JPS5999677A - Air electrode - Google Patents

Air electrode

Info

Publication number
JPS5999677A
JPS5999677A JP57208400A JP20840082A JPS5999677A JP S5999677 A JPS5999677 A JP S5999677A JP 57208400 A JP57208400 A JP 57208400A JP 20840082 A JP20840082 A JP 20840082A JP S5999677 A JPS5999677 A JP S5999677A
Authority
JP
Japan
Prior art keywords
electrode body
porous
film
electrode
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57208400A
Other languages
Japanese (ja)
Inventor
Shinji Tsuruta
鶴田 慎司
Nobukazu Suzuki
鈴木 信和
Masayuki Shiratori
白鳥 昌之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57208400A priority Critical patent/JPS5999677A/en
Publication of JPS5999677A publication Critical patent/JPS5999677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain an air electrode which can be subjected to heavy-load discharge over a long period and has an excellent preservation performance by the use of a porous electrode body which can electrochemically reduce oxygen gas, and a complex thin film consisting of a porous film affixed to the gas-side surface of the electrode body and an organic compound film containing metal atom. CONSTITUTION:For the purpose of enabling heavy-load discharge of over 50mA/cm<2> to be smoothly carried out continously by rapidly removing a reduction product ion of oxygen gas generated due to electrode reaction proceeding within the fine holes of an electrode body, the diameters of the fine holes are preferably within the range of 0.1- 10mum. It is preferred that the hole diameters of a porous film are homogeneously distributed with the range of below 1mum. Besides, it is preferred that the volume of the fine holes is 0.1-90% of the total volume of the porous film. After one surface of the porous film is directly coated with either the original liquid of an organic compound containing metal atom or solution of the original liquid, this is dried to form a film of the organic compound. After that, the other surface of the porous film of the thus formed complex thin film is pressed and affixed to the gas-side surface of the electrode body thereby unifying the complex thin film and the electrode body.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、水素/酸素燃料電池、金属/空気電池、酸素
センサ用の空気電極に関し、更に詳しくは、薄くても長
時間に亘p重負荷放電が可能で、保存性能にも優れた空
気電極に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an air electrode for a hydrogen/oxygen fuel cell, a metal/air battery, or an oxygen sensor. This invention relates to an air electrode that is capable of discharging and has excellent storage performance.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から、各種の燃料電池、9気/亜鉛電池をはじめと
する空気金属電池やガルバニ型の酸素センサなどの空気
電極には、ガス拡散電極が用いられてきている。このガ
ス拡散電極としては、初期には均一孔径分布を有する浮
型の多孔質電極が用いられてきたが、最近では、酸素ガ
スに対する電気化学的還元能(酸素をイオン化するンを
有しかつ集電体機能も併有する多孔質の電極本体と、該
電極本体のガス側表面に一体的に添着される薄膜状の撥
水性層とから成る2層構造の電極が多用されている。
Conventionally, gas diffusion electrodes have been used as air electrodes in various fuel cells, air metal batteries such as 9-atm/zinc batteries, galvanic oxygen sensors, and the like. Initially, a floating porous electrode with a uniform pore size distribution was used as this gas diffusion electrode, but recently, it has been developed to have an electrochemical reducing ability for oxygen gas (having an ability to ionize oxygen and to collect oxygen gas). Electrodes with a two-layer structure consisting of a porous electrode body that also has an electric function and a thin film-like water-repellent layer that is integrally attached to the gas side surface of the electrode body are often used.

この場合、電極本体は主として、酸素ガス還元過電圧の
低いニッケルタングステン酸:パラジウム・コバルトで
被覆された膨化タングステン;ニッケル;銀;白金;パ
ラジウムなどを活性炭粉末のような導電性粉末に担持せ
しめて成る粉末にポリテトラフロロエチレンのような結
着剤を添加した後、これを金属多孔質体、カーボン多孔
質体、カーボン繊維の不織布などと一体化したものが用
いられている。
In this case, the electrode body is mainly made of expanded tungsten coated with nickel-tungstic acid: palladium and cobalt, which has a low oxygen gas reduction overvoltage; nickel; silver; platinum; palladium, etc., supported on a conductive powder such as activated carbon powder. A powder is used in which a binder such as polytetrafluoroethylene is added and then this is integrated with a porous metal body, a porous carbon body, a nonwoven fabric of carbon fiber, or the like.

