable of heavy load discharge and has excellent leakage resistance, and as a result has a long service life.

本発明の多孔質触媒層は、酸素ガスに対し電気化学的還
元能を有する導電性多孔質体と;該導電性多孔質体のガ
ス側表面に形成され、該還元能に対し触媒作用を示す金
属又は金属酸化物の薄層とから成ることを特徴とする。
The porous catalyst layer of the present invention includes an electrically conductive porous body that has an electrochemical reducing ability for oxygen gas; and is formed on the gas side surface of the electrically conductive porous body and exhibits a catalytic effect on the reducing ability. A thin layer of metal or metal oxide.

本発明の触媒層は2M141!全体である。基材となる
導電性多孔質体は、前述したような酸素ガスに対し電気
化学的還元能を有する導電性粉末を成形して成るもので
ある。通常、活性炭の粉末をポリテトラ70ロエチレン
のような結着剤で結着せしめたものが好んで用いられる
The catalyst layer of the present invention is 2M141! It is the whole. The conductive porous body serving as the base material is formed by molding a conductive powder having an electrochemical reducing ability against oxygen gas as described above. Generally, activated carbon powder bound with a binder such as polytetra 70 ethylene is preferably used.

該導電性多孔置体のガス側表面には、酸素ガスの電気化
学的還元能を促進する金属又祉金h4酸化物の薄層が形
成される。
On the gas-side surface of the conductive porous body is formed a thin layer of metal or metal H4 oxide that promotes the electrochemical reduction ability of oxygen gas.

このような金属としては、従来からガス拡lki*極の
触媒層の調製に用いられている金属であれば何を用いて
もよく、例えば、白金、パラジウム、銀のような貴金属
をあけることができる。
As such a metal, any metal that has been conventionally used for preparing the catalyst layer of gas expansion lki* electrodes may be used. For example, noble metals such as platinum, palladium, and silver may be used. can.

また、金属酸化物としては、上記還元能に対し触媒作用
を示すものであれば何を用いてもよいが、Mn、QいC
uO1B 1ffi Osのような通常の金員酸化物;
CaTi0.、BaTi0.、、LllFeO,のよう
なペロブスカイト型酸化物及びこれに他の金属が少量添
加して成る例えばLat−xSrxNioj−、Nd1
−xsrxc@0B (0<x〈1)のようなペロブス
カイト型酸化物;MnAj、 0.、FeAlt 04
、Co Few 04  のようなスピネル型酸化物な
どをあけることができる。
Further, as the metal oxide, any metal oxide may be used as long as it exhibits a catalytic effect on the above-mentioned reducing ability, but Mn, QC,
Ordinary gold member oxides such as uO1B 1ffi Os;
CaTi0. , BaTi0. , LllFeO, and a small amount of other metal added thereto, such as Lat-xSrxNioj-, Nd1
-xsrxc@0B (0<x<1) such as perovskite oxide; MnAj, 0. , FeAlt 04
, Co Few 04 and other spinel type oxides.

これら金属又は金属酸化物の薄層は、プラズマ溶射法、
スパッタ法、蒸着法などの常用される薄膜形成法を適用
して形成されるが、薄層な形成する金属又は金属酸比倫
が高融点を有することからして、プラズマ溶射法が好ん
で用いられる。薄層の厚みF1ζ通常、0.5〜80 
Amの範1!にあることが、ガス(空気)透過性の点か
らして好ましい。
These thin layers of metals or metal oxides can be deposited by plasma spraying,
It is formed by commonly used thin film forming methods such as sputtering and vapor deposition, but plasma spraying is preferred because the metal or metal acid that forms the thin layer has a high melting point. It will be done. Thin layer thickness F1ζ usually 0.5-80
Am range 1! From the viewpoint of gas (air) permeability, it is preferable that the

本発明の触媒層は以上のように構成されるから、薄層と
導電性多孔質体の機能が相互に妨害されることなく維持
され、しかも薄層を透過してきたガス(空気)がいわば
還元4され易すい状1!I#IC活性化されて多孔質体
中に拡散するので、その電気化学的還元が一層確実かつ
迅速に行なわれるようになる。
Since the catalyst layer of the present invention is constructed as described above, the functions of the thin layer and the conductive porous body are maintained without mutual interference, and the gas (air) that has permeated through the thin layer is reduced, so to speak. 4 easy to get 1! Since I#IC is activated and diffuses into the porous body, its electrochemical reduction can be performed more reliably and quickly.

