JPS5828558A - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine

Info

Publication number
JPS5828558A
JPS5828558A JP56112284A JP11228481A JPS5828558A JP S5828558 A JPS5828558 A JP S5828558A JP 56112284 A JP56112284 A JP 56112284A JP 11228481 A JP11228481 A JP 11228481A JP S5828558 A JPS5828558 A JP S5828558A
Authority
JP
Japan
Prior art keywords
valve
air
negative pressure
throttle valve
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56112284A
Other languages
Japanese (ja)
Inventor
Toshio Yamada
敏生 山田
Soichi Matsushita
宗一 松下
Kenji Kato
健治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56112284A priority Critical patent/JPS5828558A/en
Publication of JPS5828558A publication Critical patent/JPS5828558A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To efficiently suppress knocking, by providing a fuel feeder which lowers the air fuel ratio in response to the rise in the degree of opening of a throttle valve when the degree is higher than a prescribed level and by providing a water injector on an intake passage. CONSTITUTION:In an intake device having a helical intake passage 6 whose inlet part and spiral end are connected to each other through a ramified passage 14 fitted with a shutoff valve 18, a fuel injection valve 27 is installed in an intake branch pipe 23 and a water injection valve 47 is installed in a cylinder head 3 so that the fuel and the water injection valves are oriented toward the intake passage 6. The injection valves 27, 47 are regulated by an electronic controller depending on the engine condition. The fuel injection valve 27 is regulated so that the air fuel ratio is lowered in response to the rise in the degree of opening of a throttle valve when the degree is higher than a prescribed level. The water injection valve 47 is regulated so that water is injected when the degree of opening of the throttle valve is higher than the prescribed level.

Description

【発明の詳細な説明】 本職BAは内燃機関の吸気装置に関する。[Detailed description of the invention] The main BA is related to intake systems for internal combustion engines.

燃料消費率を向上するための一つの方法として稀薄混合
気を用いる方法が知られている。しかしながら機関高負
荷運転時にこのような稀薄混合気を用いると機関高出力
が得られない九めに機関負荷が高くなるにつれて混合気
の空燃比を小さくして機関高出力を確保するようにして
いる。しかしながらこのような内燃機関では機関負荷が
高くなるとノッキングを発生するという問題がある。こ
のようなノッキングの発生を阻止するために従来より機
関吸気系に水を噴射するようにした内燃機関が知られて
いる。このように機関吸気糸に水を噴射すると圧縮時の
”混合気の温度が低下するためにノッキングの発生を阻
止することができる。しかしながら水を噴射すべき運転
状at適切に選定しないとかえうて燃焼を悪化させるば
かりでなく水の消費量が多くなって大きな水タンクを具
えなければならないという問題を生ずる。
One known method for improving fuel consumption is to use a lean mixture. However, if such a lean mixture is used during high-load engine operation, high engine output cannot be obtained.Ninth, as the engine load increases, the air-fuel ratio of the mixture is reduced to ensure high engine output. . However, such an internal combustion engine has a problem in that knocking occurs when the engine load becomes high. In order to prevent the occurrence of such knocking, internal combustion engines are conventionally known in which water is injected into the engine intake system. Injecting water into the engine intake line in this way reduces the temperature of the air-fuel mixture during compression, which can prevent knocking.However, if the operating conditions under which water should be injected are not appropriately selected, This not only worsens combustion, but also increases the amount of water consumed, creating the problem that a large water tank must be provided.

本発明はノッキングの発生を抑制するために水を最適に
噴射できるようにした内燃機関を提供することにある。
An object of the present invention is to provide an internal combustion engine that can optimally inject water to suppress the occurrence of knocking.

以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリンダブロッ
ク、2はシリンダブロックl内で往復動するピストン、
3はシリンダグ口、り1上に固定されたシリンダヘッド
、4にピストン2とシリンダヘッド3間に形成された燃
焼室、5は吸気弁、6はシリンダヘッド3内に形成され
九ヘリカル型吸気4−ト、7は排気弁、8はシリンダヘ
ッド3内に形成された排気ポートを夫々示す。なお、図
には・示さないが燃焼室4内に点火栓が配置される。
Referring to FIG. 1 and FIG. 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block l,
3 is a cylinder dog port, a cylinder head fixed on the cylinder head 1, 4 is a combustion chamber formed between the piston 2 and the cylinder head 3, 5 is an intake valve, and 6 is a helical type intake 4 formed inside the cylinder head 3. 7 indicates an exhaust valve, and 8 indicates an exhaust port formed in the cylinder head 3. Although not shown in the figure, an ignition plug is arranged within the combustion chamber 4.

第3図から第5図に第2図のヘリカル型吸気−一ト6の
形状を固層的に示す。このヘリカル型吸気4−トロは第
4図に示されるように流路軸線aがわずかに彎曲した入
口通路部Aと、吸気弁5の弁軸同シに形成された渦巻部
Bとによシ構成され、入口通路部Aは渦巻部Bに接線状
に接続される。
3 to 5 show the shape of the helical intake port 6 of FIG. 2 in a solid state. As shown in FIG. 4, this helical type intake 4-toro has an inlet passage section A in which the flow path axis a is slightly curved, and a spiral section B formed on the same valve axis of the intake valve 5. The inlet passage section A is tangentially connected to the spiral section B.

第3図、第4@並びに第7図に示されるように入口通路
部Aの渦巻軸@bに近い側の側壁面9の上方側壁面9a
は下方を向いた傾斜面に形成され、この傾斜面91の巾
は渦巻部Bに近づくに従って広くなシ、入口通路部Aと
渦巻部Bとの警続部においては第7図に示されるように
側壁面9の全体が下方に向いた傾斜Dii9mに形成さ
れる。側壁面9の上半分は吸気弁ガイド10(第2図)
8シの吸気ポート上壁面上に形成された円筒状突起11
の周壁面に清らかに接続され、−刃側壁面90下半分は
渦巻部Bの渦巻終端部Cにおいて渦巻部Bの側壁WJ1
2に接続される。なお、渦巻部Bの上壁面13Fi渦巻
終熾部Cにおいて下向きの急傾斜11Dに接続される。
As shown in FIGS. 3, 4@, and 7, the upper side wall surface 9a of the side wall surface 9 on the side closer to the spiral axis @b of the inlet passage section A
is formed as an inclined surface facing downward, and the width of this inclined surface 91 becomes wider as it approaches the spiral part B, and in the continuous part between the inlet passage part A and the spiral part B, as shown in FIG. The entire side wall surface 9 is formed to have a downward slope Dii9m. The upper half of the side wall surface 9 is the intake valve guide 10 (Fig. 2)
Cylindrical protrusion 11 formed on the upper wall surface of the 8th intake port
The lower half of the -blade side wall surface 90 is clearly connected to the peripheral wall surface of the spiral portion B at the spiral end portion C of the spiral portion B.
Connected to 2. Note that the upper wall surface 13Fi of the spiral portion B is connected to the downward steep slope 11D at the spiral termination portion C.