また、電極本体のガス側表面に添着される撥水性層とし
ては主にポリテトラフロロエチレン、ポリテトラフロロ
エチレン−へキサフロロプロピレン共重合体、ポリエチ
レンーテトラフロロエテレン共重合体などのフッ素樹脂
、又はポリプロピレンなどの樹脂から構成される薄膜で
あって、例えば、粒径0.2〜40μmのこれら樹脂粉
末の焼結体;これら樹脂の繊維を加熱処理して不織布化
した紙状のもの;同じく繊維布状のもの;これら樹脂の
粉末の一部を7ノ化黒鉛で置きかえたもの;これらの微
粉末を増孔剤拳潤滑油などと共にロール加圧してから加
熱処理したフィルム状のもの、もしくはロール加圧後加
熱処理をしないフィルム状のもの;などの微細孔を分布
する多孔性の薄膜である。
In addition, the water-repellent layer attached to the gas side surface of the electrode body is mainly made of fluororesins such as polytetrafluoroethylene, polytetrafluoroethylene-hexafluoropropylene copolymer, and polyethylene-tetrafluorothelene copolymer. , or a thin film composed of a resin such as polypropylene, for example, a sintered body of these resin powders with a particle size of 0.2 to 40 μm; a paper-like thing made by heating the fibers of these resins and making them into a nonwoven fabric; Similarly, fiber cloth-like products; parts of these resin powders replaced with hepta-nitride graphite; film-like products made by rolling these fine powders together with a pore-forming agent, lubricating oil, etc., and then heat-treating them; Or, it is a porous thin film with fine pores distributed, such as a film that is not heat-treated after being rolled.

しかしながら、上記した従来構造の空気電極において、
電極本体のガス側表面に添着されている撥水性層は、電
解液に対しては不透過性であるが、空気又は空気中の水
蒸気に対しては不透過性ではない。
However, in the air electrode of the conventional structure described above,
The water-repellent layer attached to the gas-side surface of the electrode body is impermeable to the electrolyte, but not to air or water vapor in the air.

そのため、例えば空気中の水蒸気が撥水性層を通過して
電極本体に侵入しその結果電解液を稀釈したり、または
逆に電解液中の水が水蒸気として撥水性層から放散して
しまい電解液を濃縮することがある。この結果、電解液
の濃度が変動してしまい安定した放電を長時間に亘り維
持することができなくなるという事態が生ずる。
Therefore, for example, water vapor in the air may pass through the water-repellent layer and enter the electrode body, diluting the electrolyte, or conversely, water in the electrolyte may evaporate from the water-repellent layer as water vapor, causing the electrolyte to dissolve. may be concentrated. As a result, the concentration of the electrolytic solution fluctuates, resulting in a situation where stable discharge cannot be maintained for a long time.

空気中の炭酸ガスが撥水性層を通過して電極本体内に侵
入して活性層に吸着した場合、その部位の酸素ガスに苅
する電気化学的還元能が低下して重負荷放電が阻害され
る。また、電解液がアルカリ電解液の場合には、電解液
の変質、濃度の低下又は陰極が亜鉛のときには該亜鉛陰
極の不働態化などの現象を引き起と1゜更には、活性層
(電極本体の多孔質部分)で、炭酸塩を生成して孔を閉
塞し、電気化学的還元が行なわれる領域を減少させるの
で重負荷放電が阻害される。
When carbon dioxide gas in the air passes through the water-repellent layer and enters the electrode body and is adsorbed to the active layer, the electrochemical reduction ability of the electrode to reduce oxygen gas in that area decreases, inhibiting heavy load discharge. Ru. Furthermore, if the electrolyte is an alkaline electrolyte, it may cause deterioration of the electrolyte, decrease in concentration, or passivation of the zinc cathode when the cathode is zinc. In the porous portion of the body), heavy load discharge is inhibited by the formation of carbonates that plug the pores and reduce the area in which electrochemical reduction can take place.

このようなことは、製造した電池を長期間保存しておく
場合又は、長期間使用する場合電池の性能が設計規準か
ら低下するという事態を招く。
This may lead to a situation where the performance of the battery deteriorates from the design standard when the manufactured battery is stored or used for a long period of time.

このため、空気電極の撥水性層のガス側(空気側)に更
に塩化カルシウムのような水分吸収剤又はアルカリ土類
金属の水酸化物のよう々炭酸ガス吸収剤の層を設けた構
造の電池が提案されている。
For this reason, batteries have a structure in which a layer of a moisture absorbent such as calcium chloride or a carbon dioxide absorbent such as alkaline earth metal hydroxide is further provided on the gas side (air side) of the water-repellent layer of the air electrode. is proposed.

これは、上記したような不都合な事態をある程度防止す
ることはできるが、ある時間経過後、これら吸収剤が飽
和状態に達しその吸収能力を喪失すれば、その効果も消
滅するのでなんら本質的な解決策ではあり得ない。
This can prevent the above-mentioned inconveniences to some extent, but if these absorbents reach a saturated state and lose their absorption capacity after a certain period of time, the effect disappears, so there is no essential effect. It can't be a solution.

〔発明の目的」 本発明は、従来構造の以上のような欠点を解消し、空気
中の水蒸気又は炭酸ガスが電極本体内に侵入せず、した
がって、長期に亘る重負荷放電が可能で保存性能にも優
れた薄い空気電極の提供を目的とする。
[Object of the Invention] The present invention solves the above-mentioned drawbacks of the conventional structure, prevents water vapor or carbon dioxide from entering the electrode body, and therefore enables long-term heavy load discharge and improves storage performance. The purpose is to provide a thin air electrode that is excellent in terms of performance.

