JPS59151767A - Manufacture of air electrode - Google Patents

Manufacture of air electrode

Info

Publication number
JPS59151767A
JPS59151767A JP58023756A JP2375683A JPS59151767A JP S59151767 A JPS59151767 A JP S59151767A JP 58023756 A JP58023756 A JP 58023756A JP 2375683 A JP2375683 A JP 2375683A JP S59151767 A JPS59151767 A JP S59151767A
Authority
JP
Japan
Prior art keywords
porous
air
air electrode
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58023756A
Other languages
Japanese (ja)
Inventor
Shinji Tsuruta
鶴田 慎司
Nobukazu Suzuki
鈴木 信和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58023756A priority Critical patent/JPS59151767A/en
Publication of JPS59151767A publication Critical patent/JPS59151767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide an air electrode with good oxygen gas selective permeability and no permeability of water vapor and carbon dioxide in the air by bonding a complex film obtained by gelling sol solution of metal oxide in contact with a porous film, on the air side surface of a porous electrode main body having electrochemically reducing ability to oxygen gas and current collecting function. CONSTITUTION:A sol solution such as SnO2, ZnO, Al2O3 which is spreaded or impregnated in a porous film such as porous polypropylene, porous cellulose ester, or porous polycarbonate is gelled by removing and drying dispersion medium in the atmosphere and it is complexed with a porous film to form a complex film. The complex film is placed on the air side surface of an air electrode main body comprising silver filter, Raney nickel, a sinter of silver or nickel, metal foams, a compressed body of nickel plated stainless steel fine wires, or gold, palladium, or silver plated those compressed bodies, and they are bonded by a roll, press, or heating. A battery having this air electrode has good high rate discharge performance and leakage resistance.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、水素/酸素燃料電池、空気/金属電池、酸素
センサ用の空気電極の製造方法に関し、更に詳しくは、
酸素ガスに対する選択透過性に優れ、薄くても長時間に
亘シ重負荷放電が可能で、保存性能にも優れた空気電極
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an air electrode for a hydrogen/oxygen fuel cell, an air/metal cell, or an oxygen sensor.
The present invention relates to a method for manufacturing an air electrode that has excellent permselectivity for oxygen gas, is capable of long-term heavy load discharge even if it is thin, and has excellent storage performance.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から、各種の燃料電池、空気/亜鉛電池をはじめと
する空気金属電池やがルパニ屋の酸素センサなどの空気
電極には、ガス拡散電極が用いられてきている。このガ
ス拡散電極としては、初期には均一な孔径分布を有する
浮型の多孔質電極が用いられてきたが、最近では、酸素
ガスに対する電気化学的還元能(酸素をイオン化する)
を有し、かつ集電体機能も併有する多孔質の電極本体と
、該電極本体の空気側表面に一体的に添着される撥水性
ンートとから成る2層構造の電極が多用されている。
Conventionally, gas diffusion electrodes have been used as air electrodes in various fuel cells, air metal batteries such as air/zinc batteries, and oxygen sensors of Lupani stores. Initially, floating porous electrodes with a uniform pore size distribution were used as gas diffusion electrodes, but recently, electrochemical reduction ability for oxygen gas (ionization of oxygen) has been used.
Electrodes with a two-layer structure consisting of a porous electrode body that also has a current collector function and a water-repellent layer that is integrally attached to the air-side surface of the electrode body are often used.

−この場合、電極本体は主として、酸素ガス還元過電圧
の低いニッケルタングステン酸;ツクラジウム・コバル
トで被覆された炭化タンメステン;ニッケル・銀・白金
・ツクラジウムなどを活性炭粉末のような導電性粉末に
担持せしめて成る粉末;々どに4リテトラフロロエチレ
ンのような結着剤を添加した後、これを金属多孔質体、
カーぎン多孔質体、カーデン繊維の不織布などと一体化
したものが用いられている。
- In this case, the electrode body is mainly made of nickel tungstic acid, which has a low oxygen gas reduction overvoltage; tungsten carbide coated with tsucladium and cobalt; nickel, silver, platinum, tsucladium, etc. supported on conductive powder such as activated carbon powder. After adding a binder such as 4-tetrafluoroethylene to each powder, it is made into a porous metal body,
A material integrated with a carden porous material, a nonwoven fabric of carden fiber, etc. is used.