一方、第1図から第5図に示されるようにシリンダへ、
ド3内には入口通路部Aから分岐され喪はぼ一様断面の
分岐路14が形成され、この方岐路14il:渦巻終端
部Cに接続される0分岐路14の入口開口151:を入
口通路部Aの入口開口近傍において側壁面9上に形成さ
れ、分岐路14の出口開口16は渦巻終端部Cにおいて
側壁面12の上端部に形成される。更に、シリンダヘッ
ド3内には分岐路14を貫通して延びる開閉弁挿入孔1
7が穿設され、この開閉弁挿入孔17内には夫々通路開
閉弁の作用をなすロータリ弁18が挿入される。このロ
ータリ弁18は分岐路14内に配置されかつ第9図に示
すように薄板状をなす弁体19と、弁体19と一体形成
された弁軸2oとを具備し、この弁軸20は開閉弁挿入
孔17内に嵌着され九案内スリーゾ21により回転可能
に支承される。弁軸20は案内スIJ−f21の頂面か
ら上方に突出し、この突出熾部にアーム22が固着され
る。
On the other hand, as shown in FIGS. 1 to 5, to the cylinder,
A branch passage 14 with a uniform cross section is formed in the door 3, branching from the inlet passage part A, and this branch passage 14il: the inlet opening 151 of the zero branch passage 14 connected to the spiral terminal part C is an inlet passage. It is formed on the side wall surface 9 near the inlet opening of section A, and the outlet opening 16 of branch passage 14 is formed on the upper end of side wall surface 12 at the spiral end section C. Furthermore, an on-off valve insertion hole 1 is provided in the cylinder head 3 and extends through the branch passage 14.
7 are bored, and rotary valves 18 functioning as passage opening/closing valves are inserted into the opening/closing valve insertion holes 17, respectively. The rotary valve 18 is disposed within the branch passage 14 and includes a thin plate-shaped valve body 19 as shown in FIG. 9, and a valve shaft 2o integrally formed with the valve body 19. It is fitted into the opening/closing valve insertion hole 17 and rotatably supported by the nine guide sleeve 21. The valve stem 20 protrudes upward from the top surface of the guide slot IJ-f21, and an arm 22 is fixed to this protruding inner part.

第1θ図を参照すると、吸気ポート6は枝管23f:介
して共通のサージタンク24に接続され、更にサージタ
ンク24にエアダクト25並びにエアクリーナ26t−
介し七大気に連通ずる。第2図を参照すると、各枝管2
3には吸気ポート6内に向けて燃料を噴射する丸めの燃
料噴射弁27が取付けられ、更にシリンダヘッド3には
吸気ポート6内に向けて水を噴射するための水噴射弁4
7が取付けられる。この水噴射弁47は水供給−ング4
8’を介して図示しない水源に接続される。
Referring to FIG. 1θ, the intake port 6 is connected to a common surge tank 24 via a branch pipe 23f, and is further connected to the surge tank 24 through an air duct 25 and an air cleaner 26t.
It communicates with the seven atmospheres. Referring to FIG. 2, each branch pipe 2
A round fuel injection valve 27 for injecting fuel into the intake port 6 is attached to the cylinder head 3, and a water injection valve 4 for injecting water into the intake port 6 is attached to the cylinder head 3.
7 is installed. This water injection valve 47 is connected to the water supplying valve 47.
It is connected to a water source (not shown) via 8'.

また、第1θ図に示されるようにエアダクト25内に扛
アクセルペダルに連結されたスロットル弁28が挿入さ
れる。−万、各気筒のロータリ弁18のアーム22の先
端部は連結口y#P29によって互に連結され、この連
結ロッド29は負圧ダイアフラム装置30のダイアフラ
ム31に固着された制御ロッド32に連結される。負圧
ダイアフラム装置30はダイアフラム31によって大気
から隔離された負圧室33を有し、この負圧室33内に
ダイアフラム押圧用圧縮ばね34が挿入される。負圧室
33は導管35′に介して大気連通制御弁36の弁室3
74C連結される0弁室37は一方では弁室37からサ
ージタンク24内に向けてのみ流通可能な逆止弁38を
介してサージタンク24に連結され、他方で社太気遵通
ポート3−9並びにエアフィルタ40t−介して大気に
遅過する。
Further, as shown in FIG. 1θ, a throttle valve 28 connected to an accelerator pedal is inserted into the air duct 25. - 10,000, the tips of the arms 22 of the rotary valves 18 of each cylinder are connected to each other by a connecting port y#P29, and this connecting rod 29 is connected to a control rod 32 fixed to a diaphragm 31 of a negative pressure diaphragm device 30. Ru. The negative pressure diaphragm device 30 has a negative pressure chamber 33 isolated from the atmosphere by a diaphragm 31, and a compression spring 34 for pressing the diaphragm is inserted into this negative pressure chamber 33. The negative pressure chamber 33 is connected to the valve chamber 3 of the atmospheric communication control valve 36 via a conduit 35'.
The 0 valve chamber 37 connected to 74C is connected to the surge tank 24 on the one hand via a check valve 38 that allows flow only from the valve chamber 37 into the surge tank 24, and on the other hand, the 0 valve chamber 37 is connected to the surge tank 24 through a check valve 38 that allows flow only from the valve chamber 37 to the inside of the surge tank 24. 9 and air filter 40t-to the atmosphere.