(発明の概要J 本発明の空気電極は酸素ガスに対する電気化学的還元能
を有し、かつ集電体機能も併有する多孔質の電極本体と
; 該電極本体のガス側表面に、多孔性膜を介して被覆され
た金属原子を含有する有機化合物の薄膜とから成ること
を特徴とするものである。
(Summary of the Invention J The air electrode of the present invention has a porous electrode body that has an electrochemical reduction ability for oxygen gas and also has a current collector function; A porous membrane is provided on the gas side surface of the electrode body. A thin film of an organic compound containing metal atoms is coated with a thin film of an organic compound containing metal atoms.

本発明の空気電極に用いる電極本体は、酸素ガスを電気
化学的に還元する(酸素ガスをイオン化する)活性能を
有し、かつ導電性の多孔質体である。具体的には、前述
したようなものの外に、銀フィルター、ラネーニッケル
、銀又はニッケルの焼結体、各種の発泡メタル、ニッケ
ルメッキしたステンレススチール細線の圧縮体、及びこ
れに金、パラジウム、銀などをメンキして成る金属多孔
質体などをあげることができる。なお、とのとき、電極
本体の細孔内で進行する電極反応によって生成した酸素
ガスの還元生成物イオンを該細孔(反応領域)から迅速
に除去して例えば50mA/−以上の重負荷放電を円滑
に継続させるために、該電極本体の細孔の孔径は0.1
〜10μm程度の範囲で分布していることが好ましい。
The electrode body used in the air electrode of the present invention is an electrically conductive porous body that has an active ability to electrochemically reduce oxygen gas (ionize oxygen gas). Specifically, in addition to the items mentioned above, silver filters, Raney nickel, sintered bodies of silver or nickel, various foamed metals, compressed bodies of nickel-plated fine stainless steel wire, and gold, palladium, silver, etc. Examples include porous metal bodies made by coating. In addition, when , the reduction product ions of oxygen gas generated by the electrode reaction proceeding within the pores of the electrode body are quickly removed from the pores (reaction area), and a heavy load discharge of, for example, 50 mA/- or more is performed. In order to continue smoothly, the pore diameter of the pores in the electrode body is 0.1.
It is preferable that the thickness is distributed within a range of about 10 μm.

本発明の空気電極は、上記したような電極本体のガス側
表面に、多孔性膜を介して被覆された金属原子を含有す
る有機化合物の薄膜を有する。
The air electrode of the present invention has a thin film of an organic compound containing metal atoms covered with a porous film on the gas side surface of the electrode main body as described above.

本発明の空気電極における多孔性膜は、その材質は問わ
ないが、電極本体に添着することを考慮すれば、可撓性
に富むものであることが好ましい。
The material of the porous membrane in the air electrode of the present invention does not matter, but it is preferably highly flexible in view of attachment to the electrode body.

なお、その孔径には特に制限はないが、好ましくは1μ
m以下である。また、該多孔性膜は、上記した微細孔が
均一に分布するものが好ましく、その微細孔の空孔容積
が換金容積に対し0.1〜90%の範囲にあるものが好
適である。
Note that the pore diameter is not particularly limited, but is preferably 1 μm.
m or less. Further, the porous membrane preferably has the above-mentioned fine pores distributed uniformly, and preferably has a pore volume of the fine pores in a range of 0.1 to 90% of the converted volume.

このような多孔性膜としては、例えは、多孔性フッ素樹
脂膜(商品名、70ロボア;住友電工株製)、多孔性ポ
リカーボネート膜(商品名、ニュクリボア;ニュクリボ
ア・コーポレーション製)、多孔性セルロースエステル
膜(商品名、ミリボアメンフリンフィルター;ぼりボア
コーポレーション製)、多孔性ポリプロピレン膜(商品
名、セルガード:セラニーズ・プラスナック社製)を挙
けることがで自る。尚、これらの膜に各種の溶媒、を塗
布又は含浸して、膜に溶媒親和性を付与してもよい。こ
の場合、用いる溶媒としては、酢酸、オクチル酸等の有
機酸;ベンゼン、トルエン等の芳香族炭化水素;ピリジ
ン等の芳香族性を有する複素環式化合物;アルコール類
、ケトン類、アルデヒド類、アミン類等の極性有機溶媒
:これら上記した化合物に適当な置換基(例えば、アミ
ノ基吟)を付加したもの:塩酸、硝酸等の無機酸、水酸
化カルシウム等の無機塩基等の水性溶液;等を挙げるこ
とができる。
Examples of such porous membranes include porous fluororesin membranes (trade name, 70 Roboa; manufactured by Sumitomo Electric Industries, Ltd.), porous polycarbonate membranes (trade name, Nucribore; manufactured by Nucribore Corporation), and porous cellulose esters. Examples include a membrane (trade name, Millibore Memphrin Filter; manufactured by Boriboa Corporation) and a porous polypropylene membrane (trade name, Celguard; manufactured by Celanese Plusnac). Note that these films may be coated with or impregnated with various solvents to impart solvent affinity to the films. In this case, the solvents used include organic acids such as acetic acid and octylic acid; aromatic hydrocarbons such as benzene and toluene; aromatic heterocyclic compounds such as pyridine; alcohols, ketones, aldehydes, and amines. Polar organic solvents such as the above-mentioned compounds with appropriate substituents (for example, amino groups) added: aqueous solutions of inorganic acids such as hydrochloric acid and nitric acid, and inorganic bases such as calcium hydroxide; etc. can be mentioned.

