JPS6037829A - Analog-digital converter - Google Patents

Analog-digital converter

Info

Publication number
JPS6037829A
JPS6037829A JP14625083A JP14625083A JPS6037829A JP S6037829 A JPS6037829 A JP S6037829A JP 14625083 A JP14625083 A JP 14625083A JP 14625083 A JP14625083 A JP 14625083A JP S6037829 A JPS6037829 A JP S6037829A
Authority
JP
Japan
Prior art keywords
capacitor
voltage
charging
signal
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14625083A
Other languages
Japanese (ja)
Inventor
Kenzo Hashikawa
橋川 健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP14625083A priority Critical patent/JPS6037829A/en
Publication of JPS6037829A publication Critical patent/JPS6037829A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/54Input signal sampled and held with linear return to datum

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To prevent the stop of processing at the input of a negative voltage by providing a charging source charging a capacitor when the voltage of the charging capacitor is a prescribed value. CONSTITUTION:An input signal Vin inputted via a multiplexer 11 charges a capacitor C at the front edge of a conversion start signal STT from a CPU (not shown). Then a switch 15 is turned off at the rear edge of the start signal STT, a transistor (TR)13 is turned on and the capacitor C is discharged by a constant current IR. When the charging voltage attains to a prescribed voltage, an interruption signal STP is outputted to the CPU from a comparator 14 and the CPU obtains a digital value depending on the time from the start of charging to the interruption signal STP. Since the signal Vc is a prescribed voltage or below when the input signal Vin is a negative voltage, the comparator 19 is operated, a switch 18 is turned on and the capacitor C is charged, then the stop of processing to be caused by that no interruption signal is obtained does not occurs.

Description

【発明の詳細な説明】 本発明は、マイクロコンピュータ(CPU)と組合せて
使用する積分型のA/Dコンバータに関し、特にノイズ
等による負電圧入力時の対策を施したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integral type A/D converter used in combination with a microcomputer (CPU), and particularly takes measures against negative voltage input due to noise or the like.

CPUと組合せて使用する積分型のA/Dコンバータは
、第1図(a)に示すように、アナログ入力電圧Vin
を時間幅に変換する電圧一時間幅変換部(狭義のA/D
変換部)10をCPU20の外部に接続する。そして、
CPU20が開始信号S′FTの前縁で充電開始を指示
したらアナログ電圧Vinでコンデンサを充電し、その
後肢信号の後縁で放電開始を指示したら該コンデンサの
電荷を定電流で放電してその電圧が所定値以下になった
ら終了信号STPを出してCPU20に割込み(iRQ
)をかける。割込みを受けたCPU20は放電指示から
信号STPまでの時間幅が電圧Vinの振幅に相当する
のでそれをデジタル値に変換した後、次の変換開始を指
示する。同図(b)がその割込み処理ルーチンである。
As shown in Fig. 1(a), the integral type A/D converter used in combination with the CPU has an analog input voltage Vin.
Voltage-to-time width converter (A/D in the narrow sense)
The conversion unit) 10 is connected to the outside of the CPU 20. and,
When the CPU 20 instructs to start charging at the leading edge of the start signal S'FT, the capacitor is charged with the analog voltage Vin, and when the CPU 20 instructs to start discharging at the trailing edge of the hindlimb signal, the charge in the capacitor is discharged with a constant current to increase the voltage. When the value of
)multiply. The CPU 20 receiving the interrupt converts the time width from the discharge instruction to the signal STP into a digital value since it corresponds to the amplitude of the voltage Vin, and then instructs the start of the next conversion. FIG. 6(b) shows the interrupt processing routine.