更に、大気連通制御弁36は電磁弁41′t−J4g/
aシ、この電磁弁41は大気連通ボート39の開閉制御
をする弁体42と、弁体42に連結され九町動グランジ
ャ43と、可動グランジャ吸収用のンレノイド44から
榊成される・電磁弁41のルノイド44扛電子制御エニ
y ) 5 Qの出力端子に、接続される。!ILに、
スロットル弁28にはボテンシ。
Furthermore, the atmosphere communication control valve 36 is a solenoid valve 41't-J4g/
a, this solenoid valve 41 is composed of a valve body 42 for controlling the opening and closing of the atmosphere communication boat 39, a Kucho movable granger 43 connected to the valve body 42, and a renoid 44 for absorbing the movable granger. 41 is connected to the output terminal of the electronic control unit 44 Q). ! To IL,
The throttle valve 28 has a potentiometer.

メータ45が取付けられる。このボテン/ヨメータ45
はスロットル弁28に連結されてスロットル弁28と共
に回動する摺動子45mと、固足抵抗45bからなり、
摺動子45aKはスロットル弁28の開度に比例した出
力電圧が発生する。
A meter 45 is attached. This button/yometer 45
consists of a slider 45m connected to the throttle valve 28 and rotating together with the throttle valve 28, and a fixed foot resistor 45b,
The slider 45aK generates an output voltage proportional to the opening degree of the throttle valve 28.

電子制御ユニット50は7’4ジタルコンピ、−タから
なり、各種の演算処理を行なうマイクロプロセッサ(M
PU ) 51 % ランダムアクセスメモリ(RAM
)52、制御!ログラム、演算定数等が予め格納されて
いるリードオンリメモリ(ROM)53、入力ポート5
4並びに出力ポート55が双方向性パス56を介して互
に接続されている。更に、電子制御ユニット50内には
各種のクロック信号を発生するクロック発生器57が設
けられる。
The electronic control unit 50 consists of a 7'4 digital computer and a microprocessor (M
PU ) 51% Random access memory (RAM
) 52, control! Read-only memory (ROM) 53 in which programs, calculation constants, etc. are stored in advance, input port 5
4 and an output port 55 are connected to each other via a bidirectional path 56. Furthermore, a clock generator 57 is provided within the electronic control unit 50 to generate various clock signals.

入力ポート54にはサージタンク24内の負圧を検出す
るための負圧センサ58がAD変換器59を介し玉接続
され、更に入力ポート54にはポテンショメータ45が
AD変換器60を介して接続される。ま危、入力ポート
54には回転数センサ61が接続される。負圧センサ5
8はサージタンク24内の負圧に比例した出力電圧を発
生し、この電圧がAD変換器60において対応する2進
数に変換されてこの2進数が入力df −) 54並び
にパス56を介してMPU51に入力される。ポテンシ
ョメータ45は前述したようにスロットル弁28の開度
に比例した出力電圧全発生し、この電圧がAD変換器6
0において対応する2進数に変換されてこの2進数が入
カポー斗54並びにパス56f:介してMPU51に入
力される。−万、回転数センサ61は機関クランクシャ
フトが所定クランク角度回転する毎にノ母ルスを発生し
、このノ譬ルスが入力ポート54並びにパス56を介し
てMPU51に入力される。
A negative pressure sensor 58 for detecting negative pressure in the surge tank 24 is connected to the input port 54 via an AD converter 59, and a potentiometer 45 is further connected to the input port 54 via an AD converter 60. Ru. A rotation speed sensor 61 is connected to the input port 54. Negative pressure sensor 5
8 generates an output voltage proportional to the negative pressure inside the surge tank 24, and this voltage is converted into a corresponding binary number in an AD converter 60, and this binary number is inputted to the MPU 51 via an input df-) 54 and a path 56. is input. As mentioned above, the potentiometer 45 generates a total output voltage proportional to the opening degree of the throttle valve 28, and this voltage is applied to the AD converter 6.
0 is converted into a corresponding binary number, and this binary number is input to the MPU 51 via an input port 54 and a path 56f. - The rotation speed sensor 61 generates a pulse every time the engine crankshaft rotates by a predetermined crank angle, and this pulse is input to the MPU 51 via the input port 54 and the path 56.

出力ポート55は燃料噴射弁27と、水噴射弁47と、
電磁弁41とを作動する友めのデータを出力するために
設けられており、この出力/−ト55には2進数のデー
タがMPU51からパス56を介して書込まれる。出力
ポート55の出力端子は第1に電力増巾回路62t−介
して電磁弁41のソレノイド44に接続され、第2に電
力増巾回路66を介して水噴射弁47に接続され、第3
にダウンカウンタ63の対応する入力熾子に接続される
。このダウンカウンタ63はMPU 51から書込まれ
た2進数のr−夕をそれに対応する時間の長さに変換す
るために設けられておシ、このダウンカウンタ63は出
力ポート55から送り込まれたデータのダウンカウント
をクロ、り発生器57のクロック信号によって開始し、
カウント値が0になるとカウントを完了して出力端子に
カウント完了信号を発生する。8−Rフリップフロッグ
64のリセット入力端子Rtlダウンカウンタ63の出
力端子に接続され、S−Rフリップフロッグ64のセッ
ト入力端子Sにクロック発生器57に接続される。この
8−Rフリ、グフロッ7”64tjクロ、り発生器57
のクロック信号によシダランカウント開始と同時にセッ
トされ、ダウンカウント完了時にダウンカウンタ63の
カウント完了信号によってリセットされる。従って8−
Rフリラグフロ、グ64の出力端子Qt!ダウンカウン
トが行なわれている間高レベルとなる6B−R7す、!
フロッグ64の出力端子Qは電力増巾回路65を介して
燃料噴射弁27に接続されており、従って燃料噴射弁2
7はダウンカウンタ63がダウ/カウントしている間付
勢されることがわかる。
The output port 55 has a fuel injection valve 27, a water injection valve 47,
It is provided to output data for operating the electromagnetic valve 41, and binary data is written to the output port 55 from the MPU 51 via a path 56. The output terminal of the output port 55 is firstly connected to the solenoid 44 of the solenoid valve 41 via a power amplification circuit 62t, secondly connected to the water injection valve 47 via a power amplification circuit 66, and thirdly connected to the water injection valve 47 via a power amplification circuit 66.
is connected to the corresponding input terminal of the down counter 63. This down counter 63 is provided to convert the binary number r written from the MPU 51 into the corresponding time length. starts counting down by a clock signal from a clock generator 57;
When the count value reaches 0, counting is completed and a count completion signal is generated at the output terminal. The reset input terminal of the 8-R flip-frog 64 is connected to the output terminal of the Rtl down counter 63, and the set input terminal S of the S-R flip-frog 64 is connected to the clock generator 57. This 8-R Furi, Guflo 7"64tj Kuro, Ri Generator 57
It is set by the clock signal of the down counter 63 at the same time as the start of the cedar run count, and is reset by the count completion signal of the down counter 63 when the down count is completed. Therefore 8-
R free lag flow, output terminal Qt of G64! 6B-R7 is at a high level while the down count is being performed!
The output terminal Q of the frog 64 is connected to the fuel injection valve 27 via a power amplification circuit 65, so that the fuel injection valve 2
7 is energized while the down counter 63 is counting down/counting.