本発明の9気電極は、上記した多孔性膜又はその溶媒処
理膜の片面を、以下に列記するような有機化合物で被覆
した構造のものである。
The 9-gauge electrode of the present invention has a structure in which one side of the above-mentioned porous membrane or its solvent-treated membrane is coated with an organic compound as listed below.

本発明に用いる金属原子ヲ官有する有機化合物中の余端
としては、第1の群として、錫、亜鉛、アルミニウム、
マグネシウム、カルシウム、ストロンチウム、バリウム
、チタン、ケイ素等のように、営水又は水利性の酸化物
1例えば二酸化錯(Sn02)、酸化亜鉛(ZnO) 
、三酸化ニアルばニラA (Ae20m )、酸化マク
ネ’/ ’) ム(MgO)、i化カルシウム(Cab
) 、 酸化ストロンチウム(SrO)、酸化バリウム
(Bad) 、二酸化チタン(Ti02)、二酸化ケイ
素(,5i02)等を形成し得る金属;第2の群として
、錫、亜鉛、銅、マンガン、ニッケル、コバルト等のよ
うに、酸素吸着能を有する酸化物、例えば二酸化錫(S
n02) 、酸化亜鉛(ZnO)、酸化第一銅(Cuz
O)、酸化マンガン(MnO)、酸化ニッケル(Nip
)、四酸化二コバルト(CO304)等を形成し得る金
属:第3の群として、錫、チタン、バナジウム、モリブ
デン、タングステン、ルテニウム、ニオブ、クロム、レ
ニウム、オスイウム、ロジウム、イリジウム、白金等の
ように、ルチル型結晶構造を有する酸化物、例えば二酸
化錫(SnO2)、二酸化チタン(Tidり 、二酸化
バナジウム(■へ)、二酸化モリブデン(Moot )
 、二酸化タングステン(WO2)、二酸化ルビジウム
(Rump)、二酸化ニオブ(Nb02) 、 二酸化
りo ム(Cr02)、α−二酸化レニウム(α−Re
ft ) 、二酸化オスミウム(Os02)、三酸化ロ
ジウム(RhO2) 、二酸化イリジウム(I ro2
) *二酸化白金(Pt02)吟を形成し得る金属;等
を挙げることができる。
The remainder of the organic compounds having metal atoms used in the present invention include tin, zinc, aluminum,
Water or irrigation oxides such as magnesium, calcium, strontium, barium, titanium, silicon, etc. 1 For example, complex dioxide (Sn02), zinc oxide (ZnO)
, Nial trioxide A (Ae20m), Macne'/') oxide (MgO), Calcium i chloride (Cab
), metals that can form strontium oxide (SrO), barium oxide (Bad), titanium dioxide (Ti02), silicon dioxide (,5i02), etc.; as a second group, tin, zinc, copper, manganese, nickel, cobalt Oxides with oxygen adsorption ability, such as tin dioxide (S
n02), zinc oxide (ZnO), cuprous oxide (Cuz
O), manganese oxide (MnO), nickel oxide (Nip
), dicobalt tetroxide (CO304), etc.: The third group includes tin, titanium, vanadium, molybdenum, tungsten, ruthenium, niobium, chromium, rhenium, osium, rhodium, iridium, platinum, etc. In addition, oxides having a rutile crystal structure, such as tin dioxide (SnO2), titanium dioxide (Tid), vanadium dioxide (■), molybdenum dioxide (Moot)
, tungsten dioxide (WO2), rubidium dioxide (Rump), niobium dioxide (Nb02), lithium dioxide (Cr02), α-rhenium dioxide (α-Re
ft), osmium dioxide (Os02), rhodium trioxide (RhO2), iridium dioxide (I ro2)
) *Metals that can form platinum dioxide (Pt02); etc.

このような金属原子を含有する有機化合物を形成し得る
有機基又は配位子としては、上記した金属と有機化合物
を形成し得るものであれば何であってもよいが1例えば
アルキル基、オレフィン酸等の炭化水素基、アルコキシ
ル基、有機酸基を挙げることができる。
The organic group or ligand that can form an organic compound containing a metal atom may be anything as long as it can form an organic compound with the above-mentioned metal, such as an alkyl group, an olefinic acid, etc. Examples include hydrocarbon groups such as, alkoxyl groups, and organic acid groups.

