JPH0238776B2 - - Google Patents

Info

Publication number
JPH0238776B2
JPH0238776B2 JP56112285A JP11228581A JPH0238776B2 JP H0238776 B2 JPH0238776 B2 JP H0238776B2 JP 56112285 A JP56112285 A JP 56112285A JP 11228581 A JP11228581 A JP 11228581A JP H0238776 B2 JPH0238776 B2 JP H0238776B2
Authority
JP
Japan
Prior art keywords
negative pressure
air
valve
fuel ratio
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56112285A
Other languages
Japanese (ja)
Other versions
JPS5828512A (en
Inventor
Toshio Yamada
Soichi Matsushita
Kenji Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56112285A priority Critical patent/JPS5828512A/en
Publication of JPS5828512A publication Critical patent/JPS5828512A/en
Publication of JPH0238776B2 publication Critical patent/JPH0238776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/082Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets the main passage having a helical shape around the intake valve axis; Engines characterised by provision of driven charging or scavenging pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関に関する。[Detailed description of the invention] The present invention relates to internal combustion engines.

燃料消費率を向上するための一つの方法として
稀薄混合気を用いる方法がある。しかしながら稀
薄混合気は本来火炎の伝播速度が遅く、従つて燃
焼速度が遅いために安定した燃焼を得るのが困難
となつている。特に空燃比が20以上の、いわゆる
超稀薄混合気を用いた場合には更に燃焼速度が遅
くなるために安定した燃焼を得るのが一層困難と
なる。燃焼速度を速める方法として従来より燃焼
室内に旋回流を発生せしめることが知られている
が、この旋回流は強すぎるとシリンダ内壁面から
逃げる熱が多くなるために熱効率が低下し、一方
弱すぎると燃焼速度を十分に速められないために
良好な燃焼が得られず、従つて旋回流には機関の
種類に応じた最適の旋回流の強さが存在すること
が判明している。
One method for improving fuel consumption is to use a lean mixture. However, since a lean mixture inherently has a slow flame propagation speed and therefore a slow combustion speed, it is difficult to obtain stable combustion. In particular, when a so-called ultra-lean mixture with an air-fuel ratio of 20 or more is used, the combustion speed becomes even slower, making it even more difficult to obtain stable combustion. Generating a swirling flow inside the combustion chamber has been known as a method of increasing the combustion rate. However, if this swirling flow is too strong, more heat escapes from the inner wall of the cylinder, resulting in a decrease in thermal efficiency; on the other hand, if it is too weak, It has been found that good combustion cannot be obtained because the combustion speed cannot be sufficiently increased.Therefore, it has been found that there is an optimum swirl flow strength depending on the type of engine.

本発明は空燃比が20以上の超稀薄混合気を用い
ることのできる内燃機関を提供することにある。
An object of the present invention is to provide an internal combustion engine that can use an ultra-lean mixture having an air-fuel ratio of 20 or more.

以下、添附図面を参照して本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固定
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポートを夫々示す。なお、図
には示さないが燃焼室4内に点火栓が配置され
る。
Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within cylinder block 1, 3 is a cylinder head fixed on cylinder block 1, and 4 is a link between piston 2 and cylinder head 3. 5 is an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Exhaust ports formed therein are shown respectively. Although not shown in the figure, an ignition plug is disposed within the combustion chamber 4.

第3図から第5図に第2図のヘリカル型吸気ポ
ート6の形状を図解的に示す。このヘリカル型吸
気ポート6は第4図に示されるように流路軸線a
がわずかに彎曲した入口通路部Aと、吸気弁5の
弁軸周りに形成された渦巻部Bとにより構成さ
れ、入口通路部Aは渦巻部Bに接線状に接続され
る。第3図、第4図並びに第7図に示されるよう
に入口通路部Aの渦巻軸線bに近い側の側壁面9
の上方側壁部9aは下方を向いた傾斜面に形成さ
れ、この傾斜面9aの巾は渦巻部Bに近づくに従
つて広くなり、入口通路部Aと渦巻部Bとの接続
部においては第7図に示されるように側壁面9の
全体が下方に向いた傾斜面9aに形成される。側
壁面9の上半分は吸気弁ガイド10(第2図)周
りの吸気ポート上壁面上に形成された円筒状突起
11の周壁面に滑らかに接続され、一方側壁面9
の下半分は渦巻部Bの渦巻終端部Cにおいて渦巻
部Bの側壁面12に接続される。なお、渦巻部B
の上壁面13は渦巻終端部Cにおいて下向きの急
傾斜壁Dに接続される。
3 to 5 schematically show the shape of the helical intake port 6 of FIG. 2. This helical intake port 6 has a flow path axis a as shown in FIG.
It is composed of a slightly curved inlet passage part A and a spiral part B formed around the valve axis of the intake valve 5, and the inlet passage part A is tangentially connected to the spiral part B. As shown in FIGS. 3, 4, and 7, the side wall surface 9 of the inlet passage A near the spiral axis b
The upper side wall portion 9a is formed as an inclined surface facing downward, and the width of this inclined surface 9a becomes wider as it approaches the spiral portion B. As shown in the figure, the entire side wall surface 9 is formed into a downwardly oriented inclined surface 9a. The upper half of the side wall surface 9 is smoothly connected to the peripheral wall surface of a cylindrical projection 11 formed on the upper wall surface of the intake port around the intake valve guide 10 (FIG. 2).
The lower half of the spiral portion B is connected to the side wall surface 12 of the spiral portion B at the spiral end portion C of the spiral portion B. In addition, spiral part B
The upper wall surface 13 is connected to the downwardly inclined wall D at the spiral end C.