第2図は従来の変換部10の具体例で、11は多チ中ネ
ル(CH)のアナログ電圧Vinを選択ずるマルチプレ
クサ(MPX) 、12はCPU20からのチャネル(
CH)指定をデコードしてMPXl、1に選択信号を送
るデコーダ、Cばアナログ電圧Vinで充電されるコン
デンサ、13ばその充電電荷を定電流IRで放電するト
ランジスタ(定電流源)、14ばコンデンサCの充電電
圧Vcを所定値VBE2と比較して終了信号STPを発
生ずるコンパレータ、VBEI はV in= OVで
もVc>0とするようにVinに重畳されるバイアス電
圧、15ばCPU20からの開始信号STTが有効(第
3図の例ではL)な期間オンとなり、コンデンサCに対
する充電径路を作るスイッチ、16はバッファである。
FIG. 2 shows a specific example of the conventional conversion unit 10, where 11 is a multiplexer (MPX) that selects the analog voltage Vin of a multichannel channel (CH), and 12 is a multiplexer (MPX) that selects the analog voltage Vin of a multi-channel channel (CH).
CH) A decoder that decodes the designation and sends a selection signal to MPXl, 1, C a capacitor that is charged with the analog voltage Vin, 13 a transistor (constant current source) that discharges its charge with a constant current IR, 14 a capacitor A comparator that compares the charging voltage Vc of C with a predetermined value VBE2 and generates a termination signal STP, VBEI is a bias voltage superimposed on Vin so that Vc>0 even when Vin=OV, and 15 is a start signal from the CPU 20. A switch 16 is a buffer that is turned on while STT is valid (L in the example of FIG. 3) and creates a charging path for the capacitor C.

第3図は正常時の動作波形である。開始信号S1゛Tの
前縁(本例では立下り)は充電指示で、これによりスイ
ッチ15が閉じるとコンデンサCはV c = V i
n+VBEI になるまで充電される。その後信号ST
Tが立上ると放電指示になり、スイッチ15が開いてコ
ンデンサCの電荷は定電流IRで放電される。コンパレ
ータ14 ハV c > V BH3で出力STPをH
(ハイ)とし、やがてコンデンサCの放電でV C< 
’J BB;2になると出力S T PをL(ロー)に
する。CPU20への割込みとして有効なのはこの信号
STPの立下りである。つまり、CPU20は信号ST
Tの立上りから信号STPの立下りまでの時間Txをカ
ウントしてアナログ電圧Vinに対応したデジタル値を
得る。但し、この時間Txにはバイアス電圧VBHI 
の放電時間Toが含まれるので、基準電圧VRを変換し
た時間幅TRとの比でVBEI の影響を取り除く。
FIG. 3 shows operating waveforms during normal operation. The leading edge (falling edge in this example) of the start signal S1゛T is a charge instruction, and when the switch 15 is closed, the capacitor C becomes V c = V i
It is charged until it reaches n+VBEI. Then signal ST
When T rises, a discharge instruction is issued, the switch 15 is opened, and the charge in the capacitor C is discharged with a constant current IR. Comparator 14 V c > V Set output STP to H with BH3
(high), and eventually the discharge of capacitor C causes V C<
'J BB; When it becomes 2, output S T P is set to L (low). It is the fall of this signal STP that is effective as an interrupt to the CPU 20. In other words, the CPU 20 uses the signal ST
The time Tx from the rise of T to the fall of signal STP is counted to obtain a digital value corresponding to analog voltage Vin. However, during this time Tx, the bias voltage VBHI
Since the discharge time To is included, the influence of VBEI is removed by the ratio to the time width TR obtained by converting the reference voltage VR.

(Vin+VBEI VBE2 ) xC−IRxTx
・(tl(VR+VBEI VBE2)XC=IRXT
R・(2+(0+VBEI VBE2)XC=IRXT
O−−・・−+31Vin Tx−T。
(Vin+VBEI VBE2) xC-IRxTx
・(tl(VR+VBEI VBE2)XC=IRXT
R・(2+(0+VBEI VBE2)XC=IRXT
O--...-+31Vin Tx-T.