また、電極本体の空気側表面に、添着される撥水性シー
トは、主にポリテトラフロロエチレン、テトラフロロエ
チレンーヘキサフロログロピレン共重合体、エチレン−
テトラフロロエチレン共重合体などのフッ素樹脂、又は
ポリプロピレンなどの樹脂から構成される薄膜であって
、例えば、粒径0.2〜40μmのこれら樹脂粉末の焼
結体;これら樹脂の繊維を加熱処理して不織布化した紙
状のもの;同じく繊維布状のもの;これら樹脂の粉末の
一部をフッ化黒鉛で置きかえたもの;これらの微粉末を
増孔剤・潤滑油などと共にロール加圧してから加熱処理
したフィルム状のもの、もしくはロール加圧後加熱処理
をしないフィルム状のもの;などの微細孔を分布する多
孔性の薄膜である。皆、。
In addition, the water-repellent sheet attached to the air-side surface of the electrode body is mainly made of polytetrafluoroethylene, tetrafluoroethylene-hexafluoroglopyrene copolymer, ethylene-
A thin film made of a fluororesin such as a tetrafluoroethylene copolymer or a resin such as polypropylene, for example, a sintered body of powder of these resins with a particle size of 0.2 to 40 μm; fibers of these resins are heat-treated. A paper-like material that is made into a non-woven fabric; A fiber-cloth-like material that also has the shape of a fiber cloth; A product that replaces a portion of these resin powders with fluorinated graphite; It is a porous thin film in which fine pores are distributed, such as a film-like film that has been heat-treated from scratch, or a film-like film that has not been heat-treated after being rolled. all,.

しかしながら、上記した従来構造の空気電極において、
電極本体の空気側表面に添着されている撥水性シートは
、電解液に対しては一応不透過性であるが、空気又は空
気中の水蒸気に対しては不透過性ではない。
However, in the air electrode of the conventional structure described above,
The water-repellent sheet attached to the air-side surface of the electrode body is impermeable to the electrolyte, but not to air or water vapor in the air.

そのため、例えば空気中の水蒸気が撥水性シートを通過
して電極本体に侵入しその結果電解液を稀釈したシ、ま
たは逆に電解液中の水が水蒸気として撥水性シートから
放散してしまい電解液を濃縮することがある。この結果
、電解液の濃度が変動して安定した放電を長時間に亘り
維持することができなくなるという事態を生ずる。
Therefore, for example, water vapor in the air may pass through the water-repellent sheet and enter the electrode body, diluting the electrolyte, or conversely, water in the electrolyte may dissipate from the water-repellent sheet as water vapor, causing the electrolyte to dissolve. may be concentrated. As a result, the concentration of the electrolyte fluctuates, resulting in a situation where stable discharge cannot be maintained for a long time.

更には、空気中の炭酸ガスが撥水性シートを通過して電
極本体内に侵入して活性層(電極本体の多孔質部分)に
吸着した場合、その部位の酸素ガスに対する電気化学的
還元能が低下して重負荷放電が阻害される。また、電解
液がアルカリ電解液の場合には、電解液の変質、濃度の
低下又は陰極が亜鉛のときには該亜鉛陰極の不働態化な
どの現象を引き起こす。更には、活性層で、炭酸塩を生
成して孔を閉塞し、電気化学的還元が行なわれる領域を
減少させるので重負荷放電が阻害される。
Furthermore, when carbon dioxide gas in the air passes through the water-repellent sheet and enters the electrode body and is adsorbed to the active layer (the porous part of the electrode body), the electrochemical reduction ability for oxygen gas at that part is reduced. This decreases and inhibits heavy load discharge. In addition, when the electrolyte is an alkaline electrolyte, phenomena such as deterioration of the electrolyte, decrease in concentration, or passivation of the zinc cathode when the cathode is zinc are caused. Moreover, in the active layer, carbonates are formed to block the pores and reduce the area where electrochemical reduction can take place, thereby inhibiting heavy load discharge.

このようなことは、製造した電池を長期間保存しておく
場合、又は、長期間使用する場合、電池の性能が設計規
準から低下するという事態を招く。
This causes a situation in which the performance of the battery deteriorates from the design standard when the manufactured battery is stored or used for a long period of time.

このため、空気電極の撥水性シートの空気側に更に塩化
カルシウムのような水分吸収剤又はアルカリ土類金属の
水酸化物のような炭酸ガス吸収剤の層を設けた構造の電
池が提案されている。これは、上記したような不都合な
事態をある程度防止することはできるが、ある時間経過
後、これら吸収剤が飽和状態に達しその吸収能力を喪失
すれば、その効果も消滅するのでなんら本質的な解決策
ではあり得ない。
For this reason, a battery has been proposed in which a layer of a moisture absorbent such as calcium chloride or a carbon dioxide absorbent such as alkaline earth metal hydroxide is further provided on the air side of the water-repellent sheet of the air electrode. There is. This can prevent the above-mentioned inconveniences to some extent, but if these absorbents reach a saturated state and lose their absorption capacity after a certain period of time, the effect disappears, so there is no essential effect. It can't be a solution.

