JPS6029815B2 - Flow path control device for helical intake port - Google Patents

Flow path control device for helical intake port

Info

Publication number
JPS6029815B2
JPS6029815B2 JP56120633A JP12063381A JPS6029815B2 JP S6029815 B2 JPS6029815 B2 JP S6029815B2 JP 56120633 A JP56120633 A JP 56120633A JP 12063381 A JP12063381 A JP 12063381A JP S6029815 B2 JPS6029815 B2 JP S6029815B2
Authority
JP
Japan
Prior art keywords
intake
valve
negative pressure
boat
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56120633A
Other languages
Japanese (ja)
Other versions
JPS5823223A (en
Inventor
猛 奥村
清 中西
悳太 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56120633A priority Critical patent/JPS6029815B2/en
Publication of JPS5823223A publication Critical patent/JPS5823223A/en
Publication of JPS6029815B2 publication Critical patent/JPS6029815B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10229Fluid connections to the air intake system; their arrangement of pipes, valves or the like the intake system acting as a vacuum or overpressure source for auxiliary devices, e.g. brake systems; Vacuum chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/082Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets the main passage having a helical shape around the intake valve axis; Engines characterised by provision of driven charging or scavenging pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明はへIJカル型吸気ボートの流路制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow path control device for an IJ cal-type intake boat.

機関高速高負荷運転時における高い充填効率を確保する
と共に機関低速低負荷運転時に強力な旋回流を燃焼室内
に発生せしめるために、第1吸気弁を介して燃焼室内に
連結されたヘリカル型吸気ボートと、第2吸気弁を介し
て燃焼室内に連結された第2の吸気ボートとを具備し、
機関低速低負荷運転時に第2吸気ボートからの吸入空気
の供給を停止してへりカル型吸気ボートのみから吸入空
気を供給することにより燃焼室内に強力な旋回流を発生
せしめ、機関高速高負荷運転時にはへIJカル型吸気ボ
ートと第2吸気ボートの双方から吸入空気を燃焼室内に
供給するようにした内燃機関が知られている。
A helical intake boat is connected to the combustion chamber via the first intake valve in order to ensure high charging efficiency when the engine is running at high speeds and high loads, and to generate a strong swirling flow inside the combustion chamber when the engine is running at low speeds and low loads. and a second intake boat connected to the combustion chamber via the second intake valve,
When the engine is running at low speed and low load, the supply of intake air from the second intake boat is stopped and intake air is supplied only from the helical type intake boat, which generates a strong swirling flow inside the combustion chamber, allowing the engine to operate at high speed and high load. BACKGROUND ART Internal combustion engines are known in which intake air is sometimes supplied into a combustion chamber from both an IJ Cal type intake boat and a second intake boat.

このようなへIJカル型吸気ボートを用いて吸入空気量
の少ない機関低速低負荷運転時に燃焼室内に強力な旋回
流を発生せしめようとするとへりカル型吸気ボートの形
状が流れ抵抗の大きな形状になってしまうので機関高速
高負荷運転時には、たとえ第2吸気ボートから吸入空気
が供給されても十分に高い充填効率を確保するのが困難
となっている。本発明は機関低速低負荷運転時に強力な
旋回流を燃焼室内に発生できると共に機関高速高負荷運
転時に十分に高い充填効率を得ることのできる内燃機関
を提供することにある。
If you try to use such a helical IJ intake boat to generate a strong swirling flow in the combustion chamber during low-speed, low-load operation of the engine with a small amount of intake air, the shape of the helical intake boat will create a shape with large flow resistance. Therefore, during engine high-speed, high-load operation, it is difficult to ensure a sufficiently high filling efficiency even if intake air is supplied from the second intake boat. SUMMARY OF THE INVENTION An object of the present invention is to provide an internal combustion engine that can generate a strong swirling flow in a combustion chamber during low-speed, low-load operation of the engine, and can obtain sufficiently high charging efficiency during high-speed, high-load operation of the engine.