VRTR−T o ””゛(4) ところで、上述したA/Dコンバータの欠点は、変換部
10への入力Vinがノイズ等の影響で負になり、終了
信号STPが発生しない場合にCP U3Oの処理が永
久に終了しない点である。第4図はこの説明図で、+a
lは入力VinがVBE2 VBEI(くO)以下では
A/D変換不能であることを示している。fblはその
ときの波形図で、V C< VBE2であることから信
号STPが常にLでCPU20への割込みに有効なH−
Lへの変化(立下り)が生じないことを示している。
VRTR-T o "" (4) By the way, the drawback of the above-mentioned A/D converter is that when the input Vin to the conversion unit 10 becomes negative due to the influence of noise etc. and the termination signal STP is not generated, the CPU 3O The point is that the process does not end forever. Figure 4 is an explanatory diagram of this, +a
l indicates that A/D conversion is not possible when the input Vin is less than VBE2 VBEI (kuO). fbl is the waveform diagram at that time. Since V C < VBE2, the signal STP is always L and H- is effective for interrupting the CPU 20.
This shows that no change (fall) to L occurs.

従来はこの様な事態を避けるために、CPU20側で時
間監視をして一定時間内に信号STPによる割込みがか
からなければ再度開始信号STTを送出するようにして
いる。しかし、この場合には一定時間待つ必要があるの
で即応性に欠け、またソフトウェアも複雑になる欠点が
ある。
Conventionally, in order to avoid such a situation, the CPU 20 side monitors the time and sends out the start signal STT again if no interrupt is generated by the signal STP within a certain period of time. However, in this case, it is necessary to wait for a certain period of time, so there is a drawback that responsiveness is lacking and the software is also complicated.

本発明は、電圧一時間幅変換部側のハード構成で上述し
た問題点を解決し、當にCPU側に対して終了信号ST
Pによる割込みをかけるようにするものである。
The present invention solves the above-mentioned problems with the hardware configuration on the voltage-to-time width converter side, and provides an end signal ST to the CPU side.
This is to cause an interrupt by P.

本発明は、マイクロコンピュータからの充電指示でアナ
ログ入力電圧をコンデンサに充電し、その後肢マイクロ
コンピュータからの放電指示を受けたら該コンデンサの
電荷を定電流で放電して、該コンデンサの電圧が所定値
まで低下したら終了信号を発生して該マイクロコンピュ
ータにW11込みをかける電圧一時間幅変換部を備え、
該時間幅をマイクロコンピュータ側でデジタル値に変換
するようにしてなるA/Dコンバータにおいて、前記変
換部側に前記所定値を越える電圧値の充電源を設け、そ
して前記充電指示を受けたら前記コンデンサに対し該充
電源を接続し、且つ前記放電指示を受けたら該充電源を
切り離すようにしてなることを特徴とするが、以下図示
の実施例を参照しながらこれを詳細に説明する。
The present invention charges a capacitor with an analog input voltage in response to a charge instruction from a microcomputer, and upon receiving a discharge instruction from a hindlimb microcomputer, discharges the charge in the capacitor with a constant current, so that the voltage of the capacitor reaches a predetermined value. a voltage-to-time width converter that generates a termination signal when the voltage drops to 1000 Hz and applies a W11 signal to the microcomputer;
In an A/D converter configured to convert the time width into a digital value on the microcomputer side, a charging source with a voltage value exceeding the predetermined value is provided on the conversion section side, and when the charging instruction is received, the capacitor is The charging source is connected to the battery, and the charging source is disconnected when the discharging instruction is received. This will be explained in detail below with reference to the illustrated embodiment.

第5図は本発明の原理説明図で、負電圧入力時のコンデ
ンサ充電電圧Vcを VBEI ≧V c > VBE2 となるように充電する基準電圧VBE3を示している。
FIG. 5 is a diagram explaining the principle of the present invention, and shows a reference voltage VBE3 for charging the capacitor charging voltage Vc when a negative voltage is input so that VBEI≧Vc>VBE2.