また、形成された薄層は緻密質であり、電解液に対して
は不透過性なので、漏液の虞れは殆んど解消する。
Further, the formed thin layer is dense and impermeable to the electrolyte, so the risk of leakage is almost eliminated.

なお、該薄層の表面に1更に、前述した撥水性層を添着
すれば多孔質触媒層の漏液はfiff完全に防止でき、
長期に亘る保存性を得ることができる。
In addition, if the above-mentioned water-repellent layer is further attached to the surface of the thin layer, leakage of the porous catalyst layer can be completely prevented.
It is possible to obtain long-term storage stability.

以下に、本発明を実施例に基づいて説明する。The present invention will be explained below based on examples.

実施例 (1)  多孔質触媒層の調製 平均100μmの活性炭粉末に、平均粒径15μのポリ
テトラ70ロエチレンの粉末を20重歓%添加して混合
した。得られた混合物を定法によりロール圧延して厚み
0.3−の導電性多孔質シート4枚を成形した。該シー
Fの片面に、40メツシユ、0.15φのニッケル金網
な集電体として圧着した。
Example (1) Preparation of Porous Catalyst Layer To activated carbon powder with an average particle size of 100 μm, 20% by weight of polytetra 70 ethylene powder with an average particle size of 15 μm was added and mixed. The resulting mixture was rolled by a conventional method to form four conductive porous sheets each having a thickness of 0.3 mm. A 40 mesh, 0.15φ nickel wire mesh current collector was crimped onto one side of the seam F.

4枚の集電体付きシートの他の面にそれぞれ以下の条件
のプラズマ溶射法を適用して試料1〜4の多孔質触媒層
を調製した。
Porous catalyst layers of Samples 1 to 4 were prepared by applying a plasma spraying method under the following conditions to the other surfaces of the four sheets with current collectors.

試料1:アーク電力100 KW 、プラズマ雰囲気が
Nt ”−Hz 混合ガス中に、平均粒径63μmの銀
粉宋を送入し、粒速度 150m/36Cで5秒吹きつけた0厚み20μmの銀
薄層が形成された。ついで、 銀薄層の上に1厚み100μm1平均孔径5μmのポリ
テトラ70pエチレン フイルムを圧着して厚木α7■の電極としたO 試料2 : fラズマ雰囲気なアルゴンに代え、銀粉末
の代わりに平均粒径50μmの Ndce 8ro、t Co Osで示されるぺ胃プス
ヵイ)It酸化物を用−たことを除−ては、試料1の場
合と同様忙して、厚み18 μmの薄層を形成した。試料1と同様 にしてポリテトラフロロエチレンフィ ルムを圧着して厚み0.7.0電極としたO 試料3 : Nd64 sr@、I Coo、の代わり
に平均粒径6゜μmのL”o、* &e、s Ni0B
  テ示’1JtL!へ0ツスカイ)型酸化物を用−た
ことを除 いては、試料2の場合と同様にして薄 層形成を行なった。厚み17μmの Lao、* Sr6.、 N1psの薄層が形成された
〇試料1,2と同様にしてポリテトラ7 atyエチレンフイルムtBJlILテo、7簡の電極
とした。
Sample 1: Silver powder with an average particle size of 63 μm was introduced into a mixed gas with an arc power of 100 KW and a plasma atmosphere of Nt”-Hz, and a thin silver layer with a thickness of 20 μm was sprayed at a particle speed of 150 m/36 C for 5 seconds. Next, a polytetra 70p ethylene film with a thickness of 100 μm and an average pore size of 5 μm was bonded onto the thin silver layer to make an electrode of Atsugi α7. A thin layer with a thickness of 18 μm was prepared in the same manner as in sample 1, except that an It oxide (denoted as Ndce 8ro, tCoOs) with an average particle size of 50 μm was used instead. In the same manner as Sample 1, a polytetrafluoroethylene film was crimped to make an electrode with a thickness of 0.7.0. Sample 3: Nd64 sr@, I Coo, with an average particle size of 6゜μm instead of L'' o, * &e,s Ni0B
Show '1JtL! Thin layer formation was carried out in the same manner as in Sample 2, except that an oxide of the type oxide was used. Lao, *Sr6. with a thickness of 17 μm. , N1 ps thin layer was formed. In the same manner as Samples 1 and 2, a polytetra 7 aty ethylene film tBJlIL theo and 7 strip electrodes were prepared.