以下、添附図面を参照して本発明を詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図から第3図を参照すると、1はシリンダブロック
、2はシリンダブロック1内で往復勤するピストン、3
はシリンダブロツクー上に固定されたシリンダヘツド、
4はピストン2とシリンダヘッド3間に形成された燃焼
室、5aは第1の吸気弁、5bは第2の吸気弁、6aは
第1吸気弁5aを介して燃焼室4内に連結されたヘリカ
ル型吸気ボート、6bは第2吸気弁5bを介して燃焼室
4内に連結されたまつすぐに延びる第2吸気ポート、7
aは第1排気弁、7bは第2排気弁、8aは第1排気ボ
ート、8bは第2排気ボートを夫々示す。
Referring to FIGS. 1 to 3, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1, and 3 is a cylinder block.
is the cylinder head fixed on the cylinder block,
4 is a combustion chamber formed between the piston 2 and the cylinder head 3, 5a is a first intake valve, 5b is a second intake valve, and 6a is connected to the combustion chamber 4 via the first intake valve 5a. A helical intake boat, 6b, is connected to the combustion chamber 4 via the second intake valve 5b and immediately extends into a second intake port, 7
7a is a first exhaust valve, 7b is a second exhaust valve, 8a is a first exhaust boat, and 8b is a second exhaust boat.

なお、図には示さないが燃焼室4の頂面中央部には点火
栓が取付けられる。第1吸気弁5a並びに第2吸気弁5
bは図示しない動弁機構によってほぼ同期して開弁せし
められ、一方第1排気弁7a並びに第2排気弁7bも図
示しない勤弁機構によってほぼ同期して関弁せしめられ
る。第4図から第6図にへりカル型吸気ボート6aの形
状を図解的に示す。このヘリカル型吸気ボート6aは第
5図に示されるように流路軸線aがわずかに鷲曲した入
口通路部Aと、第1吸気弁5aの弁軸周りに形成された
渦巻部Bとにより構成され、入口通路部Aは渦巻部Bに
接線状に接続される。第4図、第5図並びに第8図に示
されるように入口通路部Aの渦巻軸線bに近い側の側壁
面9の上方側壁面9aは下方を向いた傾斜面に形成され
、この傾斜面9aの中は渦巻部Bに近づくに従って広く
なり、入口通路部Aと渦巻部Bとの接続部においては第
8図に示されるように側壁部9の全体が下方に向いた傾
斜部9aに形成される。側壁面9の上半分は吸気弁ステ
ムガィド10(第2図)周りの吸気ボート上壁面上に形
成された円筒状突起11の周壁面に滑らかに接続され、
一方側壁面9の下半分は渦巻部Bの渦巻終端部Cにおい
て渦巻部Bの側壁面12に接続される。なお、渦巻部B
の上壁面13は渦巻終端部Cにおいて下向きの急傾斜壁
Dに接続される。一方、第4図から第6図に示されるよ
うにシリンダヘッド3内には入口通路部Aから分岐され
たほぼ一様断面の分岐路14が形成され、この分岐路1
4は渦巻終端部Cに接続される。
Although not shown in the figure, an ignition plug is attached to the center of the top surface of the combustion chamber 4. First intake valve 5a and second intake valve 5
The valves b are opened substantially synchronously by a valve operating mechanism (not shown), and the first exhaust valve 7a and the second exhaust valve 7b are also opened substantially synchronously by a valve operating mechanism (not shown). 4 to 6 schematically show the shape of the helical type intake boat 6a. As shown in FIG. 5, this helical intake boat 6a is composed of an inlet passage section A in which the flow path axis a is slightly curved, and a spiral section B formed around the valve axis of the first intake valve 5a. The inlet passage section A is tangentially connected to the spiral section B. As shown in FIGS. 4, 5, and 8, the upper side wall surface 9a of the side wall surface 9 on the side closer to the spiral axis b of the inlet passage A is formed into a downwardly oriented inclined surface, and this inclined surface The inside of the side wall 9 becomes wider as it approaches the spiral part B, and at the connection part between the inlet passage part A and the spiral part B, the entire side wall part 9 is formed into an inclined part 9a facing downward, as shown in FIG. be done. The upper half of the side wall surface 9 is smoothly connected to the peripheral wall surface of a cylindrical projection 11 formed on the upper wall surface of the intake boat around the intake valve stem guide 10 (FIG. 2).
On the other hand, the lower half of the side wall surface 9 is connected to the side wall surface 12 of the spiral portion B at the spiral end C of the spiral portion B. In addition, spiral part B
The upper wall surface 13 is connected to the downwardly inclined wall D at the spiral end C. On the other hand, as shown in FIGS. 4 to 6, a branch passage 14 having a substantially uniform cross section is formed in the cylinder head 3 and branched from the inlet passage A.
4 is connected to the spiral end C.