第6図は本発明の一実施例を示す構成図で、電圧一時間
幅変換部10だけを示すものである。本例は第2図の構
成にスイッチ17 (スイッチ15と連動する)、スイ
ッチ18、コンパレータ19を追加したものである。コ
ンパレータ19はコンデンサCの電圧Vcを上記の電圧
VBE3と比較し、V C< V BE 3である期間
は充電源■Rにつながるスイッチ18をオンにしておく
。開始信号STTがLである充電期間はスイッチ15.
17は共にオンであるので、コンデンサCはV C−V
 BE3となるまでは無条件に(V inによらず)充
電される。
FIG. 6 is a block diagram showing one embodiment of the present invention, showing only the voltage-to-time width converter 10. In FIG. In this example, a switch 17 (interlocked with switch 15), a switch 18, and a comparator 19 are added to the configuration shown in FIG. The comparator 19 compares the voltage Vc of the capacitor C with the above-mentioned voltage VBE3, and keeps the switch 18 connected to the charging source ■R on during the period when V C < V BE 3. During the charging period when the start signal STT is L, switch 15.
17 are both on, so the capacitor C is V C-V
It is charged unconditionally (regardless of V in) until it reaches BE3.

この後ばV in+ V BEIがVBE3より高けれ
ばVc= V in+ V BEI になるまで充電さ
れる。これに対i、Vin<Oでも第7図に実線で示す
ようにVc=VBTE3 >VBE2までは充電される
ので、信号STPの立下りによる割込みは確実に行うこ
とができる。同図の破線は第2図の回路によるものであ
る。
After this, if V in+V BEI is higher than VBE3, charging is performed until Vc=V in+ V BEI. On the other hand, even when i and Vin<O, charging is performed until Vc=VBTE3>VBE2, as shown by the solid line in FIG. 7, so that an interrupt due to the fall of the signal STP can be reliably performed. The broken lines in the figure are based on the circuit of FIG. 2.

このVBE3による時間TxはVBEIに対応する時間
′1゛Dよりは短かいので、CPU20側は久方ViO
異當と判定できる。このようにしても正常時にはVBI
E3の影響はないので、これが変換誤差の原因となるこ
とはない。
This time Tx due to VBE3 is shorter than the time '1'D corresponding to VBEI, so the CPU 20 side
It can be determined that it is abnormal. Even if this is done, the VBI during normal operation
Since there is no effect of E3, this will not cause conversion errors.

以上述べたように本発明によれば、マイクロコンピュー
タと組合せて使用する積分型のA/Dコンハークに、負
のアナログ電圧が入力したときでもマイクロコンピュー
タの処理が停止することがない利点がある。
As described above, according to the present invention, there is an advantage that the processing of the microcomputer does not stop even when a negative analog voltage is input to the integral type A/D converter used in combination with the microcomputer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマイクロコンピュータと組合せて使用するA/
Dコン八−への概略説明図、第2図は電圧一時間幅変換
部の従来例を示す構成図、第3図は正常時の動作波形図
、第4図は異常時の説明図、第5図は本発明の原理説明
図、第6図は本発明の一実施例を示す電圧一時間幅変換
部の構成図、第7図はその動作波形図である・ 図中、10は電圧一時間幅変換部、13は定電流源、1
4.19はコンパレータ、15.17゜18はスイッチ
、Cはコンデンサ、20はマイクロコンピュータである
。 出 願 人 富士通テン株式会社 代理人弁理士 青 柳 稔
Figure 1 shows an A/C used in combination with a microcomputer.
2 is a configuration diagram showing a conventional example of a voltage-to-time width converter, FIG. 3 is an operating waveform diagram during normal operation, and FIG. 4 is an explanatory diagram for abnormal conditions. Fig. 5 is a diagram explaining the principle of the present invention, Fig. 6 is a configuration diagram of a voltage-to-time width converter showing an embodiment of the present invention, and Fig. 7 is an operating waveform diagram thereof. Time width converter, 13 is a constant current source, 1
4.19 is a comparator, 15.17°18 is a switch, C is a capacitor, and 20 is a microcomputer. Applicant: Minoru Aoyagi, Patent Attorney, Fujitsu Ten Limited