試料4:アーク電力150に%V、グラズマ雰匪気N、
中に、平均粒径50jIlallDCoFel 04で
示されるスピネル型酸化物の粉末な 送入し、粒速度145m/SeCで5秒吹きつけた。厚
み20μmのCoFe、 04の薄層が形成された。試
料1〜3と同様にし てポリテトラフロロエチレンフィルム を圧着して厚み0.7iaIの電極とした。
Sample 4: arc power 150%V, glazma atmosphere N,
A spinel type oxide powder having an average particle size of 50jIllallDCoFel 04 was introduced into the reactor and sprayed at a particle speed of 145 m/SeC for 5 seconds. A thin layer of CoFe, 20 μm thick was formed. In the same manner as Samples 1 to 3, a polytetrafluoroethylene film was crimped to obtain an electrode having a thickness of 0.7 iaI.

つぎに、試料1〜4で用いたのと同種の活性炭粉末(平
均粒径100μm)に、平均粒径80μmの銀、NdO
,@ Sro、1 coo、、La0、@ 5r(1,
a Nto、 、CoFe2 o。
Next, activated carbon powder (average particle size 100 μm) of the same type as used in Samples 1 to 4 was added with silver and NdO with an average particle size of 80 μm.
,@Sro,1 coo,,La0,@5r(1,
a Nto, , CoFe2 o.

の粉末をそれぞれ10重量弧配合し、更に平均粒径15
#mのポリテトラフロロエチレンの粉末を結着剤として
それぞれ20重蓋襲配合して、得られた配合物を定法に
よりp−ル圧延して厚み0.7關の導電性多孔質シート
4枚を作成し、それらの片面には40メツシユ、15・
φのニッケル金網ヲ圧着した・これらを、試料5(銀配
合)、試料6(Nde、s Sr6.I Cods配合
)、試料7 (La、 Sro、s NiQ配合)、試
料8 (CoFet o4配合)とした。ついで、これ
ら試料の他の面に1厚み100μm1平均孔径5μmの
ポリテトラ70ロエチレンフイルムを圧着して電極とし
た。
10 weight arcs of each powder were blended, and the average particle size was 15%.
#m polytetrafluoroethylene powder was mixed as a binder in 20 layers each, and the resulting mixture was rolled by a standard method to form 4 conductive porous sheets with a thickness of about 0.7 mm. , and one side of them has 40 meshes and 15.
φ nickel wire mesh was crimped. These were sample 5 (silver blend), sample 6 (Nde, s Sr6.I Cods blend), sample 7 (La, Sro, s NiQ blend), and sample 8 (CoFe o4 blend). And so. Next, a polytetra 70 ethylene film having a thickness of 100 μm and an average pore diameter of 5 μm was crimped onto the other surface of each of these samples to form an electrode.

以上8種額の電極を用い、水酸化す)9ウム水溶液中に
グル化剤を分散せしめたグル状電解液に、量比で3%の
水銀でアマルガム化した60〜150メツシユパスの亜
鉛粉末を分散して成る亜鉛極を対極とし、?リアミド不
織布を七ノやレータとして空気−亜鉛電池8個を組立て
た。
Using the above 8 types of electrodes, 60 to 150 mesh pass of zinc powder amalgamated with 3% mercury was added to a glue-like electrolyte solution in which a gluing agent was dispersed in a 9 um hydroxide aqueous solution. Using a dispersed zinc electrode as a counter electrode, ? Eight air-zinc batteries were assembled using Liamide non-woven fabric as a nanaya layer.