一方、前述したように出カポ−155の出力端子は電力
増巾回路66を介して水噴射弁47に接続される。この
水噴射弁47のンレ/(Ptztt+力ボート55に水
噴射弁を駆動すべきデータが出力されたときに付勢され
、それによって水が水噴射弁47から吸気ポート6内に
供給される。第2図に示す排気量1500!の内燃機関
では毎秒0.21から0.4gの水が水噴射弁47から
連続的に、或いは機関クランクシャフトに同期して間欠
的に供給される= 一方、前述したように出力ポート55の出力端子は電磁
弁41に接続される。電磁弁41のソレノイド44が付
勢されると弁体42は大気連通ポー)39t−開口する
。その結果、負圧室33内は大気圧となるのでダイアフ
ラム31r!圧縮ばね34のばね力により下方に移動し
、斯くしてロータリ弁18が回動せしめられて分岐路1
4t″全開する。一方、電磁弁41のソレノイド44が
消勢されると弁体42が大気連通ボート39t−閉鎖す
る。このとき逆止弁38は吸気マニホルド23内の負圧
が負圧ダイアフラム装置30の負圧室33内の負圧より
も大きくなると開弁し、吸気マニホルP25内の負圧が
負圧W133内の負圧よシも小さくなると閉弁するので
弁体42が閉弁している限り負圧室33内の負圧は吸気
マニホルド25内に発生した最大負圧に維持される。負
圧室33内に負圧が加わるとダイアフラム31は圧縮ば
ね34に抗して上昇し、その結果ロータリ弁18が回動
せしめられて分岐路14が閉鎖される。
On the other hand, as described above, the output terminal of the output capo 155 is connected to the water injection valve 47 via the power amplification circuit 66. This water injection valve 47 is energized when data to drive the water injection valve is output to the water injection valve 55, and water is thereby supplied from the water injection valve 47 into the intake port 6. In the internal combustion engine with a displacement of 1500! shown in Fig. 2, 0.21 to 0.4 g of water per second is supplied continuously from the water injection valve 47 or intermittently in synchronization with the engine crankshaft = On the other hand, As described above, the output terminal of the output port 55 is connected to the solenoid valve 41. When the solenoid 44 of the solenoid valve 41 is energized, the valve body 42 opens to the atmosphere communication port 39t. As a result, the inside of the negative pressure chamber 33 becomes atmospheric pressure, so the diaphragm 31r! The spring force of the compression spring 34 moves the rotary valve 18 downward, and the rotary valve 18 is rotated to open the branch path 1.
4t'' is fully opened. On the other hand, when the solenoid 44 of the solenoid valve 41 is deenergized, the valve body 42 closes the atmosphere communication boat 39t. The valve opens when the negative pressure in the negative pressure chamber 33 of 30 becomes larger than that in the negative pressure chamber 33, and closes when the negative pressure in the intake manifold P25 becomes smaller than the negative pressure in the negative pressure W133, so the valve element 42 closes. The negative pressure in the negative pressure chamber 33 is maintained at the maximum negative pressure generated in the intake manifold 25 as long as the negative pressure chamber 33 is in the negative pressure chamber 33. When negative pressure is applied in the negative pressure chamber 33, the diaphragm 31 rises against the compression spring 34 As a result, the rotary valve 18 is rotated and the branch passage 14 is closed.

第11図はサージタンク24内の負圧P(−聰Hg)と
機関回転数N (r、p、m )に対する空燃比〜乍を
示している。第11図において図中に記載セれた数値は
空燃比を示しているが実際には第11図は図中に記載さ
れた空燃比となるような燃料噴射時間が書込まれ九マツ
!となっている。従って機関回転数Nと負圧Pが定まる
と第11図から燃料噴射時間が定まり、そのとき機関シ
リンダ内に供給される空燃比は第11図中に記載され几
数値のようになる。第11図に示す燃料噴射時間のマツ
プは予めROM53内に記憶されている。第11図から
れかるように燃料噴射量は機関回転数Nがほぼ1400
 r、p8mからほぼ3200 r、p、mの間でかつ
負圧Pがほぼ350■Hgよシも小さなときに空燃比が
22となるように設定されている。更に、機関回転数N
がitぼ600 r、p、mからほぼ140Or、p、
mの間では機関回転数Nが低くなるにつれて空燃比が1
0 Or、p、m当り1.25〜2.75ずつ小さくな
るように設定されている。これは機関回転数Nが小さく
なった場合に空燃比が大きいとトルク変動を生じ、この
トルク変動を抑制するために機関回転数Nが小さくなる
につれて空燃比を小さくするようにしている。一方、負
圧Pが一350■Hgよりも大きなときには負圧Pが大
きくなるにつれて空燃比が100■Hg当り1〜2ずつ
小さくなるように設定されている。これは負圧Pが大き
くなった場合に空燃比が大きいとトルク変動音生じ、こ
のトルク変動を抑制する友めに負圧Pが大きくなるにつ
れて空燃比を小さくするようにしている。また、機関回
転数Nがほば320゜r、p、m以上では空燃比#:t
 100 r−p1m当、Qo、5〜1.5ずつ小さく
なるように設定さtlそれによって機関回転数Nが高い
ときに高出力が得られるようにしている。
FIG. 11 shows the air-fuel ratio to the negative pressure P (-聰Hg) in the surge tank 24 and the engine speed N (r, p, m). In Fig. 11, the numerical values written in the figure indicate the air-fuel ratio, but in reality, in Fig. 11, the fuel injection time is written so that the air-fuel ratio shown in the figure is achieved. It becomes. Therefore, when the engine speed N and the negative pressure P are determined, the fuel injection time is determined from FIG. 11, and the air-fuel ratio supplied into the engine cylinder at that time is shown in FIG. 11 as a numerical value. The fuel injection time map shown in FIG. 11 is stored in the ROM 53 in advance. As can be seen from Figure 11, the fuel injection amount is approximately 1400 when the engine speed N is approximately 1400.
The air-fuel ratio is set to be 22 when the negative pressure P is between 8m and 3200 r, p, m and the negative pressure P is as small as 350 μHg. Furthermore, the engine speed N
It is almost 140 Or, p, from 600 r, p, m.
m, the air-fuel ratio decreases to 1 as the engine speed N decreases.
It is set to decrease by 1.25 to 2.75 per 0 Or, p, and m. This is because when the engine speed N decreases and the air-fuel ratio is large, torque fluctuations occur, and in order to suppress this torque fluctuation, the air-fuel ratio is made smaller as the engine speed N decreases. On the other hand, when the negative pressure P is greater than 1,350 μHg, the air-fuel ratio is set to decrease by 1 to 2 per 100 μHg as the negative pressure P increases. This is because when the negative pressure P becomes large and the air-fuel ratio is large, torque fluctuation noise is generated, and in order to suppress this torque fluctuation, the air-fuel ratio is made smaller as the negative pressure P becomes larger. In addition, when the engine speed N is approximately 320°r, p, m or more, the air-fuel ratio #:t
Qo is set to decrease by 5 to 1.5 per 100 rpm, so that high output can be obtained when the engine speed N is high.