分岐路14の入口関口15は入口通路部Aの入口開口近
傍において側壁面9上に形成され、分岐路14の出口閉
口16は渦巻終端部Cにおいて側壁面12の上3端部に
形成される。更に、シリンダヘッド3内には分岐路14
を貫通して延びる開閉弁挿入孔17が穿設され、この開
閉弁挿入孔17内には夫々開閉弁を構成するロータリ弁
18が挿入される。このロータリ弁18は分岐路14内
に配置されかつ子第10図に示すように薄板状をなす弁
体19と、弁体19と一体形成された弁麹20とを具備
し、この弁軸20は開閉弁挿入孔17内に舷着された案
内スリーブ21により回転可能に支承される。弁軸20
は案内スリーブ21の頂面から上方に突出し、この突出
端部にアーム22が固着される。第2図並びに第11図
に示されるようにへりカル型吸気ボート6aは枝管23
を介してサージタンク24に連結され、このサージタン
ク24はアクセルペダルに連結されたスロツトル弁25
並びにェアフローメータ(図示せず)を介して大気に蓮
適する。各枝管23には燃料噴射弁26が取付けられ、
これらの燃料噴射弁26から対応するへ0リカル型吸気
ボート6a内に燃料が噴射される。一方、第3図並びに
第11図に示すように第2吸気ボート6bは枝管27を
介してサージタンク24に連結され、この枝管27内に
は吸気遮断弁28が挿入される。吸気遮断弁28の弁軸
29は枝タ管27から上方に突出し、その突出端部にア
ーム30が固着される。第11図を参照すると、各気筒
のロータリ弁18のアーム22は連結ロッド31を介し
て互に連結され、この連結ロッド31は第1負圧ダイア
フラム装置32のダイアフラム33に固着された制御ロ
ッド34に連結される。
The entrance gate 15 of the branch passage 14 is formed on the side wall surface 9 near the entrance opening of the entrance passage section A, and the exit closing mouth 16 of the branch passage 14 is formed at the upper three ends of the side wall surface 12 at the spiral terminal end C. . Furthermore, a branch passage 14 is provided in the cylinder head 3.
An on-off valve insertion hole 17 is formed extending through the on-off valve insertion hole 17, and a rotary valve 18 constituting an on-off valve is inserted into each on-off valve insertion hole 17. The rotary valve 18 is disposed within the branch passage 14 and includes a thin plate-shaped valve body 19 as shown in FIG. 10, and a valve mold 20 integrally formed with the valve body 19. It is rotatably supported by a guide sleeve 21 fitted within the opening/closing valve insertion hole 17 . Valve stem 20
protrudes upward from the top surface of the guide sleeve 21, and the arm 22 is fixed to this protruding end. As shown in FIGS. 2 and 11, the helical type intake boat 6a has a branch pipe 23.
The surge tank 24 is connected to a throttle valve 25 connected to an accelerator pedal.
and to the atmosphere via an airflow meter (not shown). A fuel injection valve 26 is attached to each branch pipe 23,
Fuel is injected from these fuel injection valves 26 into the corresponding intake boats 6a. On the other hand, as shown in FIGS. 3 and 11, the second intake boat 6b is connected to the surge tank 24 via a branch pipe 27, into which an intake cutoff valve 28 is inserted. A valve shaft 29 of the intake cutoff valve 28 projects upward from the branch pipe 27, and an arm 30 is fixed to the projecting end thereof. Referring to FIG. 11, the arms 22 of the rotary valves 18 of each cylinder are connected to each other via a connecting rod 31, which connects to a control rod 34 fixed to a diaphragm 33 of a first negative pressure diaphragm device 32. connected to.