本発明で使用される金属原子を含有する有機化合物とし
ては、例えば、ジオクチル酸スズ等の有機酸塩、テトラ
エトキ77ラン等のf[アルコキット、π−7クロペン
タジエニルニツケル等の有機金屑化合物等を挙げること
ができる。
Examples of the organic compound containing a metal atom used in the present invention include organic acid salts such as tin dioctylate, f[alcokits such as tetraethoxy77ran, organic metal scraps such as π-7 clopentadienyl nickel, etc. Compounds, etc. can be mentioned.

本発明の複合膜は次のようにして製造することができる
。まず、多孔性膜の片面を、本発明にかかる金属原子を
官有する有機化合物の原液又はこれを溶解した溶液で直
接被覆する。このとき、被膜の厚みは10nm〜10 
timであることが好ましく、該厚みがIOnm未満の
場合には、形成された被膜にピンホールが多発するよう
になりその水蒸気又は戻酸ガスに対する侵入防止効果が
低減すると同時に、被膜の機械的強度が低下して破損し
易くなる。また、逆に、」0μmを超えると酸素ガスの
透過量が減少するので1作成した電極の重負荷放電特性
を低下せしめる。
The composite membrane of the present invention can be manufactured as follows. First, one side of a porous membrane is directly coated with a stock solution of the organic compound having metal atoms according to the present invention or a solution containing the same. At this time, the thickness of the film is 10 nm to 10 nm.
tim, and if the thickness is less than IONm, the formed film will have many pinholes, which will reduce the effect of preventing water vapor or return acid gas from entering, and at the same time reduce the mechanical strength of the film. decreases and becomes susceptible to damage. On the other hand, if the thickness exceeds 0 μm, the amount of oxygen gas permeated decreases, thereby degrading the heavy load discharge characteristics of the prepared electrode.

被覆の方法としては、塗布法、スプレー法、ディップ法
等を適用することができる。尚、とのとき金属原子を官
有する有機化合物を溶解する溶痢としては、酢酸、オク
チル酸等の有機酸:ベンゼン、トルエン等の芳香族炭化
水素:ビリジン等の芳香族性を有する複素環式化合物:
アルコール類。
As a coating method, a coating method, a spray method, a dipping method, etc. can be applied. In addition, when dissolving metal atom-bearing organic compounds, organic acids such as acetic acid and octylic acid; aromatic hydrocarbons such as benzene and toluene; and heterocyclic compounds having aromatic properties such as pyridine. Compound:
Alcohol.

ケトン類、アルデヒド類、アミン類等の極性有機溶媒;
これら上記した化合物に適当な置換基(例えばアミノ基
等)f、付加したもの:塩酸、硝酸等の無機酸、水酸化
カルシウム、無機塩基等の水性浴液;吟を挙げることが
できる。このとき、該浴液の製置及び粘度は、それぞれ
0.1重量ダ6以上、104ポアズ以下が好ましく、こ
の範囲を外れたときには、被覆操作が円滑に進行せず、
好適な被膜が形成しにくくなる。
Polar organic solvents such as ketones, aldehydes, and amines;
These compounds to which appropriate substituents (for example, amino groups, etc.) are added: inorganic acids such as hydrochloric acid and nitric acid; aqueous bath solutions such as calcium hydroxide and inorganic bases; At this time, the preparation and viscosity of the bath liquid are preferably 0.1 wt da 6 or more and 104 poise or less, respectively. If outside this range, the coating operation will not proceed smoothly.
It becomes difficult to form a suitable film.

次いで、全体を減圧下又は、空気中に放置して加熱し溶
媒を除去し、乾燥して有機化合物の被膜を形成する。こ
のとき、溶媒の除去に際しての温度及び圧力は、それぞ
れ、例えは、40〜100c程度に加熱して、溶媒が蒸
発するように減圧することが好ましい。又、乾燥に際し
ての温度は、通常、100c以下が好ましい。かくして
得られたこの複合薄膜の他方の面、すなわち、多孔性膜
の他方の面を電極本体のガス側表面に所定の圧力で圧着
して一体化する。
Next, the whole is heated under reduced pressure or left in the air to remove the solvent and dried to form a film of an organic compound. At this time, the temperature and pressure for removing the solvent are preferably, for example, heated to about 40 to 100 c and reduced pressure so that the solvent evaporates. Further, the temperature during drying is usually preferably 100°C or less. The other surface of the composite thin film thus obtained, that is, the other surface of the porous membrane, is pressed and integrated with the gas side surface of the electrode body at a predetermined pressure.