一方、第1図から第5図に示されるようにシリ
ンダヘツド3内には入口通路部Aから分岐された
ほぼ一様断面の分岐路14が形成され、この分岐
路14は渦巻終端部Cに接続される。分岐路14
の入口開口15は入口通路部Aの入口開口近傍に
おいて側壁面9上に形成され、分岐路14の出口
開口16は渦巻終端部Cにおいて側壁面12の上
端部に形成される。更に、シリンダヘツド3内に
は分岐路14を貫通して延びる開閉弁挿入孔17
が穿設され、この開閉弁挿入孔17内には夫々通
路開閉弁の作用をなすロータリ弁18が挿入され
る。このロータリ弁18は分岐路14内に配置さ
れかつ第9図に示すように薄板状をなす弁体19
と、弁体19と一体形成された弁軸20とを具備
し、この弁軸20は開閉弁挿入孔17内に嵌着さ
れた案内スリーブ21により回転可能に支承され
る。弁軸20は案内スリーブ21の頂面から上方
に突出し、この突出端部にアーム22が固着され
る。
On the other hand, as shown in FIGS. 1 to 5, a branch passage 14 having a substantially uniform cross section is formed in the cylinder head 3, branching from the inlet passage part A, and this branch passage 14 is connected to the spiral terminal part C. Connected. Branch road 14
An inlet opening 15 is formed on the side wall surface 9 in the vicinity of the inlet opening of the inlet passage section A, and an outlet opening 16 of the branch passage 14 is formed at the upper end of the side wall surface 12 at the spiral end C. Furthermore, an on-off valve insertion hole 17 is provided in the cylinder head 3 and extends through the branch passage 14.
are drilled, and rotary valves 18 functioning as passage opening/closing valves are inserted into the opening/closing valve insertion holes 17, respectively. This rotary valve 18 is disposed within the branch passage 14 and has a thin plate-like valve body 19 as shown in FIG.
and a valve shaft 20 integrally formed with the valve body 19, and the valve shaft 20 is rotatably supported by a guide sleeve 21 fitted into the opening/closing valve insertion hole 17. The valve stem 20 projects upward from the top surface of the guide sleeve 21, and an arm 22 is fixed to the projecting end.

第10図を参照すると、吸気ポート6は枝管2
3を介して共通のサージタンク24に接続され、
更にサージタンク24はエアダクト25並びにエ
アクリーナ26を介して大気に連通する。第2図
並びに第10図を参照すると各枝管23には吸気
ポート6内に向けて燃料を噴射するための燃料噴
射弁27が取付けられ、またエアダクト25内に
はアクセルペダルに連結されたスロツトル弁28
が挿入される。一方、各気筒のロータリ弁18の
アーム22の先端部は連結ロツド29によつて互
に連結され、この連結ロツド29は負圧ダイアフ
ラム装置30のダイアフラム31に固着された制
御ロツド32に連結される。負圧ダイアフラム装
置30はダイアフラム31によつて大気から隔離
された負圧室33を有し、この負圧室33内にダ
イアフラム押圧用圧縮ばね34が挿入される。負
圧室33は導管35を介して大気連通制御弁36
の弁室37に連結される。弁室37は一方では弁
室37からサージタンク24内に向けてのみ流通
可能な逆止弁38を介してサージタンク24に連
結され、他方では大気連通ポート39並びにエア
フイルタ40を介して大気に連通する。更に、大
気連通制御弁36は電磁弁41を具備し、この電
磁弁41は大気連通ポート39の開閉制御をする
弁体42と、弁体42に連結された可動プランジ
ヤ43と、可動プランジヤ吸引用のソレノイド4
4から構成される。電磁弁41のソレノイド44
は電子制御ユニツト50の出力端子に接続され
る。更に、スロツトル弁28にはポテンシヨメー
タ45が取付けられる。このポテンシヨメータ4
5はスロツトル弁28に連結されてスロツトル弁
28と共に回動する摺動子45aと、固定抵抗4
5bからなり、摺動子45aにはスロツトル弁2
8の開度に比例した出力電圧が発生する。
Referring to FIG. 10, the intake port 6 is connected to the branch pipe 2.
3 to a common surge tank 24,
Furthermore, the surge tank 24 communicates with the atmosphere via an air duct 25 and an air cleaner 26. 2 and 10, a fuel injection valve 27 for injecting fuel into the intake port 6 is attached to each branch pipe 23, and a throttle valve connected to an accelerator pedal is installed in the air duct 25. valve 28
is inserted. On the other hand, the ends of the arms 22 of the rotary valves 18 of each cylinder are connected to each other by a connecting rod 29, and this connecting rod 29 is connected to a control rod 32 fixed to a diaphragm 31 of a negative pressure diaphragm device 30. . The negative pressure diaphragm device 30 has a negative pressure chamber 33 isolated from the atmosphere by a diaphragm 31, and a compression spring 34 for pressing the diaphragm is inserted into the negative pressure chamber 33. The negative pressure chamber 33 is connected to an atmosphere communication control valve 36 via a conduit 35.
The valve chamber 37 is connected to the valve chamber 37 of the valve chamber 37 . The valve chamber 37 is connected to the surge tank 24 on one side via a check valve 38 that allows flow only from the valve chamber 37 into the surge tank 24, and on the other side communicates with the atmosphere via an atmosphere communication port 39 and an air filter 40. do. Further, the atmosphere communication control valve 36 includes a solenoid valve 41, and this solenoid valve 41 includes a valve body 42 for controlling the opening and closing of the atmosphere communication port 39, a movable plunger 43 connected to the valve body 42, and a movable plunger for suction. solenoid 4
Consists of 4. Solenoid 44 of solenoid valve 41
is connected to the output terminal of the electronic control unit 50. Further, a potentiometer 45 is attached to the throttle valve 28. This potentiometer 4
5 is a slider 45a connected to the throttle valve 28 and rotates together with the throttle valve 28, and a fixed resistor 4.
5b, and the throttle valve 2 is attached to the slider 45a.
An output voltage proportional to the opening degree of 8 is generated.