第1ダイアフラム装置32はダイアフラム33によって
大気から隔離された負圧室35を有し、負圧室35内に
ダイアフラム押圧用圧縮ばね36が挿入される。この負
圧室35は大気に蓮通可能な電磁切換弁37並びに負圧
導管38を介して負圧アキュムレータ39に連結され、
電磁切換弁37のソレノィド40は電子制御ユニット5
0の出力端子に接続される。一方、各気筒の吸気遮断弁
28のアーム3川ま連結ロッド40を介して互に連結さ
れ、この連結ロッド40は第2負圧ダイアフラム装置4
1のダイアフラム42に固着された制御ロッド43に連
結される。第2ダイアフラム装置41はダイアフラム4
2によって大気から隔離された負圧室44を有し、負圧
室44内にダイアフラム押圧用圧縮ばね45が挿入され
る。この負圧室44は大気に蓮通可能な電磁切換弁46
並びに負圧導管47を介して負圧アキュムレータ39に
連結され、電磁切換弁46のソレノィド48は電子制御
ユニット50の出力端子に接続される。第11図に示す
ように負圧アキュムレータ39は負圧アキュムレータ3
9からサージタンク24内に向けてのみ流通可能な逆止
弁49を介してサージタンク24内に連結される。従っ
て逆止弁49はサージタンク24内の負圧が負圧アキュ
ムレータ39内の負圧よりも大きくなると関弁し、サー
ジタンク24内の負圧が負圧アキュムレー夕39内の負
圧よりも小さくなると閉弁するので負圧アキムレータ3
9内の負圧はサージタンク24内に発生する最大員圧に
維持される。電子制御ユニット50はディジタルコンビ
ユー夕からなり、各種の演算処理を行なうマイクロプロ
セッサ(MPU)51、ランダムアクセスメモリ(RA
M)52、制御プログラム、演算定数等が予め格納され
ているリードオンリメモリ(ROM)53、入力ボート
54並びに出力ボート55が双方向性バス56を介して
互に接続されている。
The first diaphragm device 32 has a negative pressure chamber 35 isolated from the atmosphere by a diaphragm 33, and a compression spring 36 for pressing the diaphragm is inserted into the negative pressure chamber 35. This negative pressure chamber 35 is connected to a negative pressure accumulator 39 via an electromagnetic switching valve 37 and a negative pressure conduit 38 that can communicate with the atmosphere.
The solenoid 40 of the electromagnetic switching valve 37 is connected to the electronic control unit 5
Connected to the 0 output terminal. On the other hand, the arms 3 of the intake cutoff valves 28 of each cylinder are connected to each other via a connecting rod 40, and this connecting rod 40 is connected to the second negative pressure diaphragm device 4.
It is connected to a control rod 43 fixed to a diaphragm 42 of one. The second diaphragm device 41 is the diaphragm 4
It has a negative pressure chamber 44 isolated from the atmosphere by 2, and a compression spring 45 for pressing the diaphragm is inserted into the negative pressure chamber 44. This negative pressure chamber 44 has a solenoid switching valve 46 that can communicate with the atmosphere.
It is also connected to the negative pressure accumulator 39 via a negative pressure conduit 47, and the solenoid 48 of the electromagnetic switching valve 46 is connected to the output terminal of the electronic control unit 50. As shown in FIG. 11, the negative pressure accumulator 39 is
9 into the surge tank 24 via a check valve 49 that allows flow only into the surge tank 24. Therefore, the check valve 49 becomes a valve when the negative pressure in the surge tank 24 becomes larger than the negative pressure in the negative pressure accumulator 39, and the negative pressure in the surge tank 24 becomes smaller than the negative pressure in the negative pressure accumulator 39. When this happens, the valve closes and the negative pressure accumulator 3
The negative pressure in the surge tank 9 is maintained at the maximum pressure generated in the surge tank 24. The electronic control unit 50 consists of a digital computer, a microprocessor (MPU) 51 that performs various calculation processes, and a random access memory (RA).
M) 52, a read-only memory (ROM) 53 in which control programs, calculation constants, etc. are stored in advance, an input port 54, and an output port 55 are interconnected via a bidirectional bus 56.

更に、電子制御ユニット50内には各種のクロック信号
を発生するクロツク発生器57が設けられる。入力ボー
ト54には負圧センサ58がAD変換器59を介して接
続され、更に入力ボート54には回転数センサ60が接
続される。負圧センサ58はサージタンク24内の負圧
に比例した出力電圧を発生し、この電圧がAD変換器5
9において対応する2進数に変換されてこの2進数が入
力ボート54並びにバス56を介してMPU51に読み
込まれる。回転数センサ60はクランクシャフトが所定
クランク角度回転する毎にパルスを発生し、このパルス
が入力ボート54並びにバス56を介してMPU51に
読み込まれる。一方、出力ボート55は電力増中回路6
1,62を介して夫々電磁切換弁37,46のソレノィ
ド40,48に接続される。第12図は電磁切換弁37
,46を作動すべき機関回転数N(r.p.m)とサー
ジタンク24内の負圧P(一肌Hg)の関係を示してい
る。
Furthermore, a clock generator 57 is provided within the electronic control unit 50 for generating various clock signals. A negative pressure sensor 58 is connected to the input boat 54 via an AD converter 59, and a rotation speed sensor 60 is further connected to the input boat 54. The negative pressure sensor 58 generates an output voltage proportional to the negative pressure inside the surge tank 24, and this voltage is applied to the AD converter 5.
9, the binary number is converted into a corresponding binary number, and this binary number is read into the MPU 51 via the input port 54 and the bus 56. The rotation speed sensor 60 generates a pulse every time the crankshaft rotates by a predetermined crank angle, and this pulse is read into the MPU 51 via the input boat 54 and the bus 56. On the other hand, the output boat 55 is connected to the power increasing circuit 6
1 and 62 to solenoids 40 and 48 of electromagnetic switching valves 37 and 46, respectively. Figure 12 shows the electromagnetic switching valve 37.
, 46, and the negative pressure P (in Hg) in the surge tank 24.