〔発明の目的〕[Purpose of the invention]

本発明は、従来構造の以上のような欠点を解消し、酸素
ガスの選択透過性に優れ、また、空気中の水蒸気又は炭
酸fスが電極本体内に侵入せず、したがって長期に亘る
重負荷放電が可能で保存性能にも優れた薄い空気電極の
製造方法の提供を目的とする。
The present invention eliminates the above-mentioned drawbacks of the conventional structure, has excellent permselectivity for oxygen gas, and prevents water vapor or carbon dioxide from entering the electrode body, so that it can withstand heavy loads for a long period of time. The purpose of the present invention is to provide a method for manufacturing a thin air electrode that is capable of discharging and has excellent storage performance.

〔発明の概要〕[Summary of the invention]

本発明は、微細開孔を分布する多孔性膜に金属酸化物あ
ゾル液を接触せしめ、ついで、該ゾル液をrル化して複
合膜を形成する工程(第1工程)と、該複合膜を酸素ガ
スに対して電気化学的還元能を有しかつ集電体機能も併
有する多孔質の電極本体の空気側表面に添着する工程(
第2工程)とからなることを特徴とする空気電極の製造
方法である。
The present invention comprises a step (first step) of bringing a metal oxide sol into contact with a porous membrane in which fine pores are distributed, and then converting the sol to form a composite membrane (first step); The process of attaching the material to the air-side surface of the porous electrode body, which has an electrochemical reducing ability for oxygen gas and also has the function of a current collector (
2nd step).

以下、本発明に係る空気電極の製造方法について、更に
詳しく説明する。
Hereinafter, the method for manufacturing an air electrode according to the present invention will be explained in more detail.

本発明の製造方法は酸素ガスを選択的透過させる複合膜
を形成する工S(第1工程)と該複合膜を電極本体の空
気側表面に添着する工程(第2工程)との2工程からな
る。
The manufacturing method of the present invention consists of two steps: forming a composite membrane that selectively permeates oxygen gas (first step), and attaching the composite membrane to the air side surface of the electrode body (second step). Become.

まず、本発明の第1工程で多孔性膜に接触せしめるゾル
液とは、二酸化スズ(SnOJ酸化亜鉛(ZnO)、三
酸化ニアルミニウム(AA!t Os )、酸化マグネ
シウム(MgO)、酸化カルシウム(Cab)、酸化ス
トロンチウム(8rO)、酸化バリウム(Bad)、二
酸化チタン(Tidy)、二酸化ケイ素(Sloz)等
のような含水又は水利性の金属酸化物;二酸化スズ(S
noり、酸化亜鉛(ZnO)、酸化第一銅(Cute)
、酸化マンガン(MnO)、酸化ニッケル(Ni O)
、四酸化二コパル) (C,osO4)、等のような酸
素吸着能を有する金属酸化物;二酸化スズ(Snow)
、二酸化チタフ (Ti02) 、二酸化ノ々ナジウム
(vow) 、二酸化モリブデン(MoOz)、二酸化
タンゲステン(W(4)、二酸化ルテニウム(RuOρ
、二酸化ニオブ(Nb OJ 、二酸化クロム(Cro
w)、二酸化レニウム(α−Red、)、二酸化オスミ
ウム(080,)、二酸化ロジウム(Rhα)、二酸化
イリジウム(I r g)、JR化白金(PtO*)等
のようなルチル型結晶構造を金属酸化物;の少なくとも
どれかをコロイド粒子として分散する系である。
First, the sol solution brought into contact with the porous membrane in the first step of the present invention includes tin dioxide (SnOJ, zinc oxide (ZnO), nialium trioxide (AA!tOs), magnesium oxide (MgO), calcium oxide ( Hydrous or water-bearing metal oxides such as strontium oxide (8rO), barium oxide (Bad), titanium dioxide (Tidy), silicon dioxide (Sloz), etc.; tin dioxide (Sloz);
No, zinc oxide (ZnO), cuprous oxide (Cute)
, manganese oxide (MnO), nickel oxide (NiO)
, dicopal tetroxide) (C, osO4), etc.; tin dioxide (Snow);
, titaf dioxide (Ti02), nonadium dioxide (vow), molybdenum dioxide (MoOz), tungsten dioxide (W(4), ruthenium dioxide (RuOρ)
, niobium dioxide (NbOJ), chromium dioxide (Cro
w), rhenium dioxide (α-Red,), osmium dioxide (080,), rhodium dioxide (Rhα), iridium dioxide (Irg), JR platinum (PtO*), etc. This is a system in which at least one of the following oxides is dispersed as colloidal particles.