第11図のマツダによる燃料噴射量の制御にスロットル
弁28の開度が第12図のθ・よりも小さいときに行な
われ、スロットル弁28の開度が第12図00・よりも
大きいときにはスロットル弁28の開度によって燃料噴
射量の制御が行なわれる。なお、第12図において縦軸
θはスロットル弁28の開度0を示しており、スロット
ル開度80°は全開状lIlを示している。第12図か
られかるように開度θ・は機関回転数Nが1000r、
p、mのとき30°〜4011で69、機関回転数Nが
4000j’、pemのとき50’〜60°でるる。こ
の開度θ0に対応する負圧Pが第11図において破@T
で示さnる・従って第11図の破@Tよりも負圧Pが小
さなとき、即ち第12図の開度θ0よりもスロ。
The control of the fuel injection amount by Mazda in FIG. 11 is performed when the opening degree of the throttle valve 28 is smaller than θ· in FIG. 12, and when the opening degree of the throttle valve 28 is larger than 00· in FIG. The amount of fuel injection is controlled by the opening degree of the valve 28. In FIG. 12, the vertical axis θ indicates the opening degree of the throttle valve 28 is 0, and the throttle opening degree of 80° indicates the fully open state lIl. As can be seen from Fig. 12, the opening degree θ is when the engine speed N is 1000 r.
When the engine rotation speed N is 4000j' and pem, it is 50' to 60°. The negative pressure P corresponding to this opening degree θ0 is broken @T in Fig. 11.
Therefore, when the negative pressure P is smaller than the break@T in FIG. 11, that is, the opening degree is smaller than the opening θ0 in FIG.

トル弁28の開度θが大きなときにはスロットル弁28
のylA度によって燃料噴射量が制御される。
When the opening degree θ of the throttle valve 28 is large, the throttle valve 28
The fuel injection amount is controlled by the ylA degree.

第11図の破線Tよりも負圧Pが小さなときには高出力
を得るために負圧Pが小さくなるに従って空燃比が急激
に減少せしめられ、従って負圧Pがわずかdかシ変化す
ると空燃比が大きく変化するので空燃比を負圧Pに応じ
て変化させると細かな制御が難かしくなる。斯くして第
11図の破線Tよりも負圧Pが小さなときにはスロット
ル弁28の開度−によって燃料噴射量の制御が行なわれ
る。
When the negative pressure P is smaller than the broken line T in Fig. 11, the air-fuel ratio is rapidly decreased as the negative pressure P becomes smaller in order to obtain high output. Since the air-fuel ratio changes greatly, if the air-fuel ratio is changed according to the negative pressure P, fine control becomes difficult. Thus, when the negative pressure P is smaller than the broken line T in FIG. 11, the fuel injection amount is controlled by the opening degree of the throttle valve 28.

なお、第12図において実線θ0で示される機関回転数
Nとスロットル弁開度θの関係は予めROM53内に記
憶されている。
The relationship between the engine speed N and the throttle valve opening θ, which is indicated by a solid line θ0 in FIG. 12, is stored in the ROM 53 in advance.

第13図はスロットル弁28の開度0と機関回転数Nに
対する空燃比〜乍を示している。第13図において図中
に記載された数値は空燃比を示しているが実Sには第1
3図は図中に記載された空燃比となるような燃料噴射時
間が書込まれ次マツプとなっている。従って機関回転数
Nとスロットル弁開度θが定まると第13図から燃料噴
射時間が定まり、そのとき機関シリンダ内に供給される
空燃比は第13図中に記載された数値のようになる、第
13図に示す燃料噴射時間のマツダは予めROM53内
に記憶されている。第13図かられかるように燃料噴射
量はスロットル弁開度0が大きくなるにつれて空燃比が
小さくなるように設定されており、スロットル弁28が
全開したときには空燃比は12.5程度となる。
FIG. 13 shows the air-fuel ratio .about. with respect to the opening degree of the throttle valve 28 (0) and the engine speed N. In Fig. 13, the numbers written in the figure indicate the air-fuel ratio, but the actual S
FIG. 3 is a map in which the fuel injection times that produce the air-fuel ratio shown in the diagram are written. Therefore, when the engine speed N and the throttle valve opening θ are determined, the fuel injection time is determined from FIG. 13, and the air-fuel ratio supplied to the engine cylinder at that time becomes the numerical value shown in FIG. The fuel injection time shown in FIG. 13 is stored in the ROM 53 in advance. As can be seen from FIG. 13, the fuel injection amount is set so that the air-fuel ratio decreases as the throttle valve opening degree 0 increases, and when the throttle valve 28 is fully opened, the air-fuel ratio is approximately 12.5.

