JPS60241652A - Electrochemical electrode employing metal hydride - Google Patents

Electrochemical electrode employing metal hydride

Info

Publication number
JPS60241652A
JPS60241652A JP59097968A JP9796884A JPS60241652A JP S60241652 A JPS60241652 A JP S60241652A JP 59097968 A JP59097968 A JP 59097968A JP 9796884 A JP9796884 A JP 9796884A JP S60241652 A JPS60241652 A JP S60241652A
Authority
JP
Japan
Prior art keywords
alloy
metal hydride
alloys
performance
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59097968A
Other languages
Japanese (ja)
Other versions
JPH0514017B2 (en
Inventor
Yoshio Moriwaki
良夫 森脇
Munehisa Ikoma
宗久 生駒
Koji Gamo
孝治 蒲生
Hiroshi Kawano
川野 博志
Nobuyuki Yanagihara
伸行 柳原
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59097968A priority Critical patent/JPS60241652A/en
Publication of JPS60241652A publication Critical patent/JPS60241652A/en
Publication of JPH0514017B2 publication Critical patent/JPH0514017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To produce an electrochemical electrode having high performance and long service life with low cost by employing alloy for forming metal hydride of special structure containing Ni while having C14 type Laves phase. CONSTITUTION:In alloys for forming metal hydride to be shown by general formula ABa, C14(MgZn2) type Laves phase structure alloy where main alloy phase is containing Ni by 5-50atom% is employed for electrochemical electrode. In the formula, A means more than one kind of Ti, Zr, Hf while B means more than one kind of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Cu, La, Ce as well as 5- 50wt% of Ni and a=1.5-2.5. Such alloy includes, for example, Ti0.3Zr0.7Mn0.8 Cr0.8Ni0.4 (where, Ni=13.3atom%). When employing such alloy, the performance and the serive life of metal hydride negative pole for alkali secondary cell are improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ電池とくに正極にニッケル極、空気
極、酸化銀極などを用いるアルカリ電池用の金属水素化
物負極を中心に応用できる各種電気化学反応の電極に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to various electrochemical reactions that can be applied mainly to alkaline batteries, particularly metal hydride negative electrodes for alkaline batteries that use nickel electrodes, air electrodes, silver oxide electrodes, etc. as positive electrodes. Regarding the electrode.

従来例の構成とその問題点 金属水素化物を用いた電極は、最近、高性能化や長寿命
化が期待できることから関心が集まっている。
Conventional configurations and their problems Electrodes using metal hydrides have recently attracted attention because they are expected to have higher performance and longer life.

金属水素化物は、合金中に高密度に水素を吸蔵すること
が出来、水素吸蔵材としての用途や、水素の、吸蔵・放
出反応で発生する熱や圧力などを利用したエネルギー変
換媒体としての用途の他に、電気化学的な水素の吸蔵・
放出ができることから、電池用電極などに応用すること
も可能である。
Metal hydrides can store hydrogen at high density in alloys, and are used as hydrogen storage materials and as energy conversion media that utilize the heat and pressure generated by hydrogen storage and desorption reactions. In addition to electrochemical hydrogen storage and
Since it can be released, it can also be applied to battery electrodes, etc.

アルカリニ次電池などの電気化学反応を利用する電極の
中で、金属水素化物を用いた電極に使用する金属水素化
物を形成する合金としては、従来、Ti2Ni、LaN
i、、CaN16などが比較的良好な性能を有しており
、これらの合金をペースに、添加元素等による合金組成
面からの改良が試みられていた。
Among electrodes that utilize electrochemical reactions such as alkaline secondary batteries, alloys that form metal hydrides used in electrodes using metal hydrides have conventionally been Ti2Ni, LaN
I, CaN16, etc. have relatively good performance, and based on these alloys, attempts have been made to improve the alloy composition by adding additional elements, etc.

これらの従来から良く知られている合金について、アル
カリニ次電池を例にその問題点を説明する。
Problems with these conventionally well-known alloys will be explained using an alkaline secondary battery as an example.

まず、T 12 N i合金は、電気化学的な充電、放
電によって比較的高い放電容量を有しているものである
が、充放電サイクルを繰り返す場合の性能の持続性、す
なわち寿命性能に主たる問題を有している。
First, T 12 Ni alloy has a relatively high discharge capacity through electrochemical charging and discharging, but the main problem is the sustainability of performance when repeated charging and discharging cycles, that is, the lifetime performance. have.