これら金属酸化物の粒径がコロイド次元にあることはい
うまでもない。該ゾル液を調製する際に用いる分散媒と
しては水が最適であるが、調製から使用までの期間が数
日以内の場合には、水、メチルアルコール、エチルアル
コール等の群カラ適宜に選択することができる。そのと
き、ゾル液中の金属酸化物の分散割合は分散媒の容lに
対し0.05〜50容量チ、更には0.1〜5容量慢、
であることが好ましい。また、該ゾル液の調製に当って
は、コロイド次元として分散せしめる金属酸化物の種類
に対応させてゾル液の水素イオン濃度(pH)を適正な
値に調整することが必要である。
It goes without saying that the particle size of these metal oxides is on the colloidal dimension. Water is most suitable as the dispersion medium used when preparing the sol solution, but if the period from preparation to use is within a few days, a suitable dispersion medium such as water, methyl alcohol, ethyl alcohol, etc. may be selected. be able to. At that time, the dispersion ratio of the metal oxide in the sol liquid is 0.05 to 50 volumes, more preferably 0.1 to 5 volumes per liter of the dispersion medium.
It is preferable that In preparing the sol, it is necessary to adjust the hydrogen ion concentration (pH) of the sol to an appropriate value in accordance with the type of metal oxide to be dispersed as a colloid.

pH値が適正でない場合にはコロイド粒子が凝集したシ
して後述する多孔性膜との接触操作が円滑に進行しない
If the pH value is not appropriate, the colloid particles will aggregate and the contact operation with the porous membrane, which will be described later, will not proceed smoothly.

本発明の方法に用いる多孔性膜はその材質が格別限定さ
れるものではないが、例えば、多孔性ポリプ四ピレン膜
(商品名:ジュラガード;ポリプラスチックス■製、商
品名:セルガード;セラニースフラスチック製)、多孔
゛性セルローズエステル膜(商品名二ミリポアメンブラ
ンフィルタ−;ミリポアコーポレーション製)、多孔性
フッ素樹脂膜(商品名二)iロポア;住友電工■製ン又
は多孔性ポリカーブネート膜(商品名二二ュクリポア;
ニュクリポアコーポレーション旬等をあげることができ
る。
The material of the porous membrane used in the method of the present invention is not particularly limited. plastic), porous cellulose ester membrane (trade name 2 Millipore membrane filter; manufactured by Millipore Corporation), porous fluororesin membrane (trade name 2) ilopore; manufactured by Sumitomo Electric Corporation or porous polycarnate membrane (Product name: 22 Crypore;
Nucleipore Corporation Shun etc. can be mentioned.