次いで第15図を参照して燃料噴射制御について説明す
る。第15図を参照すると、まず始めにステップ70に
おいて回転数センサ61の出力信号がMPU51に入力
されて機関回転数Nが計算される。次いでステップ71
においてスロットル弁開度θを表わすポテンショメータ
45の出力信号がMPU51に入力され、次いでステッ
プ72において負圧p1表わす負圧センサ58の出力信
号がMPU51に入力される0次いでステップ73にお
いてスロットル開度θと機関回転数Nとにより定まる第
12図の点Q(N)が第12図の開度θ・よりも大きい
か否かが判別される。ステップ73においてQ(N)が
開gL0・ニジも大きくないと判別されたときはステ、
グア4に進んで第11図に示すマッグから燃料噴射時間
Tが計算され、次いでステラf75に進む、一方、ステ
ップ73においてQ (N)が開度θ・よシも大きいと
判別されたときはステップ76に進んで第13図に示す
マッグから燃料噴射時間Tが計算され、次いでステップ
75に進む。ステ、グア5ではステ、グア4或いはステ
、グア6において求められた燃料噴射時間Tに対応する
駆動データを出力ポート55に書込み、この燃料噴射時
間Tだけ燃料噴射弁27から燃料が噴射される。従って
、機関シリンダ内には第11図或いは第13図に示すよ
うな空燃比の混合気が供給される〇 一方、第12図の実線Sは水噴射弁27を作動すべき機
関回転数N (r、p、m )とスロットル開度θとの
関係を示しており、この関係は予めROM53内に記憶
されている。水噴射弁27は第12図の実線Sよシも上
方のノ・、タンクで示す領域で付勢される。第12図か
られかるように水噴射が開始されるスロットル弁開度は
機関回転数Nが100 Or、p、mのときほぼ60°
であり、機関回転数Nが400 Or、p、mのときほ
ぼ65°である。スロットル弁開Wtaが実線Sよりも
大きくなると水噴射弁27t−付勢すべきデータが出力
ポート55に書込まれて水噴射弁27が付勢され、それ
によって水が水噴射弁27から吸気ポート6内に供給さ
れる。この水は燃料と共に燃焼室4内に流入して蒸発し
、この蒸発潜熱によって混合気の温度を低下させてノッ
キングの発生を抑制する。実線Sの領域ではスロットル
弁開度0′?:わずかばか9変化させるとサージタンク
24内の負圧Pが大巾に変化するために水噴射制御を負
圧Pに基づいて行なうと精密な水噴射制御が難しく、従
って本発明ではスロットル弁開度0によって水噴射制御
を行なっている・なお、第12図の実線Sに対応する1
413図の破線かられかるようにこの実線或いは破線S
は16から18の間の一定空燃比のところを示している
。ノッキングは機関^負荷運転時において機関回転数N
が低いほど発生しやすく、従って機関回転数Nが低くな
るはど水噴射が開始されるスロットル弁開度は小さくな
る。従ってノッキングの発生を良好に阻止することがで
きる。また、前述し几ように水噴射弁27から毎時一定
量0.2g〜0.4gの水が連結的に、或いは機関クラ
ンクシャフトに同期して間欠的に供給されるが第16図
に示すようにノ゛ツキングの発生しやすい理―空燃比付
近において水の供給量が最大となるように水噴射量を制
御することができる。なお、第16図の縦軸りは毎秒当
シの水噴射量(17m@c)を示し、横軸A/’Fは空
燃比を示す。
Next, fuel injection control will be explained with reference to FIG. Referring to FIG. 15, first, in step 70, the output signal of the rotation speed sensor 61 is input to the MPU 51, and the engine rotation speed N is calculated. Then step 71
In step 72, the output signal of the potentiometer 45 representing the throttle valve opening θ is input to the MPU 51, and in step 72, the output signal of the negative pressure sensor 58 representing the negative pressure p1 is input to the MPU 51. It is determined whether the point Q(N) in FIG. 12, which is determined by the engine speed N, is larger than the opening degree θ· in FIG. If it is determined in step 73 that Q(N) is not large, the step
Proceeding to Gua 4, the fuel injection time T is calculated from the mag shown in FIG. The process proceeds to step 76, where the fuel injection time T is calculated from the mag shown in FIG. 13, and then the process proceeds to step 75. In the ST, GUAR 5, drive data corresponding to the fuel injection time T obtained in the ST, GUAR 4 or ST, GUAR 6 is written to the output port 55, and fuel is injected from the fuel injection valve 27 for this fuel injection time T. . Therefore, a mixture with an air-fuel ratio as shown in FIG. 11 or 13 is supplied into the engine cylinder. On the other hand, the solid line S in FIG. The relationship between (r, p, m) and the throttle opening degree θ is shown, and this relationship is stored in the ROM 53 in advance. The water injection valve 27 is energized in the area indicated by the tank above the solid line S in FIG. As shown in Figure 12, the throttle valve opening at which water injection starts is approximately 60 degrees when the engine speed N is 100 Or, p, and m.
and is approximately 65° when the engine speed N is 400 Or, p, m. When the throttle valve opening Wta becomes larger than the solid line S, data to energize the water injection valve 27t is written to the output port 55 and the water injection valve 27 is energized, thereby causing water to flow from the water injection valve 27 to the intake port. Supplied within 6 days. This water flows into the combustion chamber 4 together with the fuel and evaporates, and the latent heat of vaporization lowers the temperature of the air-fuel mixture to suppress the occurrence of knocking. Is the throttle valve opening 0' in the area of solid line S? : If the negative pressure P in the surge tank 24 is changed by a small amount, the negative pressure P in the surge tank 24 will change drastically. Therefore, if water injection control is performed based on the negative pressure P, precise water injection control is difficult. Therefore, in the present invention, the throttle valve is opened. The water injection is controlled by the degree 0. Note that 1 corresponds to the solid line S in Fig. 12.
As can be seen from the broken line in Figure 413, this solid line or broken line S
shows a constant air-fuel ratio between 16 and 18. Knocking occurs when the engine is running under load, at engine speed N.
The lower the number, the more likely it is to occur, and therefore, as the engine speed N decreases, the throttle valve opening at which water injection is started becomes smaller. Therefore, the occurrence of knocking can be effectively prevented. Further, as mentioned above, a fixed amount of water of 0.2 g to 0.4 g per hour is supplied from the water injection valve 27 in a continuous manner or intermittently in synchronization with the engine crankshaft, as shown in Fig. 16. The amount of water injection can be controlled so that the amount of water supplied is at its maximum near the air-fuel ratio, which is the reason that knocking is more likely to occur. Note that the vertical axis in FIG. 16 indicates the current water injection amount per second (17 m@c), and the horizontal axis A/'F indicates the air-fuel ratio.