このようにして製造された本発明の空気電極は常法にし
たがって電池に組込まれる。この場合、断続的放電を行
うときに、酸素ガスの電気化学的還元以外に電極構成要
素自体の電気化学的還元によって瞬間的な大電流供給を
可能とするため、酸素の酸化還元平衡電位よりも0.4
y以内の範囲で卑な電位によって酸化状態を変化する金
属、酸化物又は水酸化物を少くとも含有する多孔質層を
、電極本体の電解液側に一体的に付設することが好まし
い。この多孔質層は、軽負荷で放電中又は開路時にあっ
てはローカルセルアクションで酸素ガスによって酸化さ
れ、もとの酸化状態に復帰する。
The air electrode of the present invention thus manufactured is incorporated into a battery according to a conventional method. In this case, when performing intermittent discharge, in addition to the electrochemical reduction of oxygen gas, it is possible to supply a large instantaneous current by electrochemical reduction of the electrode components themselves, which is lower than the oxygen redox equilibrium potential. 0.4
It is preferable to integrally attach a porous layer containing at least a metal, oxide, or hydroxide whose oxidation state changes depending on a base potential within a range of y to the electrolyte side of the electrode body. This porous layer is oxidized by oxygen gas by local cell action during discharge under light load or when the circuit is opened, and returns to the original oxidized state.

このような多孔質層の構成相料としては、Ag40゜M
n0y +Co*On 、PbO倉、各種ペロプスカイ
ト型酸化物、スピネル型酸化物などをあげることができ
る。
The constituent phase material of such a porous layer is Ag40゜M.
Examples include n0y +Co*On, PbO, various perovskite oxides, and spinel oxides.

一方、空気電極は板状で電池に組込まれるだけではなく
1円筒型電池罠組込まれる場合もあるが、その場合には
、板状の空気電極を巻回して円筒とする仁とがめる。こ
のようなときには、巻回作業で空気電極を破損させず機
械的安定性を付与するために、酸素吸着能を有する金属
酸化物の薄膜のガス側p面には、更に、多孔性フッ素t
H脂膜、多孔!ポリカーボネート膜、多孔性セルロース
エステル膜、多孔性ポリプロピレン膜などの多孔性薄膜
を更に一体的に添着しておくことが好ましい。
On the other hand, the air electrode is not only incorporated in a battery in the form of a plate, but also in some cases incorporated into a cylindrical battery trap, in which case the plate-shaped air electrode is wound to form a cylinder. In such a case, in order to provide mechanical stability without damaging the air electrode during the winding operation, a porous fluorine t
H oil film, porous! It is preferable to further integrally attach a porous thin film such as a polycarbonate film, a porous cellulose ester film, or a porous polypropylene film.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜7 孔径0.2 X 0.02μmの均一に分布する微細孔
を有する。厚さ25μmの多孔性ポリプロピレン膜(商
品名:ジュラガード2400;ポリプラスチックス■製
)の片面に、各種金属の有機酸塩のアルコール又はトル
エン浴液を塗布剤として、乾燥状態で厚さ200OAに
なるように塗布し、溶媒を揮発させて金属原子を含有す
る被膜を形成し、複合膜を作成した。ついで、この複合
膜の多孔性膜側を電極本体である平均孔径5μm、多孔
度80%のラネーニッケル板(厚み200μm)の片面
に圧着した。更に、これらを2%塩化パラジウム溶液中
に浸漬して陰分極し、ラネーニッケルの空孔内も含めて
約0.5μm の厚みでパラジウムを析出させ本発明の
空気電極とした。
Examples 1 to 7 Uniformly distributed micropores with a pore diameter of 0.2 x 0.02 μm. One side of a porous polypropylene membrane (product name: Duraguard 2400; manufactured by Polyplastics ■) with a thickness of 25 μm was coated with an alcohol or toluene bath solution of organic acid salts of various metals to a thickness of 200 OA in a dry state. The solvent was evaporated to form a film containing metal atoms, thereby creating a composite film. Then, the porous membrane side of this composite membrane was pressed onto one side of a Raney nickel plate (thickness: 200 μm) having an average pore diameter of 5 μm and a porosity of 80%, which was the electrode body. Further, these were immersed in a 2% palladium chloride solution and cathodically polarized to precipitate palladium to a thickness of about 0.5 μm, including inside the pores of Raney nickel, thereby forming the air electrode of the present invention.

実施例8〜14 塗布剤として、有機金稍化合物を用いたのを除いては、
実施例1〜7と同様の方法で本発明の空気電極を作成し
た2、 実施例15〜22 塗布剤として、各種金属のアルコキシドを用いたのを除
いては実施例1〜7と同様の方法で本発明の空気電極を
作成した。
Examples 8 to 14 Except for using an organometallic compound as a coating agent,
Air electrodes of the present invention were created in the same manner as in Examples 1 to 7.2 Examples 15 to 22 The same method as in Examples 1 to 7 except that alkoxides of various metals were used as coating agents. An air electrode of the present invention was prepared.