多孔性膜にあっては、その微細孔が開孔構造であること
が必要であるが、その孔径は、用いるゾル液中のコロイ
ド粒子の粒径によって適宜に選定すればよい。通常、1
0μm以下であることが好ましい0 次に第1工程で行なう多孔性膜とゾル液との接触操作と
は、該多孔性膜の外側表面に、後述する所定の厚みのグ
ル層を被膜状に形成する方法、又は、開孔の内部空間の
全部もしくはその一部をゾル液のグルで充填せしめ得る
方法であればどんな方法であってもよいが、典型的には
塗布法又は透過法を挙げることができる。ここで、塗布
法とは、多孔性膜の表面に刷毛などを用いて上記ゾル液
を所定の厚みに塗布する方法である。この方法によれば
、多孔性膜の表面に後述するゾル液をグル化する工程を
経ることによシ酸素選択透過性のグル層が薄膜状に形成
されることとなる。また、このとき、多孔性膜の開孔の
内部空間にも該イル液が滲透するので、あたかも多孔性
膜に1根”を張ったグル層が形成される態様となる。透
過法とは、多孔性膜を例えばフィルターホルダーに保持
して該膜状に該ゾル液を注入しながら下方から減圧−過
する方法である。この透過法によれば減圧度によって相
違するが、多孔性膜の外部表面又は開孔の内部空間部分
にもゾル液を充填することができる。減圧度は通常10
〜10−” icgHg、好ましくは初期濾過速度が0
.5 ml / ctd−sea以下になるような値で
ある。
In a porous membrane, it is necessary that the micropores have an open structure, and the pore size may be appropriately selected depending on the particle size of the colloid particles in the sol solution used. Usually 1
It is preferably 0 μm or less. Next, the contact operation of the porous membrane and the sol liquid in the first step involves forming a glue layer with a predetermined thickness, which will be described later, on the outer surface of the porous membrane in the form of a film. Any method may be used as long as it is possible to fill all or part of the internal space of the opening with the sol solution glue, but typical examples include a coating method or a permeation method. I can do it. Here, the coating method is a method of applying the sol solution to a predetermined thickness on the surface of the porous membrane using a brush or the like. According to this method, an oxygen selectively permeable glue layer is formed in the form of a thin film on the surface of the porous membrane through the step of gluing the sol liquid, which will be described later. Moreover, at this time, the filtrate permeates into the inner spaces of the pores of the porous membrane, so that it appears as if a glue layer with a single root is formed in the porous membrane.The permeation method is This is a method in which a porous membrane is held in a filter holder, for example, and the sol solution is injected into the membrane while being depressurized and passed from below.According to this permeation method, although it differs depending on the degree of vacuum, the outside of the porous membrane is The surface or the internal space of the openings can also be filled with the sol liquid.The degree of vacuum is usually 10
~10-” icgHg, preferably with an initial filtration rate of 0
.. The value is 5 ml/ctd-sea or less.

本発明方法は、つぎに、前記の処理を施した多孔性膜及
びその表面又は開孔内部に被着されているゾル液をその
ままグル化する。このグル化の操作は、室温、大気中で
分散媒の除去及び乾燥を行なうことによって進められる
。かくして、ゾル液はダル化して、ここに多孔性膜と複
合した複合膜が構成される。
In the method of the present invention, next, the porous membrane subjected to the above treatment and the sol liquid deposited on its surface or inside the pores are glued as they are. This gluing operation is carried out by removing the dispersion medium and drying in the atmosphere at room temperature. In this way, the sol liquid becomes dull, and a composite membrane combined with a porous membrane is formed.

なお、上記したグル層の厚みは、0.01〜100μm
の範囲にあることが好ましく、この厚みがα01μ虞よ
シ小さくなると、ゲル層を形成する時にピンホールが多
発する。また、100μmを超えると酸素−ガスの透過
量が減少して重負荷放電が困難となる。
Note that the thickness of the glue layer described above is 0.01 to 100 μm.
If the thickness is smaller than α01μ, pinholes will occur frequently when forming the gel layer. Moreover, if it exceeds 100 μm, the amount of oxygen-gas permeation decreases, making heavy load discharge difficult.

次いで、本発明の製造方法は第1工程で作成した複合膜
を酸素ガスに対して電気化学的還元能を有しかつ集電体
機能を併有する多孔質の空気側表面に添着するのが第2
工程である。
Next, in the manufacturing method of the present invention, the composite membrane prepared in the first step is attached to the air-side surface of the porous body, which has an electrochemical reducing ability for oxygen gas and also has a current collector function. 2
It is a process.

ここで、電極本体は電気化学的還元能を有しかつ集電体
機能も併有する多孔質なものであれば何であってもよく
、具体的には前述したもののほかに、銀フィルター、ラ
ネーニッケル、銀又はニッケルの焼結体、各種の発泡メ
タル、ニッケルメッキしたステンレススチール細線の圧
縮体又はこれらに金、パラジウム又は銀等をメッキして
成る金属多孔質構造体等をあげることができる。又、と
のとき電極本体の細孔内で進行する電極反応によって生
成した酸素ガスの還元生成物イ牙ンを該細孔(反応領域
)から迅速に除去して、例えば50mAlcr&以上の
重負荷放電を円滑に継続させるために該電極本体の細孔
の孔径は、0.1〜10μm程度の範囲で分布している
ことが好ましい。
Here, the electrode body may be any porous material that has an electrochemical reduction ability and also has a current collector function.Specifically, in addition to the above-mentioned materials, silver filters, Raney nickel, Examples include sintered bodies of silver or nickel, various foamed metals, compressed bodies of thin stainless steel wires plated with nickel, and porous metal structures formed by plating these with gold, palladium, silver, or the like. In addition, the reduction product of oxygen gas generated by the electrode reaction that progresses within the pores of the electrode body is quickly removed from the pores (reaction area), and a heavy load discharge of, for example, 50 mAlcr& or more is performed. In order to continue the process smoothly, the pore diameters of the pores in the electrode body are preferably distributed in a range of about 0.1 to 10 μm.