第12図において曲線Tは第1の設定空気量を示してお
り、曲線Sは第2の設定空気量を示しており、第12図
から第2設定空気量Sのほうが第1設定空気量Tよりも
大きいことがわかる。第12図において曲線Sの下方領
域では電磁切襖弁37のソレノィド40が消勢されて第
1ダイアフラム装置32の負圧室35が負圧アキュムレ
ータ39に連結されており、ハッチングで示す曲線Sの
上方領域ではソレノィド40が付勢されて負圧室35が
大気に蓮通せしめられている。一方、第12図において
曲線Tの下方領域では電磁切換弁46のソレノィド48
が消勢されて第2ダイアフラム装置41の負圧室44が
負圧アキュムレータ39に連結されており、ハッチング
で示す曲線Tの上方領域ではソレノィド48が付勢され
て負圧室44が大気に通過せしめられている。第12図
の曲線S,Tで示す機関回転数Nと負圧Pとの関係は関
数の形で或はデータテーブルの形で予めROM53内に
格納されている。MPU51では回転数センサ60の出
力信号から機関回転数Nが計算され、この機関回転数N
と負圧Pを表わす負圧センサ58の出力信号とがROM
53内に記憶された関数S,Tと比較される。このとき
機関回転数Nと負圧Pとの交点が曲線Tと曲線Sとの間
にあるとすると出力ボート55にはMPU51から電磁
切換弁46のソレノィド48を付勢すべきデータと、電
磁切換弁37のソレノィド40を消勢すべきデータが書
込まれる。第12図において機関回転数Nと負圧Pとの
交点が曲線Tの下方領域にあると前述したように両電磁
切換弁37,46のソレノィド40,48は消勢される
ので両負圧ダイアフラム装置32,41の負圧室35,
44は負圧アキュムレー夕39に接続され、斯くして両
負圧室35,44内には負圧が作用している。
In FIG. 12, the curve T shows the first set air amount, and the curve S shows the second set air amount. From FIG. 12, the second set air amount S is higher than the first set air amount T. It can be seen that it is larger than In FIG. 12, in the region below the curve S, the solenoid 40 of the electromagnetic sliding valve 37 is deenergized and the negative pressure chamber 35 of the first diaphragm device 32 is connected to the negative pressure accumulator 39, and the curve S shown by hatching In the upper region, the solenoid 40 is energized to vent the negative pressure chamber 35 to the atmosphere. On the other hand, in the region below the curve T in FIG.
is deenergized and the negative pressure chamber 44 of the second diaphragm device 41 is connected to the negative pressure accumulator 39, and in the area above the hatched curve T, the solenoid 48 is energized and the negative pressure chamber 44 passes to the atmosphere. I'm being forced to do it. The relationship between engine speed N and negative pressure P shown by curves S and T in FIG. 12 is stored in advance in the ROM 53 in the form of a function or data table. The MPU 51 calculates the engine rotation speed N from the output signal of the rotation speed sensor 60, and calculates the engine rotation speed N.
and the output signal of the negative pressure sensor 58 representing the negative pressure P are stored in the ROM.
It is compared with functions S and T stored in 53. At this time, if the intersection of the engine speed N and the negative pressure P is between the curve T and the curve S, the output boat 55 contains data from the MPU 51 to energize the solenoid 48 of the electromagnetic switching valve 46 and Data is written to deenergize the solenoid 40 of the valve 37. In FIG. 12, when the intersection of the engine speed N and the negative pressure P is in the region below the curve T, the solenoids 40 and 48 of both the electromagnetic switching valves 37 and 46 are deenergized, so that both negative pressure diaphragms are Negative pressure chamber 35 of device 32, 41,
44 is connected to a negative pressure accumulator 39, so that negative pressure acts within both negative pressure chambers 35 and 44.