(2)放電特性、耐漏液性試験 これら8個の電池を空気中で16時間放置した後、各種
の電流で5分間放電し、5分後の端子電圧が1.0v以
下になる電流値を測定した。また、これら電池を45 
℃、相対湿度90憾の雰囲気中に保存し、漏液するまで
の日数を測定した。
(2) Discharge characteristics and leakage resistance test After these eight batteries were left in the air for 16 hours, they were discharged with various currents for 5 minutes, and the current value was determined so that the terminal voltage after 5 minutes was 1.0 V or less. It was measured. Also, these batteries are 45
It was stored in an atmosphere at a relative humidity of 90° C. and the number of days until leakage occurred was measured.

以上の結果を各試料番号に対応させて一括して表に示し
た。
The above results are collectively shown in a table in correspondence with each sample number.

表から明らかなように1本発明の多孔質触媒層を用いた
空気電池は、いずれも重負荷放電が可能でしかも漏液に
到るまでの日数が極めて長く、安定した長期寿命を有す
ることが判明した。
As is clear from the table, all air batteries using the porous catalyst layer of the present invention are capable of heavy load discharge, and the number of days until leakage is extremely long, indicating that they have a stable long life. found.

なお上記実施例においては水酸化カリウムを電解液とす
る空気−亜鉛電池を組み立てて、その性能評価を行った
が、他の電解液、例えば塩化アンモニウムや水酸化ナト
リウムや、水酸化リチウム・水酸化セシウム・水着化ル
ビジウム略をこれら溶液に混合した溶液を用いても同様
の効果が得られる事は言うまでもない。又空気−鉄電池
にも用いる事ができる。
In the above example, an air-zinc battery using potassium hydroxide as the electrolyte was assembled and its performance was evaluated. However, other electrolytes such as ammonium chloride, sodium hydroxide, lithium hydroxide/hydroxide It goes without saying that the same effect can be obtained by using a solution in which cesium or hydrated rubidium is mixed with these solutions. It can also be used in air-iron batteries.

以上詳述した如く、本発明の多孔質触媒層な用いる事に
より、使用寿命の長く、重負荷放電可能で、更には耐漏
液性に優れえ空気電極が容易に得られるので、その工業
上利用励値は大きなものと言える。
As detailed above, by using the porous catalyst layer of the present invention, it has a long service life, is capable of heavy load discharge, has excellent leakage resistance, and can easily obtain an air electrode, so that it can be used for industrial purposes. The excitation value can be said to be large.

Claims (1)

【特許請求の範囲】 1、酸素ブスに対し電気化学的還元能を有する導電性多
孔質体と; 該導電性多孔質体のガス側表面に形成され、該還元能に
対し触媒層、用を示す金属又は金属増化愉の薄層とから
成ることをiとするガス拡散電極用多孔質触媒層0 2、該薄層がプラズマ溶射法で形成された特許請求の範
囲第1項記載のガス拡散電極用多孔質触媒層。
[Claims] 1. A conductive porous body having an electrochemical reducing ability for oxygen bus; A porous catalyst layer for a gas diffusion electrode 02 consisting of a thin layer of a metal or a metal-enriched material shown in FIG. Porous catalyst layer for diffusion electrodes.
JP56153069A 1981-09-29 1981-09-29 Porous catalyst layer for gas diffusion electrode Pending JPS5854564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56153069A JPS5854564A (en) 1981-09-29 1981-09-29 Porous catalyst layer for gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56153069A JPS5854564A (en) 1981-09-29 1981-09-29 Porous catalyst layer for gas diffusion electrode

Publications (1)

Publication Number Publication Date
JPS5854564A true JPS5854564A (en) 1983-03-31

Family

ID=15554300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56153069A Pending JPS5854564A (en) 1981-09-29 1981-09-29 Porous catalyst layer for gas diffusion electrode

Country Status (1)