この第2工程では、電極本体と複合膜を圧着する方法又
は両者を接着する方法が適用される。圧着の場合は、電
極全体の空気側表面に複合膜を載せ、両者をロール圧着
、ブレス圧着、加熱圧着して一体化する。また、接着の
場合は、例えばカル?キシメチルセルロース、ポリビニ
ルアルコール、ポリアクリル酸ソーダなどのような接着
剤で両者を接着すればよい。
In this second step, a method of press-bonding the electrode body and the composite membrane or a method of adhering the two is applied. In the case of crimping, a composite membrane is placed on the air-side surface of the entire electrode, and the two are rolled, pressed, or heated to be integrated. Also, in the case of adhesion, for example, Cal? The two may be bonded together using an adhesive such as oxymethyl cellulose, polyvinyl alcohol, or sodium polyacrylate.

〔発明の実施例〕 実施例1〜18(自然乾燥法によシ透過膜を作成) 下表の実施例番号1〜18に示した金属酸化物の微粉末
と水−エタノール混合分散媒とを用いてゾル液を調製し
た。
[Embodiments of the Invention] Examples 1 to 18 (Preparation of permeable membranes by natural drying method) Fine powders of metal oxides shown in Example numbers 1 to 18 in the table below and a water-ethanol mixed dispersion medium were mixed. A sol solution was prepared using

金属酸化物の微粉末の分散割合は帆2〜0.5容量チで
あった。
The dispersion ratio of the metal oxide fine powder was 2 to 0.5 volumes.

平均孔径0・3μmの微細開孔を均一に分布する厚み5
μmμm多孔性ポリカー−ネート膜品名:ニュクリポア
:ニュクリポアコーポレーション製:空孔率4.2 %
 )を市販のフィルターホルダー(同社製)に保持し、
そこに上記した各種のゾル液を注入して初期濾過速度0
.5 wtl / ca−sea以下になるように吸引
−過した。注入ゾル液量は乾燥時の表面グル層の厚みが
2000A程度になるように調節した。
Thickness 5 that uniformly distributes fine pores with an average pore diameter of 0.3 μm
μm μm porous polycarbonate membrane Product name: Nuclepore: Manufactured by Nuclepore Corporation: Porosity 4.2%
) in a commercially available filter holder (manufactured by the same company),
Inject the above-mentioned various sol solutions into it and initial filtration rate is 0.
.. It was aspirated and filtered to a level of 5 wtl/ca-sea or less. The amount of the injected sol was adjusted so that the thickness of the surface glue layer when dried was approximately 2000A.

ついで、全体を室温(25℃〕で大気中に放置して分散
媒を乾燥、除去して複合膜を得た。この複合膜の多孔性
膜側か平均孔径5μmのラネーニッケル板(厚さ220
0μm1空孔率:5OS)の片面に圧着した。
Then, the whole was left in the air at room temperature (25°C) to dry and remove the dispersion medium to obtain a composite membrane.A Raney nickel plate (thickness: 220 mm) with an average pore diameter of 5 μm was placed on the porous membrane side of this composite membrane.
0 μm 1 porosity: 5OS).

さらに、とれらを2チ塩化パラジウム溶液中で陰分極し
、ラネーニッケル板の孔内も含めて約05μmのパラジ
ウムを析出させて実施例1〜18の空気電極を作成した
Furthermore, these were cathodically polarized in a palladium dichloride solution to precipitate palladium of about 05 μm including inside the pores of the Raney nickel plate, thereby producing air electrodes of Examples 1 to 18.

実施例19〜36(自然乾燥法によりpH調整をし透過
膜を作成) ゾル液の調整に0.IN水酸化ナトリウム又はαIN塩
酸を用いて、膜表面のPHをそれぞれのゾル液が不安定
となる領域まで変化させた他は実施例・1〜18と同様
にし、実施例19〜36の本発明空気電極を作成した。
Examples 19 to 36 (Creating a permeable membrane by adjusting the pH by natural drying method) The present invention of Examples 19 to 36 was carried out in the same manner as in Examples 1 to 18, except that the pH of the membrane surface was changed to a range where the respective sol solutions became unstable using IN sodium hydroxide or αIN hydrochloric acid. An air electrode was created.