このとき、ロータリ弁18は分岐路14を閉鎖し、吸気
遮断弁28が全閉している。従って吸入空気はへりカル
型吸気ボート6aの入口通路部A並びに渦巻部Bを介し
て燃焼室4内に供給される。このとき入口通路部A内に
送り込まれた吸入空気は渦巻部Bの上壁面13に沿って
旋回しつつ渦巻部B内を下降し、次いで旋回しつつ燃焼
室4内に流入するので燃焼室4内には強力な旋回流が発
生せしめられる。次いで、第12図において機関回転数
Nと負圧Pとの交点が曲線Tと曲線Sとの間の領域にな
ると電磁切襖弁46のソレノィド48が付勢されるため
に第2ダイアフラム装置41の負圧室44は大気に運通
せしめられる。
At this time, the rotary valve 18 closes the branch passage 14, and the intake cutoff valve 28 is fully closed. Therefore, intake air is supplied into the combustion chamber 4 through the inlet passage section A and the spiral section B of the helical intake boat 6a. At this time, the intake air sent into the inlet passage part A descends inside the swirl part B while swirling along the upper wall surface 13 of the swirl part B, and then flows into the combustion chamber 4 while swirling. A strong swirling flow is generated inside. Next, in FIG. 12, when the intersection of the engine speed N and the negative pressure P falls in the area between the curve T and the curve S, the solenoid 48 of the electromagnetic sliding valve 46 is energized, so that the second diaphragm device 41 The negative pressure chamber 44 is communicated with the atmosphere.

その結果、ダイアフラム42は圧縮ばね45のばね力に
より下降して吸気遮断弁28が全開し、斯くして第2吸
気ボート6bからも吸入空気が燃焼室4内に供給される
。この第2吸気ボート6bは流れ抵抗の小さなまつすぐ
に延びる形状をなしており、従って吸気遮断弁28が全
開するとへりカル型吸気ボート6aから供給される吸入
空気量が減少するために旋回流は弱められ、更に流れ抵
抗の小さな第2吸気ポ−ト6bから吸入空気が供給され
るために充填効率が高くなる。次いで第12図において
機関回転数Nと負圧Pとの交点が曲線Sの上方領域にな
ると電磁切換弁37のソレノィド40が付勢されるため
に第1ダイアフラム装置32の負圧室35は大気に蓮通
せしめられる。
As a result, the diaphragm 42 is lowered by the spring force of the compression spring 45, and the intake cutoff valve 28 is fully opened, so that intake air is also supplied into the combustion chamber 4 from the second intake boat 6b. The second intake boat 6b has a straight-extending shape with low flow resistance. Therefore, when the intake cutoff valve 28 is fully opened, the amount of intake air supplied from the helical intake boat 6a decreases, and the swirling flow is reduced. Since the intake air is supplied from the second intake port 6b which is weakened and has a smaller flow resistance, the filling efficiency is increased. Next, in FIG. 12, when the intersection of the engine speed N and the negative pressure P is in the area above the curve S, the solenoid 40 of the electromagnetic switching valve 37 is energized, so that the negative pressure chamber 35 of the first diaphragm device 32 is exposed to the atmosphere. It is forced to pass through the lotus.