比較例1 塩化パラジウムの水溶液に活性炭粉末を懸濁した後、ホ
ルマリンで還元してパラジウム付活性炭粉末としだ。つ
いで、この粉末を10−15%のポリテトラフロロエチ
レンティスパージョンで防水処理を施し、更に結着剤と
してPTFE粉末を混合した後ロール圧延してシートと
した。このノートをニッケルネットに圧着して厚み0.
6駄の電極本体とし比。次に人造黒鉛粉末にPTFEデ
ィスパージョンを混合した後加熱処理して防水黒鉛粉末
とし、これに結着剤としてPTFE粉末を混合してロー
ル圧延した。得られたノートを上記した電極本体と圧着
して厚み1.filell、の空気電極とした。
Comparative Example 1 Activated carbon powder was suspended in an aqueous solution of palladium chloride, and then reduced with formalin to obtain palladium-coated activated carbon powder. Next, this powder was waterproofed with 10-15% polytetrafluoroethylene dispersion, mixed with PTFE powder as a binder, and rolled into a sheet. This notebook was crimped onto a nickel net to a thickness of 0.
Compared to the 6-piece electrode body. Next, the artificial graphite powder was mixed with a PTFE dispersion and then heat-treated to obtain a waterproof graphite powder, which was mixed with PTFE powder as a binder and rolled. The obtained notebook was crimped to the above-mentioned electrode body to a thickness of 1. It was used as an air electrode.

比較例2 酸素ガス選択透過膜であるポリシロキサン膜(厚み50
μm)を平均孔径5μmで多孔度80ゾロのラネーニッ
ケルI(厚み200μm)の片面に圧着した後、全体を
2%塩化パラジウム浴液中で陰分極してラネーニッケル
板の空孔内も含めて0.5μmのパラジウムを析出させ
空気電極とした。
Comparative Example 2 Polysiloxane membrane (thickness 50
μm) was crimped onto one side of Raney nickel I (thickness: 200 μm) with an average pore diameter of 5 μm and a porosity of 80 porosity, and the whole was cathodically polarized in a 2% palladium chloride bath solution to include the inside of the pores of the Raney nickel plate. Palladium with a thickness of 5 μm was deposited to form an air electrode.

比較例3 比較例1で製造した空気電極の空気側に塩化カル7ウム
の水蒸気吸収層を付設した。
Comparative Example 3 A water vapor absorbing layer of calcium chloride was attached to the air side of the air electrode manufactured in Comparative Example 1.

比較例4 孔径0.2 X O,02μmの細孔を分布する厚み2
5μmの多孔性ポリプロピレン膜(商品名;ジュラガー
ド2400、ポリプラスチックス社製)の片面に、実施
例1〜7と同様の方法で厚み8000Aのジオクチル酸
スズの被膜を形成し、他方の面を平均孔径5μm、多孔
度80%のラネーニッケル板の片面に圧着した。全体を
2%塩化パラジウム溶液に浸漬して陰分極し、ラネーニ
ッケル板の空孔内も含めて約0.5μmのパラジウムを
析出させ突気f、極とした。
Comparative Example 4 Pore diameter 0.2 x O, thickness 2 with distribution of pores of 02 μm
A tin dioctylate film with a thickness of 8000 A was formed on one side of a 5 μm porous polypropylene membrane (trade name: Duraguard 2400, manufactured by Polyplastics) in the same manner as in Examples 1 to 7, and the other side was It was pressed onto one side of a Raney nickel plate with an average pore diameter of 5 μm and a porosity of 80%. The whole was immersed in a 2% palladium chloride solution and cathodically polarized, and about 0.5 μm of palladium was precipitated, including inside the pores of the Raney nickel plate, to form a sudden pole.

比較例5 ジオクチル酸スズの被膜の厚みが40OAであったこと
を除いては、比較例4と同様の方法で空気電極を製造し
た。
Comparative Example 5 An air electrode was manufactured in the same manner as Comparative Example 4, except that the thickness of the tin dioctylate coating was 40 OA.

以上27個の空気電極を用い、対極を重量比で3%の水
銀アマルガム化したゲル状亜鉛、電解液を水酸化カリウ
ム、化パレータをポリアミド不織布として空気−亜鉛電
池を組立てた。
Using the above 27 air electrodes, an air-zinc battery was assembled using gelled zinc amalgamated with 3% mercury as the counter electrode, potassium hydroxide as the electrolyte, and polyamide nonwoven fabric as the pallator.

これら27個の電池を25Cの空気中で16時間放置し
た後、各S電流で5分間放電し、5分後の端子電圧が1
.0V以下となるときの電流密度を測定した。また、4
5C,90%の相対湿度の雰囲気中にこれら電池を保存
して電解液の漏洩状態を観察した。
After these 27 batteries were left in air at 25C for 16 hours, they were discharged for 5 minutes at each S current, and the terminal voltage after 5 minutes was 1.
.. The current density was measured when the current density was 0V or less. Also, 4
These batteries were stored in an atmosphere of 5C and 90% relative humidity, and leakage of the electrolyte was observed.