実施例37〜54(自然乾燥法により塗布膜を作成) 各種のゾル液の接触方法として、刷毛を用いて塗布した
他は実施例1〜18と同様にし、実施例37〜540本
発明の空気電極を作成した。
Examples 37 to 54 (Creation of coating film by natural drying method) The method of contacting various sol solutions was the same as Examples 1 to 18 except that the coating was applied using a brush. Created an electrode.

比較例1 塩化ノ臂ラジウムの水溶液に活性炭粉末を懸濁した後、
ホルマリンで還元して・母ラジウム付活性炭粉末とした
。ついで、この粉末に10〜15%の?リテトラフロロ
エチレン(PTFE)デイスノぐ一ジョンで防水処理を
施し、さらに結着剤としてPTFE粉末を混合した後、
ロール圧延してシートとした。
Comparative Example 1 After suspending activated carbon powder in an aqueous solution of radium chloride,
It was reduced with formalin and made into activated carbon powder with mother radium. Next, add 10-15% to this powder. After applying waterproofing treatment with Litetrafluoroethylene (PTFE) resin, and further mixing PTFE powder as a binder,
It was rolled into a sheet.

このシートをニッケルネットに圧着して厚さ0.6顛の
電極本体を作成した。次に、人造黒鉛粉末にPTFE 
7’イスノ臂−ジョンを混合したのち加熱処理して防水
黒鉛粉末とし、これに結晶剤としてPTFE粉末を混合
してスール圧延した。得られたシートを上記の電極本体
と圧着して厚さ1.6 vanの空気電極を作成した。
This sheet was pressed onto a nickel net to create an electrode body with a thickness of 0.6 mm. Next, we added PTFE to the artificial graphite powder.
After mixing the 7' isno-branches, heat treatment was performed to obtain waterproof graphite powder, PTFE powder was mixed therein as a crystallizing agent, and the mixture was rolled. The obtained sheet was crimped to the above electrode body to create an air electrode with a thickness of 1.6 van.

比較例2 厚さ50μmのポリシロキサン膜を平均孔径5μmで空
孔率80チのラネーニッケル板(厚さ200μ幻の片面
に圧着した後、全体を2%塩化・臂ラジウム溶液中で陰
分極して、ラネーニッケル板の孔内も含めて厚さ0.5
μmの/ぐラジウムを析出、させ、空気電極とした。
Comparative Example 2 A polysiloxane membrane with a thickness of 50 μm was pressed onto one side of a Raney nickel plate (200 μm thick) with an average pore diameter of 5 μm and a porosity of 80 μm, and then the whole was cathodically polarized in a 2% chloride/radium solution. , thickness 0.5 including the inside of the hole in the Raney nickel plate.
Radium of μm/μm was precipitated and used as an air electrode.

比較例3 比較例1で作製した空気電極の電解液側に塩化カルシウ
ムから成る水蒸気吸収層を付設して空気電極を作成した
Comparative Example 3 An air electrode was prepared by attaching a water vapor absorption layer made of calcium chloride to the electrolyte side of the air electrode prepared in Comparative Example 1.

以上57個の空気電極を用いて、重量比で3チの水銀に
よυアマルがム化したダル状亜鉛を対極とし、水酸化カ
リウムを電解液として、ポリアミド不織布を七ノやレー
クとする空気−亜鉛電池を組み立てた。
Using the above 57 air electrodes, the counter electrode was dull zinc which had been amalized with 3 parts of mercury by weight, potassium hydroxide was used as the electrolyte, and the air was made using polyamide non-woven fabric as an electrolyte. - Assembled a zinc battery.

これら57個の電池を25℃の空気中に16時間放置し
た後、各種の電流で5分間放電し、5分後の端子電圧が
1.0v以下となる電流密度を測定した。また、45℃
、90%相対湿度の雰囲気中にこれらの電池を保存して
電解液の漏液状態を観察した。
These 57 batteries were left in the air at 25° C. for 16 hours, then discharged for 5 minutes with various currents, and the current density at which the terminal voltage was 1.0 V or less after 5 minutes was measured. Also, 45℃
These batteries were stored in an atmosphere of 90% relative humidity, and leakage of the electrolyte was observed.

さらに、保存後の電池につき上記と同様の放電試験を行
ない、その時の電流値の初期電流値に対する比率を算出
した。この値は、各電池の空気電極の劣化状′態を表示
し、放電特性維持率といい得るものである。この値の大
きいものほど劣化の小さいことを表わす。
Furthermore, the same discharge test as above was conducted on the battery after storage, and the ratio of the current value at that time to the initial current value was calculated. This value indicates the state of deterioration of the air electrode of each battery and can be called the discharge characteristic maintenance rate. The larger the value, the smaller the deterioration.