電子制御ユニツト50はデイジタルコンピユー
タからなり、各種の演算処理を行なうマイクロプ
ロセツサ(MPU)51、ランダムアクセスメモ
リ(RAM)52、制御プログラム、演算定数等
が予め格納されているリードオンリメモリ
(ROM)53、入力ポート54並びに出力ポー
ト55が双方向性バス56を介して互に接続され
ている。更に、電子制御ユニツト50内には各種
のクロツク信号を発生するクロツク発生器57が
設けられる。入力ポート54にはサージタンク2
4内の負圧を検出するための負圧センサ58が
AD変換器59を介して接続され、更に入力ポー
ト54にはポテンシヨメータ45がAD変換器6
0を介して接続される。また、入力ポート54に
は回転数センサ61が接続される。負圧センサ5
8はサージタンク24内の負圧に比例した出力電
圧を発生し、この電圧がAD変換器59において
対応する2進数に変換されてこの2進数が入力ポ
ート54並びにバス56を介してMPU51に入
力される。ポテンシヨメータ45は前述したよう
にスロツトル弁28の開度に比例した出力電圧を
発生し、この電圧がAD変換器60において対応
する2進数に変換されてこの2進数が入力ポート
54並びにバス56を介してMPU51に入力さ
れる。一方、回転数センサ61は機関クランクシ
ヤフトが所定クランク角度回転する毎にパルスを
発生し、このパルスが入力ポート54並びにバス
56を介してMPU51に入力される。
The electronic control unit 50 consists of a digital computer, including a microprocessor (MPU) 51 that performs various calculation processes, a random access memory (RAM) 52, and a read-only memory (ROM) in which control programs, calculation constants, etc. are stored in advance. 53, an input port 54, and an output port 55 are connected to each other via a bidirectional bus 56. Furthermore, a clock generator 57 is provided within the electronic control unit 50 for generating various clock signals. Surge tank 2 is connected to input port 54.
A negative pressure sensor 58 for detecting negative pressure within the
A potentiometer 45 is connected to the input port 54 via an AD converter 59, and a potentiometer 45 is connected to the AD converter 6.
Connected via 0. Further, a rotation speed sensor 61 is connected to the input port 54 . Negative pressure sensor 5
8 generates an output voltage proportional to the negative pressure inside the surge tank 24, and this voltage is converted into a corresponding binary number in the AD converter 59, and this binary number is input to the MPU 51 via the input port 54 and bus 56. be done. As described above, the potentiometer 45 generates an output voltage proportional to the opening degree of the throttle valve 28, and this voltage is converted into a corresponding binary number by the AD converter 60. The signal is input to the MPU 51 via. On the other hand, the rotation speed sensor 61 generates a pulse every time the engine crankshaft rotates by a predetermined crank angle, and this pulse is input to the MPU 51 via the input port 54 and the bus 56.

出力ポート55は燃料噴射弁27と電磁弁41
とを作動するためのデータを出力するために設け
られており、この出力ポート55には2進数のデ
ータがMPU51からバス56を介して書込まれ
る。出力ポート55の出力端子は一方では電力増
幅回路62を介して電磁弁41のソレノイド44
に接続され、他方ではダウンカウンタ63の対応
する入力端子に接続される。このダウンカウンタ
63はMPU51から書込まれた2進数のデータ
をそれに対応する時間の長さに変換するために設
けられており、このダウンカウンタ63は出力ポ
ート55から送り込まれたデータのダウンカウン
タをクロツク発生器57のクロツク信号によつて
開始し、カウント値が0になるとカウントを完了
して出力端子にカウント完了信号を発生する。S
−Rフリツプフロツプ64のリセツト入力端子R
はダウンカウンタ63の出力端子に接続され、S
−Rフリツプフロツプ64のセツト入力端子Sは
クロツク発生器57に接続される。このS−Rフ
リツプフロツプ64はクロツク発生器57のクロ
ツク信号によりダウンカウント開始と同時にセツ
トされ、ダウンカウント完了時にダウンカウンタ
63のカウント完了信号によつてリセツトされ
る。従つてS−Rフリツプフロツプ64の出力端
子Qはダウンカウントが行なわれている間高レベ
ルとなる。S−Rフリツプフロツプ64の出力端
子Qは電力増幅回路65を介して燃料噴射弁27
に接続されており、従つて燃料噴射弁27はダウ
ンカウンタ63がダウンカウントしている間付勢
されることがわかる。
The output port 55 is connected to the fuel injection valve 27 and the solenoid valve 41.
Binary data is written to this output port 55 from the MPU 51 via a bus 56. On the one hand, the output terminal of the output port 55 is connected to the solenoid 44 of the solenoid valve 41 via the power amplifier circuit 62.
and the corresponding input terminal of the down counter 63 on the other hand. This down counter 63 is provided to convert the binary data written from the MPU 51 into the corresponding time length, and this down counter 63 converts the down counter of the data sent from the output port 55. It is started by a clock signal from the clock generator 57, and when the count value reaches 0, the counting is completed and a count completion signal is generated at the output terminal. S
-R Reset input terminal R of flip-flop 64
is connected to the output terminal of the down counter 63, and S
The set input terminal S of the -R flip-flop 64 is connected to the clock generator 57. This SR flip-flop 64 is set by the clock signal of the clock generator 57 at the same time as the down count starts, and is reset by the count completion signal of the down counter 63 when the down count is completed. Therefore, the output terminal Q of the S-R flip-flop 64 is at a high level while the down count is being performed. The output terminal Q of the S-R flip-flop 64 is connected to the fuel injector 27 via a power amplifier circuit 65.
Therefore, it can be seen that the fuel injection valve 27 is energized while the down counter 63 is counting down.