更に、保存後の電池につき、上記と同様の放電試験を行
ない、そのときの電流値の初期電流値に対する比(@を
算出した。この算出値は、各電池の空気電極の劣化状態
の程度を表わし放電特性維持率といい得るものである。
Furthermore, the same discharge test as above was performed on the batteries after storage, and the ratio (@) of the current value to the initial current value was calculated. This calculated value indicates the degree of deterioration of the air electrode of each battery. This can be referred to as the discharge characteristic maintenance rate.

この値の大きい電極はど劣化が小さいことを表わす。An electrode with a large value indicates a small degree of deterioration.

また、各電極に添着されている被膜に関し、酸素ガス透
過速度をガスクロ?トゲラフをガス検出手段とする等圧
法で測定し、水蒸気透過速度をJIS  z020B 
(カップ法)に準じた方法で測定し、両者の比を算出し
た。
Also, regarding the coating attached to each electrode, do you know the oxygen gas permeation rate using gas chromatography? The water vapor permeation rate was measured by the isobaric method using a thorn rough as a gas detection means, and the water vapor transmission rate was determined according to JIS z020B.
(cup method), and the ratio between the two was calculated.

以上の結果を一括して表に示した。The above results are summarized in the table.

345 〔発明の効果〕 以上の結果から明らかなように、本発明の9気電極は全
体が薄く、空気中の水蒸気又は炭酸ガスを電極本体に侵
入させることがなく、そのため。
345 [Effects of the Invention] As is clear from the above results, the 9-electrode electrode of the present invention is thin as a whole and does not allow water vapor or carbon dioxide gas in the air to enter the electrode body.

長期に亘る重負荷放電が可能となり、また保存性能にも
優れるのでその工業的価値は犬である。
Its industrial value is significant because it enables long-term heavy load discharge and has excellent storage performance.

なお、上記実施例の空気電極の性能評価は、電解液とし
て水酸化カリウムを用いて行なったが。
Note that the performance evaluation of the air electrode in the above example was performed using potassium hydroxide as the electrolyte.

他の電解液1例えば塩化アンモニウムや、水酸化ナトリ
ウムや、水酸化ルビジウム、水酸化リチウム、水酸化セ
シウム等をこれら溶液に混合した電解液を用いても同様
の効果が得られることは言うまでもない。また、本発明
にかかる空気@極は9気−鉄電池にも用いることができ
た。
It goes without saying that similar effects can be obtained by using other electrolytic solutions 1, such as ammonium chloride, sodium hydroxide, rubidium hydroxide, lithium hydroxide, cesium hydroxide, etc., mixed with these solutions. Moreover, the air@electrode according to the present invention could also be used in a 9-iron battery.

346−346-

Claims (1)

【特許請求の範囲】[Claims] 酸素ガスに対する電気化学的還元能を有し、かつ集電体
機能も併有する多孔質の電極本体と;該電極本体のガス
側表面に、多孔性膜を介して被覆された金属原子を含有
する有機化合物の薄膜と から成ることを特徴とする空
気電極。
A porous electrode body that has an electrochemical reduction ability for oxygen gas and also has a current collector function; the gas side surface of the electrode body contains metal atoms coated with a porous film. An air electrode characterized by comprising a thin film of an organic compound.
JP57208400A 1982-11-30 1982-11-30 Air electrode Pending JPS5999677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57208400A JPS5999677A (en) 1982-11-30 1982-11-30 Air electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57208400A JPS5999677A (en) 1982-11-30 1982-11-30 Air electrode

Publications (1)

Publication Number Publication Date
JPS5999677A true JPS5999677A (en) 1984-06-08

Family

ID=16555621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57208400A Pending JPS5999677A (en) 1982-11-30 1982-11-30 Air electrode

Country Status (1)

Country Link
JP (1) JPS5999677A (en)

Similar Documents

Publication Publication Date Title
EP0097770B1 (en) Oxygen gas permselective membrane
US4599157A (en) Oxygen permeable membrane
JP4937449B2 (en) Ion conductive matrix and use thereof
JPS6321315B2 (en)
JPS59150508A (en) Preparation of oxygen gas permselective composite membrane
JPS5854564A (en) Porous catalyst layer for gas diffusion electrode
JPS6044003A (en) Oxygen gas permselective composite membrane and air electrode comprising the same
JPS5999677A (en) Air electrode
US3669743A (en) Rechargeable electrochemical cell with solid zinc salt complex electrolyte
JPS6051505A (en) Gas selective composite membrane
JPS5998706A (en) Oxygen gas permselective composite membrane
JPS58225573A (en) Air electrode and its production method
JPS5955315A (en) Manufacture of composite film having selective oxygen permeability
JPS58225575A (en) Air electrode and its production method
JPH0213426B2 (en)
JPS58225571A (en) Air electrode and its production method
JPS58225574A (en) Air electrode and its production method
JPS60133675A (en) Air electrode
JPS5933762A (en) Air electrode and its manufacture
JPS60180063A (en) Air electrode
JPS58225572A (en) Air electrode and its production method
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JPS60253161A (en) Air electrode
JPS59151767A (en) Manufacture of air electrode
JPS5994377A (en) Manufacture of air electrode