Country Link
JP (1) JPS5854564A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109989A (en) * 1985-10-16 1987-05-21 メタルゲゼルシャフト・アクチエンゲゼルシャフト Electric catalyst gas diffusion electrode and its formation
DE4104838A1 (en) * 1991-02-16 1992-08-20 Abb Patent Gmbh CERAMIC MATERIAL FOR PRODUCING A REINFORCING LAYER FOR THE AIR ELECTRODE OF A FUEL CELL WITH SOLID ELECTROLYTE
JP3095245B2 (en) * 1989-12-26 2000-10-03 オリン コーポレイション Electrochemical chlorine dioxide generator
WO2001035435A1 (en) * 1999-11-12 2001-05-17 Orion Electric Co., Ltd. Electron tube cathode and method for manufacturing the same
JP2015509611A (en) * 2012-03-08 2015-03-30 ネクステック、マテリアルズ、リミテッドNextech Materials, Ltd. Amperometric solid electrolyte gas sensor and detection method wherein the sensing electrode comprises at least one tungstate or molybdate compound
CN105126614A (en) * 2015-10-08 2015-12-09 张哲夫 Low-temperature plasma gas deodorization device
CN109637836A (en) * 2018-12-14 2019-04-16 山东大学 A kind of manganous fluoride ammonium/manganese dioxide composite material and preparation method thereof
WO2024066179A1 (en) * 2022-09-30 2024-04-04 五邑大学 Surface-modified perovskite oxide electrocatalyst as well as preparation method therefor and use thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109989A (en) * 1985-10-16 1987-05-21 メタルゲゼルシャフト・アクチエンゲゼルシャフト Electric catalyst gas diffusion electrode and its formation
JP3095245B2 (en) * 1989-12-26 2000-10-03 オリン コーポレイション Electrochemical chlorine dioxide generator
DE4104838A1 (en) * 1991-02-16 1992-08-20 Abb Patent Gmbh CERAMIC MATERIAL FOR PRODUCING A REINFORCING LAYER FOR THE AIR ELECTRODE OF A FUEL CELL WITH SOLID ELECTROLYTE
WO2001035435A1 (en) * 1999-11-12 2001-05-17 Orion Electric Co., Ltd. Electron tube cathode and method for manufacturing the same
JP2015509611A (en) * 2012-03-08 2015-03-30 ネクステック、マテリアルズ、リミテッドNextech Materials, Ltd. Amperometric solid electrolyte gas sensor and detection method wherein the sensing electrode comprises at least one tungstate or molybdate compound
CN105126614A (en) * 2015-10-08 2015-12-09 张哲夫 Low-temperature plasma gas deodorization device
CN109637836A (en) * 2018-12-14 2019-04-16 山东大学 A kind of manganous fluoride ammonium/manganese dioxide composite material and preparation method thereof
WO2024066179A1 (en) * 2022-09-30 2024-04-04 五邑大学 Surface-modified perovskite oxide electrocatalyst as well as preparation method therefor and use thereof

Similar Documents

Publication Publication Date Title
US4599157A (en) Oxygen permeable membrane
EP0097770B1 (en) Oxygen gas permselective membrane
JPS6321315B2 (en)
JP2009518795A (en) Bifunctional air electrode
JPS5854564A (en) Porous catalyst layer for gas diffusion electrode
JPS62140369A (en) Current lead-out unit for metal oxide electrode coupled withalkaline electrolyte
JP6475143B2 (en) Lithium air secondary battery and method for manufacturing the same
JPS6044003A (en) Oxygen gas permselective composite membrane and air electrode comprising the same
JPS58225573A (en) Air electrode and its production method
JPS6051505A (en) Gas selective composite membrane
JPS5854563A (en) Catalyst layer for air electrode
JPS58225571A (en) Air electrode and its production method
JPS5933762A (en) Air electrode and its manufacture
JPS58225570A (en) Air electrode and its production method
JPS59186265A (en) Method for manufacture of gas diffusion electrode for battery
JPS60133675A (en) Air electrode
JPS58225575A (en) Air electrode and its production method
JPH0245301B2 (en)
JPS60180063A (en) Air electrode
JPS5958759A (en) Air electrode and its manufacture
JPS60167270A (en) Oxidation electrode for molten salt fuel cell
JPS58225574A (en) Air electrode and its production method
JPS6318301B2 (en)
JPS60253161A (en) Air electrode
JPS59151767A (en) Manufacture of air electrode