一方、前述したように出力ポート55の出力端
子は電磁弁41に接続される。電磁弁41のソレ
ノイド44が付勢されると弁体42は大気連通ポ
ート39を開口する。その結果、負圧室33内は
大気圧となるのでダイアフラム31は圧縮ばね3
4のばね力により下方に移動し、斯しくてロータ
リ弁18が回動せしめられて分岐路14を全開す
る。一方、電磁弁41のソレノイド44が消勢さ
れると弁体42が大気連通ポート39を閉鎖す
る。このとき逆止弁38はサージタンク24内の
負圧が負圧ダイアフラム装置30の負圧室33内
の負圧よりも大きくなると開弁し、サージタンク
24内の負圧が負圧室33内の負圧よりも小さく
なると閉弁するので弁体42が閉弁している限り
負圧室33内の負圧はサージタンク24内に発生
した最大負圧に維持される。負圧室33内に負圧
が加わるとダイアフラム31は圧縮ばね34に抗
して上昇し、その結果ロータリ弁18が回動せし
められて分岐路14が閉鎖される。
On the other hand, as described above, the output terminal of the output port 55 is connected to the solenoid valve 41. When the solenoid 44 of the electromagnetic valve 41 is energized, the valve body 42 opens the atmosphere communication port 39. As a result, the inside of the negative pressure chamber 33 becomes atmospheric pressure, so the diaphragm 31
4, the rotary valve 18 is rotated and the branch passage 14 is fully opened. On the other hand, when the solenoid 44 of the electromagnetic valve 41 is deenergized, the valve body 42 closes the atmosphere communication port 39. At this time, the check valve 38 opens when the negative pressure in the surge tank 24 becomes larger than the negative pressure in the negative pressure chamber 33 of the negative pressure diaphragm device 30, and the negative pressure in the surge tank 24 increases in the negative pressure chamber 33. Since the valve closes when the negative pressure becomes smaller than the negative pressure of , the negative pressure in the negative pressure chamber 33 is maintained at the maximum negative pressure generated in the surge tank 24 as long as the valve body 42 is closed. When negative pressure is applied within the negative pressure chamber 33, the diaphragm 31 rises against the compression spring 34, and as a result, the rotary valve 18 is rotated and the branch passage 14 is closed.

第11図はサージタンク24内の負圧P(−mm
Hg)と機関回転数N(rpm)に対する空燃比A/
Fを示している。第11図において図中に記載さ
れた数値は空燃比を示しているが実際には第11
図は図中に記載された空燃比となるような燃料噴
射時間が書込まれたマツプとなつている。従つて
機関回転数Nと負圧Pが定まると第11図から燃
料噴射時間が定まり、そのとき機関シリンダ内に
供給される空燃比は第11図中に記載された数値
のようになる。第11図に示す燃料噴射時間のマ
ツプは予めROM53内に記憶されている。第1
1図からわかるように燃料噴射量は機関回転数N
がほぼ1400rpmからほぼ3200rpmの間でかつ負圧
Pがほぼ350mmHgよりも小さなときに空燃比が22
となるように設定されている。更に、機関回転数
Nがほぼ600rpmからほぼ1400rpmの間では機関
回転数Nが低くなるにつれて空燃比が100rpm当
り1.25〜2.75づつ小さくなるように設定されてい
る。これは機関回転数Nが小さくなつた場合に空
燃比が大きいとトルク変動を生じ、このトルク変
動を抑制するために機関回転数Nが小さくなるに
つれて空燃比を小さくするようにしている。一
方、負圧Pが−350mmHgよりも大きなときには負
圧Pが大きくなるにつれて空燃比が100mmHg当り
1〜2づつ小さくなるように設定されている。こ
れは負圧Pが大きくなつた場合に空燃比が大きい
とトルク変動を生じ、このトルク変動を抑制する
ために負圧Pが大きくなるにつれて空燃比を小さ
くするようにしている。また、機関回転数Nがほ
ぼ3200rpm以上では空燃比は100rpm当り0.5〜1.5
づつ小さくなるように設定され、それによつて機
関回転数Nが高いときに高出力が得られるように
している。
Figure 11 shows the negative pressure P (-mm
Hg) and air-fuel ratio A/ for engine speed N (rpm)
It shows F. In Figure 11, the numbers written in the figure indicate the air-fuel ratio, but actually
The figure is a map in which the fuel injection time to achieve the air-fuel ratio shown in the figure is written. Therefore, when the engine speed N and the negative pressure P are determined, the fuel injection time is determined from FIG. 11, and the air-fuel ratio supplied into the engine cylinder at that time becomes the numerical value shown in FIG. The fuel injection time map shown in FIG. 11 is stored in the ROM 53 in advance. 1st
As can be seen from Figure 1, the fuel injection amount depends on the engine speed N.
is between approximately 1400 rpm and approximately 3200 rpm and the negative pressure P is less than approximately 350 mmHg, the air-fuel ratio is 22
It is set so that Further, when the engine speed N is between approximately 600 rpm and approximately 1400 rpm, the air-fuel ratio is set to decrease by 1.25 to 2.75 per 100 rpm as the engine speed N decreases. This is because when the engine speed N decreases and the air-fuel ratio is large, torque fluctuations occur, and in order to suppress this torque fluctuation, the air-fuel ratio is made smaller as the engine speed N decreases. On the other hand, when the negative pressure P is greater than -350 mmHg, the air-fuel ratio is set to decrease by 1 to 2 per 100 mmHg as the negative pressure P increases. This is because when the negative pressure P increases and the air-fuel ratio is large, torque fluctuations occur, and in order to suppress this torque fluctuation, the air-fuel ratio is made smaller as the negative pressure P increases. Also, when the engine speed N is approximately 3200 rpm or more, the air-fuel ratio is 0.5 to 1.5 per 100 rpm.
This is set to gradually decrease, thereby allowing high output to be obtained when the engine speed N is high.