一方、第14図は電磁弁4.1を作動すべき機関回転数
N (r、p、m )とサージタンク24作の負圧P 
(−mHg )との関係を示しており、この関係は予め
ROM53内に記憶さnている。電磁弁41は第14図
の実線Wよりも上方のノ・、タンクで示される領域で付
勢される。第14図の実@Wはほぼ吸入空気量が一定の
ところを示しており、使って吸入空気量が所定量以上に
なるとソレノイド44を付勢すべきデータが出力ポート
55に書込まれてソレノイド44が付勢される。ソレノ
イド44が付勢されるとロータリ弁18が分岐路14會
全開する。従って吸入空気量が多いときにはロータリ弁
18が分岐路14を全開し、一方吸入空気量が少ないと
きにはロータリ弁18が分岐路14を閉鎖することがわ
かる。
On the other hand, Figure 14 shows the engine speed N (r, p, m) at which the solenoid valve 4.1 should be operated and the negative pressure P produced by the surge tank 24.
(-mHg), and this relationship is stored in the ROM 53 in advance. The solenoid valve 41 is energized in the area indicated by the tank above the solid line W in FIG. Actual @W in Fig. 14 indicates a point where the amount of intake air is almost constant, and when the amount of intake air exceeds a predetermined amount, data to energize the solenoid 44 is written to the output port 55, and the solenoid 44 is energized. When the solenoid 44 is energized, the rotary valve 18 fully opens the branch path 14. Therefore, it can be seen that when the amount of intake air is large, the rotary valve 18 fully opens the branch passage 14, while when the amount of intake air is small, the rotary valve 18 closes the branch passage 14.

上述したように吸入空気量の少ない機関低速低負荷運転
時にはロータリ弁18が分岐路14を遮断している。こ
のとき入口通路部A内に送り込まれた吸入空気は渦巻部
Bの上壁面13に沿って旋回しつつ渦巻部B内を下降し
、次いで旋回しつつ燃焼室4内に流入するので燃焼室4
内には強力な旋(ロ)流が発生せしめられる〇 一方、吸入空気量が多い機関高速高負荷運転時にはロー
タリ弁18が開弁するので入口通路部A内に送り込まれ
た吸入空気の一部が流れ抵抗の小さな分岐路14を介し
て渦巻部B内に送り込まれる。分岐路14から渦巻部B
内に流入した吸入空気は入口通路部Aら渦巻部B内に流
入して旋回しつつ流れる吸入空気流を減速させる作用を
なすので旋回流が弱められる。このように機関高速高負
荷運転時にはロータリ弁18が開弁することによって全
体の流路面積が増大するばかりでなく旋回流が弱められ
るので高い充填効率を確保でき、斯くして高出力を得る
ことができる。また、入口通路部ムに傾斜側壁部9m(
(設けることによって入口通路部A内に送り込まれた吸
入空気の一部は下向きの力を与えられ、その結果この吸
入空気は旋回することなく入口通路部人の下壁面に沿っ
て渦巻部B内に流入するために流入抵抗は小さくなり、
斯くして高速高負荷運転時における充填効率を更に高め
ることができる。
As described above, the rotary valve 18 shuts off the branch passage 14 when the engine is operating at low speed and low load with a small amount of intake air. At this time, the intake air sent into the inlet passage part A descends inside the swirl part B while swirling along the upper wall surface 13 of the swirl part B, and then flows into the combustion chamber 4 while swirling.
On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 18 opens, so that part of the intake air sent into the inlet passage A is part is sent into the spiral part B via the branch path 14 with low flow resistance. From branch path 14 to spiral part B
The intake air that has flowed in flows from the inlet passage section A into the swirl section B and has the effect of decelerating the flowing intake air flow while swirling, so that the swirl flow is weakened. In this way, when the engine is operated at high speed and high load, the rotary valve 18 opens, which not only increases the overall flow path area but also weakens the swirling flow, ensuring high filling efficiency and thus obtaining high output. I can do it. In addition, there is a 9 m sloped side wall section (
(By providing this, a portion of the intake air sent into the entrance passage A is given a downward force, and as a result, this intake air flows along the lower wall surface of the person in the entrance passage and into the spiral part B. The inflow resistance becomes smaller due to the inflow into the
In this way, the filling efficiency during high-speed, high-load operation can be further improved.

以上述べたように本発明によれば機関高負荷運転時に〕
、キングの発生を阻止しつつ高出力を得ることができる
。更にロータリ弁が開弁して充填効率が高められてもノ
ッキングの発生が抑制されるので機関出力を一層高める
ことができる。また、燃焼室内には強力な旋回流が発生
せしめられるので空燃比が22程度の越権薄混合気を用
いても安定した燃焼を得ることができる。更に機関回転
数が低いとき、並びに吸気道路内負圧が大きいときには
空燃比が減少せしめられるのでトルク変動を抑制でき、
良好な運転性を確保することができる。
As described above, according to the present invention, during high-load engine operation]
, it is possible to obtain high output while preventing the occurrence of kings. Furthermore, even if the rotary valve is opened and the filling efficiency is increased, the occurrence of knocking is suppressed, so that the engine output can be further increased. Further, since a strong swirling flow is generated in the combustion chamber, stable combustion can be obtained even when using a super lean mixture with an air-fuel ratio of about 22. Furthermore, when the engine speed is low and when the intake road negative pressure is large, the air-fuel ratio is reduced, so torque fluctuations can be suppressed.
Good drivability can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る内燃機関の平面図、第2図は第1
図の1−1線に沿ってみた断面図、第3図はヘリカル型
吸気I−トの形状を示す斜視図、wJ4図は第3図の平
面図、第5図は第3図の分岐路に沿って切断した側断面
図、第6図は第4図の■−■線に沿ってみた断面図、第
7図は第4図の■−■線に沿ってみた断面図、第8図は
第4図の■−■線に沿ってみた断面図、第9図はロータ
リ弁の斜視図、第1O図は吸気装置の全体図、第11図
はサージタンク内の負圧と機関回転数によって定まる空
燃比を示す図、第12図はスロットル弁開度制御に切換
わるスロットル開度と水噴射開始スロットル弁開rt−
示す図、第13図はスロ、トル弁開度と機関回転数によ
って定まる空燃比を示す図、第14図は開閉弁の開弁領
域を示す図、第15図は燃料噴射制御の作動會示すフロ
ーチャート、#!16図は水噴射量と空燃比の関係を示
す図である。 6・・・吸気ポート、24・・・サージタンク、27・
・・燃料噴射弁、28・・・スロットル弁、47・・・
水噴射弁、58・・・負圧センサ、61・・・回転数セ
ンナ。 特許出願人 トヨタ自動車工業株式会社 特許出願代理人 弁理士  青 木   朗 弁理士 西舘和之 弁理士 吉田正行 弁理士  山 口 昭 之 第16回
FIG. 1 is a plan view of an internal combustion engine according to the present invention, and FIG.
A sectional view taken along line 1-1 in the figure, Figure 3 is a perspective view showing the shape of the helical intake I-T, wJ4 figure is a plan view of Figure 3, and Figure 5 is the branching path of Figure 3. 6 is a sectional view taken along the line ■-■ in FIG. 4, FIG. 7 is a sectional view taken along the line ■-■ in FIG. 4, and FIG. 8 is a sectional view taken along the line ■-■ in FIG. is a sectional view taken along the line ■-■ in Figure 4, Figure 9 is a perspective view of the rotary valve, Figure 1O is an overall view of the intake system, and Figure 11 is the negative pressure in the surge tank and engine speed. Figure 12 is a diagram showing the air-fuel ratio determined by the throttle opening when switching to throttle valve opening control and the throttle valve opening at which water injection starts.
Figure 13 is a diagram showing the air-fuel ratio determined by the throttle and torque valve openings and engine speed, Figure 14 is a diagram showing the opening range of the on-off valve, and Figure 15 is a diagram showing the operation of fuel injection control. flowchart,#! FIG. 16 is a diagram showing the relationship between water injection amount and air-fuel ratio. 6...Intake port, 24...Surge tank, 27.
...Fuel injection valve, 28...Throttle valve, 47...
Water injection valve, 58... Negative pressure sensor, 61... Rotation speed sensor. Patent applicant Toyota Motor Corporation Patent application agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Masayuki Yoshida Patent attorney Akira Yamaguchi 16th