また、空気電極に添着されている薄膜において、酸素ガ
スに対してはガスクロマトグラフをガス検出手段とする
等比法によりそのガス透過速度(Joρを測定し、水蒸
気に対してはJIS  Z 0208(カップ法)に準
じた方法によシ水蒸気透過速度(JHto)を測定した
In addition, in the thin film attached to the air electrode, the gas permeation rate (Joρ) for oxygen gas is measured by the geometric method using a gas chromatograph as the gas detection means, and for water vapor, the gas permeation rate (Joρ) is measured using the The water vapor permeation rate (JHto) was measured by a method similar to the above method.

この両者の比を酸素ガス選択透過比(J at/J H
2o)とした。
The ratio of these two is the oxygen gas selective permeability ratio (J at/J H
2o).

以上の各測定値、計算値を膜組成、電極構造と共に次表
に示す。
The above measured values and calculated values are shown in the following table along with the film composition and electrode structure.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明の空気電極は、そ
れを電池に組込んだ場合、■その電池は長時間に亘り高
い電流密度を保持する、すなわち重負荷放電の安定性に
優れ、■また、漏液現象も無くなって保存性能が向上す
るので、その工業的価値は犬である。
As is clear from the above description, when the air electrode of the present invention is incorporated into a battery, (1) the battery maintains a high current density for a long time, that is, has excellent stability under heavy load discharge; ■Also, the leakage phenomenon is eliminated and the storage performance is improved, so its industrial value is significant.

Claims (1)

【特許請求の範囲】[Claims] 微細開孔を分布する多孔性膜に金属酸化物のゾル液を接
触せしめ、ついで、該ゾル液をグル化して複合膜を形成
する工程と、核複合膜を酸素ガスに対して電気化学的還
元能を有しかつ集電体機能も併有する多孔質の電極本体
の空気側表面に添着する工程とからなることを特徴とす
る空気電極の製造方法。
A process of bringing a metal oxide sol into contact with a porous membrane with distributed fine pores, and then gluing the sol to form a composite membrane, and electrochemical reduction of the core composite membrane with oxygen gas. 1. A method for producing an air electrode, comprising the step of attaching the porous electrode to the air-side surface of a porous electrode body that also has a current collector function.
JP58023756A 1983-02-17 1983-02-17 Manufacture of air electrode Pending JPS59151767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023756A JPS59151767A (en) 1983-02-17 1983-02-17 Manufacture of air electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023756A JPS59151767A (en) 1983-02-17 1983-02-17 Manufacture of air electrode

Publications (1)

Publication Number Publication Date
JPS59151767A true JPS59151767A (en) 1984-08-30

Family

ID=12119167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023756A Pending JPS59151767A (en) 1983-02-17 1983-02-17 Manufacture of air electrode

Country Status (1)

Country Link
JP (1) JPS59151767A (en)

Similar Documents

Publication Publication Date Title
US4483694A (en) Oxygen gas permselective membrane
US4599157A (en) Oxygen permeable membrane
CA1167615A (en) One pass process for forming electrode backing sheet
US4585711A (en) Hydrogen electrode for a fuel cell
JPS59150508A (en) Preparation of oxygen gas permselective composite membrane
JPH06103984A (en) Electrode structure for fuel cell
JPS5854564A (en) Porous catalyst layer for gas diffusion electrode
US4822544A (en) Dry process for fabricating a unitary membrane-electrode structure
JPS59151767A (en) Manufacture of air electrode
JPS6044003A (en) Oxygen gas permselective composite membrane and air electrode comprising the same
JPS6051505A (en) Gas selective composite membrane
JPS5998706A (en) Oxygen gas permselective composite membrane
JPS6051502A (en) Gas permselective composite membrane
JPS58225573A (en) Air electrode and its production method
JPS58225575A (en) Air electrode and its production method
JPS60133675A (en) Air electrode
JPS58225570A (en) Air electrode and its production method
JPS60180063A (en) Air electrode
JPS60179112A (en) Compound film having permselectivity for oxygen
JPS5999677A (en) Air electrode
JPS5994377A (en) Manufacture of air electrode
JPS5998466A (en) Manufacturing method of air electrode
JPS5933762A (en) Air electrode and its manufacture
JPS58225571A (en) Air electrode and its production method
JPS5958759A (en) Air electrode and its manufacture