第11図のマツプによる燃料噴射量の制御はス
ロツトル弁28の開度が第12図のθ0よりも小さ
いときに行なわれ、スロツトル弁28の開度が第
12図のθ0よりも大きいときにはスロツトル弁2
8の開度によつて燃料噴射量の制御が行なわれ
る。なお、第12図において縦軸θはスロツトル
弁28の開度θを示しており、スロツトル開度
80゜は全開状態を示している。第12図からわか
るように開度θ0は機関回転数Nが1000rpmのとき
30゜〜40゜であり、機関回転数Nが4000rpmのとき
50゜〜60゜である。この開度θ0に対応する負圧Pが
第11図において破線Tで示される。従つて第1
1図の破線Tよりも負圧Pが小さなとき、即ち第
12図の開度θ0よりもスロツトル弁28の開度θ
が大きなときにはスロツトル弁28の開度によつ
て燃料噴射量が制御される。第11図の破線Tよ
りも負圧Pが小さなときには高出力を得るために
負圧Pが小さくなるに従つて空燃比が急激に減少
せしめられ、従つて負圧Pがわずかばかり変化す
ると空燃比が大きく変化するので空燃比を負圧P
に応じて変化させると細かな制御が難かしくな
る。斯くして第11図の破線Tよりも負圧Pが小
さなときにはスロツトル弁28の開度θによつて
燃料噴射量の制御が行なわれる。なお、第12図
において実線θ0で示される機関回転数Nとスロツ
トル弁開度θの関係は予めROMS53内に記憶
されている。
Control of the fuel injection amount using the map in FIG. 11 is performed when the opening degree of the throttle valve 28 is smaller than θ 0 in FIG. 12, and when the opening degree of the throttle valve 28 is larger than θ 0 in FIG. Throttle valve 2
The fuel injection amount is controlled by the opening degree of 8. In addition, in FIG. 12, the vertical axis θ indicates the opening degree θ of the throttle valve 28, and the throttle opening degree
80° indicates a fully open state. As can be seen from Figure 12, the opening degree θ 0 is when the engine speed N is 1000 rpm.
30° to 40° and when the engine speed N is 4000 rpm
The angle is between 50° and 60°. The negative pressure P corresponding to this opening degree θ 0 is indicated by a broken line T in FIG. Therefore, the first
When the negative pressure P is smaller than the broken line T in Fig. 1, that is, the opening θ of the throttle valve 28 is smaller than the opening θ 0 in Fig. 12.
When the amount is large, the fuel injection amount is controlled by the opening degree of the throttle valve 28. When the negative pressure P is smaller than the broken line T in Fig. 11, the air-fuel ratio is rapidly decreased as the negative pressure P becomes smaller in order to obtain high output. changes significantly, so the air-fuel ratio is reduced to negative pressure P.
If you change it according to the , detailed control becomes difficult. Thus, when the negative pressure P is smaller than the broken line T in FIG. 11, the fuel injection amount is controlled by the opening degree θ of the throttle valve 28. The relationship between the engine speed N and the throttle valve opening θ, which is indicated by the solid line θ 0 in FIG. 12, is stored in the ROMS 53 in advance.