Claims (1)

【特許請求の範囲】[Claims] スロットル弁開度に応動してスロットル弁開度が、所定
開匿以上のときにスロットル弁開度が大きくなるにつれ
て混合気の空燃比を小さくするようにした燃料供給装置
を具備し、更に水噴射装置を機関吸気通路内に設けてス
ロットル弁開度が所定4度以上になったときに該水噴射
装置から吸気通路内に水を噴射するようにした内燃機関
の吸気装置0
The fuel supply device is configured to reduce the air-fuel ratio of the air-fuel mixture as the throttle valve opening increases when the throttle valve opening is greater than or equal to a predetermined opening in response to the throttle valve opening; An intake system 0 for an internal combustion engine in which a device is provided in the engine intake passage and water is injected from the water injection device into the intake passage when the throttle valve opening reaches a predetermined 4 degrees or more.
JP56112284A 1981-07-20 1981-07-20 Intake device for internal combustion engine Pending JPS5828558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112284A JPS5828558A (en) 1981-07-20 1981-07-20 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112284A JPS5828558A (en) 1981-07-20 1981-07-20 Intake device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS5828558A true JPS5828558A (en) 1983-02-19

Family

ID=14582835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112284A Pending JPS5828558A (en) 1981-07-20 1981-07-20 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5828558A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551799A1 (en) * 1983-09-09 1985-03-15 Volvo Ab INTERNAL COMBUSTION ENGINE WITH TURBOCHARGER WITH WATER INJECTION
KR100626403B1 (en) * 2005-12-09 2006-09-20 송정헌 Water injection system for internal combustion engine
CN102116224A (en) * 2011-03-28 2011-07-06 彭国洪 Internal cooling of internal combustion engine
TWI394670B (en) * 2008-10-28 2013-05-01 Kwang Yang Motor Co A locomotive jet engine with water nozzles
WO2014207918A1 (en) * 2013-06-28 2014-12-31 トヨタ自動車株式会社 Control device for internal combustion engine
JP2019157751A (en) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 Controller of internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551799A1 (en) * 1983-09-09 1985-03-15 Volvo Ab INTERNAL COMBUSTION ENGINE WITH TURBOCHARGER WITH WATER INJECTION
KR100626403B1 (en) * 2005-12-09 2006-09-20 송정헌 Water injection system for internal combustion engine
TWI394670B (en) * 2008-10-28 2013-05-01 Kwang Yang Motor Co A locomotive jet engine with water nozzles
CN102116224A (en) * 2011-03-28 2011-07-06 彭国洪 Internal cooling of internal combustion engine
WO2014207918A1 (en) * 2013-06-28 2014-12-31 トヨタ自動車株式会社 Control device for internal combustion engine
JP6037011B2 (en) * 2013-06-28 2016-11-30 トヨタ自動車株式会社 Control device for internal combustion engine
JP2019157751A (en) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 Controller of internal combustion engine
CN110259589A (en) * 2018-03-12 2019-09-20 丰田自动车株式会社 The control device of internal combustion engine
CN110259589B (en) * 2018-03-12 2022-08-05 丰田自动车株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
KR100217791B1 (en) Engine exhaust gas recirculation system
KR870010285A (en) Engine control system
JPS6026185Y2 (en) Internal combustion engine intake system
JPS5828558A (en) Intake device for internal combustion engine
US6805091B2 (en) Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation
JP2004092541A (en) Fuel supply control device for gaseous fuel internal combustion engine
US4643151A (en) Fuel control apparatus for an internal combustion engine
JP2005344639A (en) Gaseous fuel direct-injection engine
JP4240084B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JPS595831A (en) Controlling method of pump used for supercharging internal combustion engine
JPS647227Y2 (en)
JPH0643814B2 (en) Dual fuel switching control method and device
JPH0238776B2 (en)
JPS647226Y2 (en)
JP4045891B2 (en) Fuel supply device for internal combustion engine
JPS61164037A (en) Fuel supply device of internal-combustion engine
JP2762142B2 (en) Fuel injection device for two-cycle engine
JP2930662B2 (en) Fuel injection two-stroke engine
JPS6029815B2 (en) Flow path control device for helical intake port
KR870010297A (en) Engine control system
JPH0343447B2 (en)
JP3658979B2 (en) Throttle opening control device for internal combustion engine
JPS6035538B2 (en) Flow path control device for helical intake port
KR100405786B1 (en) Variable tumble flow type fuel-air injection device
JP2813226B2 (en) Fuel injection device for two-cycle engine