その結果、ダイアフラム33は圧縮ばね36のばね力に
より下降してロータリ弁18が回転せしめられ、ロータ
リ弁18が分岐路14を全開する。このとき入口通路部
A内に送り込まれた空気の一部が流れ抵抗の小さな分岐
路14を介して渦巻部B内に送り込まれる。渦巻部Bの
上壁面13に沿って進む混合気流は渦巻終端部Cの急傾
斜壁Dによって下向きに流路が偏向せしめられるため渦
巻終端部C、即ち分岐路14の出口開ロー6には大きな
負圧が発生する。従って入口通路部Aと渦巻終端部Cと
の圧力差が大きいのでロータリ弁18が開弁すると大量
の空気が分岐路14を介して渦巻部B内に送り込まれる
。このように機関高速高負荷運転時にはロータリ弁18
が開弁することによって全体の流路面積が増大するばか
りでなく大量の吸入空気が流れ抵抗の小さな分岐路14
を介して渦巻部B内に送り込まれるので高い充填効率を
確保することができる。また、入口通路部Aに傾斜面9
aを設けることによって入口通路部Aに送り込まれた空
気の一部は下向きの力を与えられ、その結果この空気は
旋回することなく入口通路部Aの下壁面に沿って渦巻部
B内に流入するために流入抵抗は小さくなり、斯くして
高速高負荷運転時における充填効率を更に高めることが
できる。以上述べたように本発明によれば吸入空気量の
少ない機関低速低負荷運転時にはへIJカル型吸気ボー
トのみから吸入空気を燃焼室内に供給することによって
燃焼室内に強力な旋回流を発生でき、吸入空気量が増大
したときには第2吸気ボートからも吸入空気を供給する
ことによって充填効率を向上でき、吸入空気量が更に増
大した機関高速高負荷運転時にはへりカル型吸気ポ−ト
の分岐路を全開することによって高い充填効率を確保す
ることができる。
As a result, the diaphragm 33 is lowered by the spring force of the compression spring 36, causing the rotary valve 18 to rotate, and the rotary valve 18 fully opens the branch passage 14. At this time, a part of the air sent into the inlet passage section A is sent into the spiral section B via the branch path 14 with low flow resistance. The air mixture flowing along the upper wall surface 13 of the vortex B is deflected downward by the steeply inclined wall D of the vortex end C, so there is a large Negative pressure is generated. Therefore, since the pressure difference between the inlet passage section A and the spiral end section C is large, when the rotary valve 18 is opened, a large amount of air is sent into the spiral section B via the branch passage 14. In this way, when the engine is operating at high speed and high load, the rotary valve 18
By opening the valve, not only does the overall flow path area increase, but also a large amount of intake air flows through the branch path 14 with low resistance.
Since it is fed into the spiral portion B through the vortex, high filling efficiency can be ensured. In addition, an inclined surface 9 is provided in the entrance passage section A.
By providing the section A, a part of the air sent into the inlet passage A is given a downward force, and as a result, this air flows into the spiral part B along the lower wall surface of the inlet passage A without swirling. Therefore, the inflow resistance becomes small, and thus the filling efficiency during high-speed, high-load operation can be further improved. As described above, according to the present invention, when the engine is operated at low speed and under low load with a small amount of intake air, a strong swirling flow can be generated in the combustion chamber by supplying intake air into the combustion chamber only from the IJ Cull type intake boat. When the amount of intake air increases, the filling efficiency can be improved by supplying intake air from the second intake boat, and when the engine is operated at high speed and under high load when the amount of intake air increases, the branching path of the helical type intake port can be used. High filling efficiency can be ensured by fully opening.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る内燃機関のシリンダヘッドの平面
断面図、第2図は第1図のローD線に沿ってみた側面断
面図、第3図は第1図のm−m線に沿ってみた側面断面
図、第4図はへりカル型吸気ボートの形状を示す斜視図
、第6図は第4図の平面図、第6図は第1図の分岐路に
沿って切断した側面断面図、第7図は第5図の肌一皿線
に沿ってみた断面図、第8図は第5図の側一肌線に沿っ
てみた断面図、第9図は第5図のK−K線に沿ってみた
断面図、第10図はロータリ弁の斜視図、第11図は流
路制御装置の全体図、第12図は電磁切換弁の作動領域
を示す図である。 5a・・…・第1吸気弁、5b・・・・・・第2吸気弁
、6a・…・・ヘリカル型吸気ボート、6b・・・・・
・第2吸気ボート、14・・…・分岐路、18・・・・
・・ロータリ弁、28・・…・吸気遮断弁、31・・・
・・・第1ダイアフラム装置、41・・・・・・第2ダ
イアフラム装置、37,46・・・・・・電磁切換弁。 第1図第2図 第3図 第6図 第7図 第8図 第9図 第4図 第5図 第10図 第12図 第11図
1 is a plan sectional view of a cylinder head of an internal combustion engine according to the present invention, FIG. 2 is a side sectional view taken along the low D line in FIG. 1, and FIG. 3 is a side sectional view taken along the line mm in FIG. 1. Figure 4 is a perspective view showing the shape of the helical intake boat, Figure 6 is a plan view of Figure 4, and Figure 6 is a side view taken along the branch path in Figure 1. 7 is a cross-sectional view taken along the skin line in Figure 5, Figure 8 is a cross-sectional view taken along the side skin line in Figure 5, and Figure 9 is K in Figure 5. 10 is a perspective view of the rotary valve, FIG. 11 is an overall view of the flow path control device, and FIG. 12 is a diagram showing the operating area of the electromagnetic switching valve. 5a...First intake valve, 5b...Second intake valve, 6a...Helical intake boat, 6b...
・Second intake boat, 14... Branch road, 18...
...Rotary valve, 28...Intake cutoff valve, 31...
...First diaphragm device, 41...Second diaphragm device, 37, 46...Solenoid switching valve. Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 Figure 8 Figure 9 Figure 4 Figure 5 Figure 10 Figure 12 Figure 11