第13図はスロツトル弁28の開度θと機関回
転数Nに対する空燃比A/Fを示している。第1
3図において図中に記載された数値は空燃比を示
しているが実際には第13図は図中に記載された
空燃比となるような燃料噴射時間が書込まれたマ
ツプとなつている。従つて機関回転数Nとスロツ
トル弁開度θが定まると第13図から燃料噴射時
間が定まり、そのとき機関シリンダ内に供給され
る空燃比は第13図中に記載された数値のように
なる。第13図に示す燃料噴射時間のマツプは予
めROM53内に記憶されている。第13図から
わかるように燃料噴射量はスロツトル弁開度θが
大きくなるにつれて空燃比が小さくなるように設
定されており、スロツトル弁28が全開したとき
には空燃比は12.5程度となる。
FIG. 13 shows the air-fuel ratio A/F with respect to the opening degree θ of the throttle valve 28 and the engine speed N. 1st
In Figure 3, the numbers written in the figure indicate the air-fuel ratio, but in reality, Figure 13 is a map in which the fuel injection time that will result in the air-fuel ratio written in the figure is written. . Therefore, when the engine speed N and throttle valve opening θ are determined, the fuel injection time is determined from FIG. 13, and the air-fuel ratio supplied to the engine cylinder at that time becomes the numerical value shown in FIG. . The fuel injection time map shown in FIG. 13 is stored in the ROM 53 in advance. As can be seen from FIG. 13, the fuel injection amount is set so that the air-fuel ratio decreases as the throttle valve opening θ increases, and when the throttle valve 28 is fully open, the air-fuel ratio is approximately 12.5.

次いで第15図を参照して燃料噴射制御につい
て説明する。第15図を参照すると、まず始めに
ステツプ70において回転数センサ61の出力信号
がMPU51に入力されて機関回転数Nが計算さ
れる。次いでステツプ71においてスロツトル弁開
度θを表わすポテンシヨメータ45の出力信号が
MPU51に入力され、次いでステツプ72におい
て負圧Pを表わす負圧センサ58の出力信号が
MPU51に入力される。次いでステツプ73にお
いてスロツトル開度θと機関回転数Nとにより定
まる第12図の点Q(N)が第12図の開度θ0
りも大きいか否かが判別される。ステツプ73にお
いてQ(N)が開度θ0よりも大きくないと判別さ
れたときはステツプ74に進んで第11図に示すマ
ツプから燃料噴射時間Tが計算され、次いでステ
ツプ75に進む。一方、ステツプ73においてQ(N)
が開度θ0よりも大きいと判別されたときはステツ
プ76に進んで第13図に示すマツプから燃料噴射
時間Tが計算され、次いでステツプ75に進む。ス
テツプ75ではステツプ74或いはステツプ76におい
て求められた燃料噴射時間Tに対応する駆動デー
タを出力ポート55に書込み、この燃料噴射時間
Tだけ燃料噴射弁27から燃料が噴射される。従
つて機関シリンダ内には第11図或いは第13図
に示すような空燃比の混合気が供給される。
Next, fuel injection control will be explained with reference to FIG. Referring to FIG. 15, first, in step 70, the output signal of the rotation speed sensor 61 is input to the MPU 51, and the engine rotation speed N is calculated. Next, in step 71, the output signal of the potentiometer 45 representing the throttle valve opening θ is
The output signal of the negative pressure sensor 58 representing the negative pressure P is inputted to the MPU 51 and then in step 72.
It is input to MPU51. Next, in step 73, it is determined whether the point Q(N) in FIG. 12, which is determined by the throttle opening .theta. and the engine speed N, is larger than the opening .theta..sub.0 in FIG. If it is determined in step 73 that Q(N) is not greater than the opening degree θ 0 , the process proceeds to step 74 where the fuel injection time T is calculated from the map shown in FIG. 11, and then the process proceeds to step 75. On the other hand, in step 73, Q(N)
If it is determined that the opening degree θ 0 is greater than the opening degree θ 0 , the process proceeds to step 76 where the fuel injection time T is calculated from the map shown in FIG. 13, and then the process proceeds to step 75. In step 75, drive data corresponding to the fuel injection time T determined in step 74 or step 76 is written to the output port 55, and fuel is injected from the fuel injection valve 27 for this fuel injection time T. Therefore, an air-fuel mixture having an air-fuel ratio as shown in FIG. 11 or 13 is supplied into the engine cylinder.

第14図は電磁弁41を作動すべき機関回転数
N(rpm)とサージタンク24内の負圧P(−mm
Hg)との関係を示しており、この関係は予め
ROM53内に記憶されている。電磁弁41は第
14図の実線Wよりも上方のハツチングで示され
る領域で付勢される。第14図の実線Wはほぼ吸
入空気量が一定のところを示しており、従つて吸
入空気量が所定量以上になるとソレノイド44を
付勢すべきデータが出力ポート55に書込まれて
ソレノイド44が付勢される。ソレノイド44が
付勢されるとロータリ弁18が分岐路14を全開
する。従つて吸入空気量が多いときにはロータリ
弁18が分岐路14を全開し、一方吸入空気量が
少ないときにはロータリ弁18が分岐路14を閉
鎖することがわかる。
Figure 14 shows the engine speed N (rpm) at which the solenoid valve 41 should be operated and the negative pressure P (-mm) in the surge tank 24.
Hg), and this relationship has been determined in advance.
It is stored in the ROM53. The solenoid valve 41 is energized in the region shown by hatching above the solid line W in FIG. The solid line W in FIG. 14 indicates a point where the amount of intake air is approximately constant. Therefore, when the amount of intake air exceeds a predetermined amount, data to energize the solenoid 44 is written to the output port 55 and the solenoid 44 is activated. is energized. When the solenoid 44 is energized, the rotary valve 18 fully opens the branch passage 14. Therefore, it can be seen that when the amount of intake air is large, the rotary valve 18 fully opens the branch passage 14, while when the amount of intake air is small, the rotary valve 18 closes the branch passage 14.