Claims (1)

【特許請求の範囲】[Claims] マイクロコンピュータからの充電指示でアナログ入力電
圧をコンデンサに充電し、その後肢マイクロコンピュー
タからの放電指示を受けたら該コンデンサの電荷を定電
流で放電して、該コンデンサの電圧が所定値まで低下し
たら終了信号を発生して該マイクロコンピュータに割込
みをかける電圧一時間幅変換部を備え、該時間幅をマイ
クロコンピュータ側でデジタル値に変換するようにして
なるA/Dコンバータにおいて、前記変換部側に前記所
定値を越える電圧値の充電源を設け、そして1)11記
充電指示を受けたら前記コンデンサに対し該充電源を接
続し、且つ前記放電指示を受けたら該充電源を切り離す
ようにしてなることを特徴とするA/Dコンバータ。
The capacitor is charged with the analog input voltage in response to a charging instruction from the microcomputer, and when a discharging instruction is received from the hindlimb microcomputer, the charge in the capacitor is discharged with a constant current, and the process ends when the voltage of the capacitor drops to a predetermined value. In an A/D converter, the A/D converter is provided with a voltage-to-time width conversion section that generates a signal to interrupt the microcomputer, and the time width is converted into a digital value on the microcomputer side. A charging source with a voltage value exceeding a predetermined value is provided, and 1) when receiving the charging instruction described in 11, connect the charging source to the capacitor, and disconnect the charging source when receiving the discharging instruction. An A/D converter featuring:
JP14625083A 1983-08-10 1983-08-10 Analog-digital converter Pending JPS6037829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14625083A JPS6037829A (en) 1983-08-10 1983-08-10 Analog-digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14625083A JPS6037829A (en) 1983-08-10 1983-08-10 Analog-digital converter

Publications (1)

Publication Number Publication Date
JPS6037829A true JPS6037829A (en) 1985-02-27

Family

ID=15403485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14625083A Pending JPS6037829A (en) 1983-08-10 1983-08-10 Analog-digital converter

Country Status (1)

Country Link
JP (1) JPS6037829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104321A (en) * 1985-10-31 1987-05-14 Toshiba Corp A/d converter
JPS62112222U (en) * 1985-12-28 1987-07-17

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104321A (en) * 1985-10-31 1987-05-14 Toshiba Corp A/d converter
JPH02895B2 (en) * 1985-10-31 1990-01-09 Tokyo Shibaura Electric Co
JPS62112222U (en) * 1985-12-28 1987-07-17

Similar Documents

Publication Publication Date Title
US5140252A (en) Method of charging secondary batteries
US20060098366A1 (en) Battery protecting circuit
US4165508A (en) Method and apparatus for detecting a peak value of an analog signal
JPS6037829A (en) Analog-digital converter
GB1585144A (en) Circuit arrangement for line recognition of a television signal
JPH11271366A (en) Apparatus for detecting voltage drop
US4780888A (en) Method and arrangement for disturbance-proof recognition of data contained in data signals
JPS6351574B2 (en)
US20220321001A1 (en) Power converter
US20050012511A1 (en) Analog signal measuring device and method
US6985821B2 (en) Apparatus for calculating an effective voltage
JP2001160756A (en) Analog/digital converter
JPS6089131A (en) Analog-digital converting method
US7106387B2 (en) Keyed clamp circuit
JP2647683B2 (en) Electrolytic capacitor short detection device
JPH0652870B2 (en) A / D converter
JPS54105583A (en) Peak detection circuit
JPH05284118A (en) Analog/pulse width converting device and insulated information transmitting system
JPS606589B2 (en) color imaging device
JPS60135771A (en) Peak value detector
JPS5694835A (en) A/d converter
CA2045836A1 (en) Document sensing apparatus
JP2503796B2 (en) Charge detection circuit for battery charger
SU991614A2 (en) Pulse repetition frequency multiplier
JPS56169969A (en) Synchronisum separation circuit