Claims (1)

【特許請求の範囲】[Claims] 1 第1吸気弁を介して燃焼室内に連結されたヘリカル
型吸気ポートと、第2吸気弁を介して該燃焼室内に連結
された第2の吸気ポートとを具備し、該第2吸気ポート
内に吸入空気量が予め定められた第1の設定空気量を越
えたときに開弁する吸気遮断弁を設けた内燃機関におい
て、上記ヘリカル型吸気ポートが吸気弁周りに形成され
た渦巻部と、該渦巻部に接線状に接続されかつほぼまつ
すぐに延びる入口通路部とにより構成され、該入口通路
部から分岐されて該渦巻部の渦巻終端部に連通する分岐
路をシリンダヘツド内に形成すると共に該分岐路内に吸
入空気量が上記第1設定空気量よりも大の予め定められ
た第2の設定空気量を越えたときに開弁する開閉弁を設
けたヘリカル型吸気ポートの流路制御装置。
1 A helical intake port connected to the combustion chamber via the first intake valve, and a second intake port connected to the combustion chamber via the second intake valve, In an internal combustion engine provided with an intake cutoff valve that opens when an intake air amount exceeds a predetermined first set air amount, the spiral portion in which the helical intake port is formed around the intake valve; an inlet passage connected tangentially to the spiral part and extending substantially straight, forming a branch passage in the cylinder head that branches from the inlet passage and communicates with the end of the spiral of the spiral part; and a flow path of a helical intake port, which is provided in the branch path with an on-off valve that opens when the intake air amount exceeds a predetermined second set air amount that is larger than the first set air amount. Control device.
JP56120633A 1981-08-03 1981-08-03 Flow path control device for helical intake port Expired JPS6029815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56120633A JPS6029815B2 (en) 1981-08-03 1981-08-03 Flow path control device for helical intake port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56120633A JPS6029815B2 (en) 1981-08-03 1981-08-03 Flow path control device for helical intake port

Publications (2)

Publication Number Publication Date
JPS5823223A JPS5823223A (en) 1983-02-10
JPS6029815B2 true JPS6029815B2 (en) 1985-07-12

Family

ID=14791047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56120633A Expired JPS6029815B2 (en) 1981-08-03 1981-08-03 Flow path control device for helical intake port

Country Status (1)

Country Link
JP (1) JPS6029815B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0125134Y2 (en) * 1984-06-07 1989-07-28
JPH02115817U (en) * 1989-03-07 1990-09-17

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164620A (en) * 1984-02-06 1985-08-27 Toyota Motor Corp Suction device for internal-combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0125134Y2 (en) * 1984-06-07 1989-07-28
JPH02115817U (en) * 1989-03-07 1990-09-17

Also Published As

Publication number Publication date
JPS5823223A (en) 1983-02-10

Similar Documents

Publication Publication Date Title
JPS6035535B2 (en) Flow path control device for helical intake port
JPS60147537A (en) Intake apparatus for internal-combustion engine
US4473040A (en) Flow control device of a helically-shaped intake port for use in a diesel engine
JPS6035539B2 (en) Flow path control device for helical intake port
JPS5828525A (en) Flow-passage controller for helical-type intake port
JPH025893B2 (en)
JPS6026185Y2 (en) Internal combustion engine intake system
JPS6029815B2 (en) Flow path control device for helical intake port
JPS6035538B2 (en) Flow path control device for helical intake port
JPS5840007B2 (en) Internal combustion engine intake system
JPS5828523A (en) Flow-passage controller for intake port
JPS5828558A (en) Intake device for internal combustion engine
JPH021966B2 (en)
JPS6323546Y2 (en)
JPS6035536B2 (en) Flow path control device for helical intake port
JPS6113737Y2 (en)
JPH034732B2 (en)
JPS6039855B2 (en) Internal combustion engine intake system
JPS6242100Y2 (en)
JPS647227Y2 (en)
JPS6341539Y2 (en)
JPS6026183Y2 (en) Flow path control device for helical intake port
JPS6238542B2 (en)
JPH0238776B2 (en)
JPS6338336Y2 (en)