上述したように吸入空気量の少ない機関低速低
負荷運転時にはロータリ弁18が分岐路14を遮
断している。このとき入口通路部A内に送り込ま
れた吸入空気は渦巻部Bの上壁面13に沿つて旋
回しつつ渦巻部B内を下降し、次いで旋回しつつ
燃焼室4内に流入するので燃焼室4内には強力な
旋回流が発生せしめられる。第16図はスワール
比S(クランク角度360度当りの燃焼室内における
旋回流の旋回数)と燃料消費率Qとの関係を示
す。第16図からわかるように空燃比が22のよう
に超稀薄混合気を用いた場合にはスワール比がほ
ぼ1.5から3の範囲で燃料消費率Qが低く、これ
以上スワール比Sが大きくなつても小さくなつて
も燃料消費率が悪化する。本発明に係るヘリカル
型吸気ポートでは1.5から3の範囲のスワール比
が得られ、斯くして超稀薄混合気でも安定した燃
焼を得ることができる。
As described above, the rotary valve 18 shuts off the branch passage 14 when the engine is operating at low speed and low load with a small amount of intake air. At this time, the intake air sent into the inlet passage part A descends inside the swirl part B while swirling along the upper wall surface 13 of the swirl part B, and then flows into the combustion chamber 4 while swirling. A strong swirling flow is generated inside. FIG. 16 shows the relationship between the swirl ratio S (the number of turns of the swirling flow in the combustion chamber per 360 degrees of crank angle) and the fuel consumption rate Q. As can be seen from Figure 16, when an ultra-lean mixture with an air-fuel ratio of 22 is used, the fuel consumption rate Q is low when the swirl ratio is approximately in the range of 1.5 to 3, and the swirl ratio S increases beyond this range. Even if the fuel consumption rate becomes smaller, the fuel consumption rate will worsen. With the helical intake port according to the present invention, a swirl ratio in the range of 1.5 to 3 can be obtained, and thus stable combustion can be obtained even with an ultra-lean mixture.

一方、吸入空気量が多い機関高速高負荷運転時
にはロータリ弁18が開弁するので入口通路部A
内に送り込まれた吸入空気の一部が流れ抵抗の小
さな分岐路14を介して渦巻部B内に送り込まれ
る。分岐路14から渦巻部B内に流入した吸入空
気は入口通路部Aから渦巻部B内に流入して旋回
しつつ流れる吸入空気流を減速させる作用をなす
ので旋回流が弱められる。このように機関高速高
負荷運転時にはロータリ弁18が開弁することに
よつて全体の流路面積が増大するばかりでなく旋
回流が弱められるので高い充填効率を確保でき、
斯しくて高出力を得ることができる。また、入口
通路部Aに傾斜側端部9aを設けることによつて
入口通路部A内に送り込まれた吸入空気の一部は
下向きの力を与えられ、その結果この吸入空気は
旋回することなく入口通路部Aの下壁面に沿つて
渦巻部B内に流入するために流入抵抗は小さくな
り、斯くして高速高負荷運転時における充填効率
を更に高めることができる。
On the other hand, during engine high-speed, high-load operation with a large amount of intake air, the rotary valve 18 opens, so the inlet passage A
A part of the intake air sent into the spiral portion B is sent into the spiral portion B via the branch path 14 having low flow resistance. The intake air that has flowed into the spiral portion B from the branch passage 14 flows into the spiral portion B from the inlet passage portion A and has the effect of decelerating the flowing intake air flow while swirling, thereby weakening the swirling flow. In this manner, when the engine is operated at high speed and under high load, the rotary valve 18 opens, which not only increases the overall flow path area but also weakens the swirling flow, ensuring high filling efficiency.
In this way, high output can be obtained. Furthermore, by providing the inclined end 9a in the inlet passage A, a portion of the intake air sent into the inlet passage A is given a downward force, and as a result, this intake air is prevented from swirling. Since the liquid flows into the spiral part B along the lower wall surface of the inlet passage part A, the inflow resistance becomes small, and thus the filling efficiency during high-speed, high-load operation can be further improved.

以上述べたように本発明によれば燃焼室内にス
ワール比が1.5から3の最適な旋回流が発生せし
められるので超稀薄混合気を用いても安定した燃
焼を得ることができる。更に機関回転数が低いと
きには空燃比が減少せしめられるのでトルク変動
を抑制でき、良好な運転性を確保することができ
る。また、機関高負荷運転時には空燃比が減少せ
しめられるので高出力を得ることができる。
As described above, according to the present invention, an optimal swirl flow with a swirl ratio of 1.5 to 3 is generated in the combustion chamber, so that stable combustion can be obtained even when using an ultra-lean mixture. Furthermore, since the air-fuel ratio is reduced when the engine speed is low, torque fluctuations can be suppressed and good drivability can be ensured. Furthermore, since the air-fuel ratio is reduced during high-load engine operation, high output can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る内燃機関の平面図、第2
図は第1図の−線に沿つてみた断面図、第3
図はヘリカル型吸気ポートの形状をす斜視図、第
4図は第3図の平面図、第5図は第3図の分岐路
に沿つて切断した側面断面図、第6図は第4図の
−線に沿つてみた断面図、第7図は第4図の
−線に沿つてみた断面図、第8図は第4図の
−線に沿つてみた断面図、第9図はロータリ
弁の斜視図、第10図は吸気装置の全体図、第1
1図はサージタンク内の負圧と機関回転数によつ
て定まる空燃比を示す図、第12図はスロツトル
弁開度制御に切換わるスロツトル開度を示す図、
第13図はスロツトル弁開度と機関回転数によつ
て定まる空燃比を示す図、第14図は開閉弁の開
弁領域を示す図、第15図は燃料噴射制御の作動
を示すフローチヤート、第16図は燃料消費率と
スワール比との関係を示すグラフである。 6……ヘリカル型吸気ポート、24……サージ
タンク、27……燃料噴射弁、28……スロツト
ル弁、58……負圧センサ、61……回転数セン
サ。
Fig. 1 is a plan view of an internal combustion engine according to the present invention, Fig. 2 is a plan view of an internal combustion engine according to the present invention;
The figure is a cross-sectional view taken along the - line in Figure 1.
The figure is a perspective view of the shape of the helical intake port, Figure 4 is a plan view of Figure 3, Figure 5 is a side cross-sectional view taken along the branching path of Figure 3, and Figure 6 is Figure 4. 7 is a sectional view taken along the - line in Fig. 4, Fig. 8 is a sectional view taken along the - line in Fig. 4, and Fig. 9 is a sectional view taken along the - line in Fig. 4. Figure 10 is a perspective view of the intake system, and Figure 1 is an overall view of the intake system.
Figure 1 is a diagram showing the air-fuel ratio determined by the negative pressure in the surge tank and engine speed, Figure 12 is a diagram showing the throttle opening when switching to throttle valve opening control,
FIG. 13 is a diagram showing the air-fuel ratio determined by the throttle valve opening and engine speed, FIG. 14 is a diagram showing the opening range of the on-off valve, and FIG. 15 is a flowchart showing the operation of fuel injection control. FIG. 16 is a graph showing the relationship between fuel consumption rate and swirl ratio. 6... Helical intake port, 24... Surge tank, 27... Fuel injection valve, 28... Throttle valve, 58... Negative pressure sensor, 61... Rotational speed sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 機関回転数並びに吸気通路内負圧に応動して
機関回転数がほぼ1400rpm以上でかつ吸気通路内
負圧がほぼ−50mmHgからほぼ−350mmHgのとき
に一定空燃比の稀薄混合気を形成し、機関回転数
がほぼ1400rpm以下のときには機関回転数が減少
するにつれて混合気の空燃比を上記一定空燃比よ
りも小さくし、吸気通路内負圧がほぼ−50mmHg
よりも小さなときには吸気通路内負圧が小さくな
るにつれて混合気の空燃比を上記一定空燃比より
も小さくするようにした燃料供給装置を具備し、
更に吸気ポートをほぼ1.5から3のスワール比が
得られるヘリカル型に形成した内燃機関。
1. In response to the engine speed and the negative pressure in the intake passage, a lean mixture with a constant air-fuel ratio is formed when the engine speed is approximately 1400 rpm or more and the negative pressure in the intake passage is approximately -50 mmHg to approximately -350 mmHg, When the engine speed is approximately 1400 rpm or less, as the engine speed decreases, the air-fuel ratio of the mixture is made smaller than the above constant air-fuel ratio, and the negative pressure in the intake passage is approximately -50 mmHg.
a fuel supply device configured to make the air-fuel ratio of the air-fuel mixture smaller than the constant air-fuel ratio as the negative pressure in the intake passage becomes smaller;
Furthermore, this internal combustion engine has a helical intake port that achieves a swirl ratio of approximately 1.5 to 3.
JP56112285A 1981-07-20 1981-07-20 Suction device of internal combustion engine Granted JPS5828512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112285A JPS5828512A (en) 1981-07-20 1981-07-20 Suction device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112285A JPS5828512A (en) 1981-07-20 1981-07-20 Suction device of internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5828512A JPS5828512A (en) 1983-02-19
JPH0238776B2 true JPH0238776B2 (en) 1990-08-31

Family

ID=14582859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112285A Granted JPS5828512A (en) 1981-07-20 1981-07-20 Suction device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5828512A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153419A (en) * 1984-08-20 1986-03-17 Toyota Motor Corp Method of controlling intake in variable intake swirl system internal-combustion engine

Also Published As

Publication number Publication date
JPS5828512A (en) 1983-02-19

Similar Documents

Publication Publication Date Title
US4667636A (en) Fuel injection type internal combustion engine
KR100217791B1 (en) Engine exhaust gas recirculation system
US4473040A (en) Flow control device of a helically-shaped intake port for use in a diesel engine
JPS6035539B2 (en) Flow path control device for helical intake port
JPS6026185Y2 (en) Internal combustion engine intake system
JPS5828525A (en) Flow-passage controller for helical-type intake port
JPS5922046B2 (en) Internal combustion engine intake system
US4643151A (en) Fuel control apparatus for an internal combustion engine
JPH0238776B2 (en)
JPS5828558A (en) Intake device for internal combustion engine
JPS647227Y2 (en)
EP0480545A2 (en) Gas engine
JPS647226Y2 (en)
JPS595831A (en) Controlling method of pump used for supercharging internal combustion engine
JPS61164037A (en) Fuel supply device of internal-combustion engine
JPS6029815B2 (en) Flow path control device for helical intake port
JPS6113737Y2 (en)
JPH0634614Y2 (en) 2-cycle internal combustion engine
JPH0565705B2 (en)
JPS6035538B2 (en) Flow path control device for helical intake port
JPH034732B2 (en)
JPH0433377Y2 (en)
JPS6242100Y2 (en)
JPS5843618Y2 (en) Intake system for multi-cylinder internal combustion engine
JP2762142B2 (en) Fuel injection device for two-cycle engine