LaN16合金は、電気化学的な水素吸蔵が必らずしも
良好でなく、比較的放電容易が低いこと、および温度変
化に対する性能の変動が大きいこと、合金の価格が高価
であることなどに問題がある。
LaN16 alloy has problems such as not necessarily good electrochemical hydrogen storage, relatively low dischargeability, large fluctuations in performance due to temperature changes, and high price of the alloy. There is.

そして、CaN16合金は、充放電サイクルの比較的初
期には高い放電容量を有しているものの、Ti2Ni合
金と同様に、充放電を繰り返えすことによって大幅な性
能の低下を生ずることが問題であった。
Although the CaN16 alloy has a high discharge capacity at the relatively early stage of the charge/discharge cycle, the problem is that, like the Ti2Ni alloy, repeated charging and discharging causes a significant drop in performance. there were.

アルカリニ次電池の金属水素化物電極は、負極として用
いられ、最も古くには鉄負極、それに最も広く使われて
いるカドミウム負極、性能はよいが寿命に問題がある亜
鉛負極などめ従来の負極に代わる電極として出現が待た
れている。
Metal hydride electrodes are used as negative electrodes in alkaline rechargeable batteries, replacing traditional negative electrodes such as iron negative electrodes, which are the oldest, cadmium negative electrodes, which are the most widely used, and zinc negative electrodes, which have good performance but have short lifespans. Its appearance as an electrode is awaited.

金属水素化物電極は、主に合金に充電により発生する水
素を吸蔵せしめ、これを放電時に利用するものであり、
電池の高容量化や長寿命化、低価格化が図れる可能性を
有している。
Metal hydride electrodes mainly store hydrogen generated during charging into an alloy, and use this during discharging.
It has the potential to make batteries higher in capacity, longer in life, and lower in price.

したがって、これらの可能性を実現するためのT I2
 N i、 L a N l s 、 Ca N 15
等に代わる最適な合金の出現が強く要望されていた。
Therefore, T I2 to realize these possibilities
N i, L a N l s , Ca N 15
There has been a strong demand for the emergence of an optimal alloy to replace the above.

一方、C14(MgZn2)型Laves 相構造を有
する金属水素化物を形成する合金は、すでにいくつか知
られている。例えば、TiMn2.ZrCr2゜Z r
 M r 2などの2元系合金をはじめとして、さらに
これらの合金に新たな元素を置換した3〜6元系合金が
ある。具体的にはTiMn Ti1.5+ 0.8 Z r o 、2Mn 1.2 Cr o 、s + 
T lo 、e Z r o 、4Mn 1.2Cr0
.6v0.2などの合金がその一例である。
On the other hand, some alloys that form metal hydrides having a C14 (MgZn2) type Laves phase structure are already known. For example, TiMn2. ZrCr2゜Z r
In addition to binary alloys such as M r 2, there are 3- to 6-element alloys in which new elements are substituted for these alloys. Specifically, TiMn Ti1.5+ 0.8 Z r o , 2Mn 1.2 Cro , s +
T lo , e Z r o , 4Mn 1.2Cr0
.. An example is an alloy such as 6v0.2.

これらのC14型Lavas相構造を有する合金は、水
素貯蔵 材料としての性能に優れ、比較的低価格化も期
待できることはすでに知られていた。しかし、電気化学
反応を用いた電極に適応するだめの性能については、こ
れまでのCI2型Lavas相構造を有する合金を単に
電極にしたのでは、反応が全く不活性であり性能的には
殆んど問題にならなかった。
It was already known that these alloys having a C14 type Lavas phase structure have excellent performance as hydrogen storage materials and can be expected to be relatively inexpensive. However, regarding the performance of electrodes that use electrochemical reactions, simply using CI2-type Lavas phase structure alloys as electrodes results in almost no performance as the reaction is completely inert. It wasn't a problem.

発明の目的 本発明は、このような金属水素化物を用いた電気化学用
電極に関して、従来からの問題点を解決し、高性能で長
寿命かつ低価格な電極を、提供することを目的とする。
Purpose of the Invention The purpose of the present invention is to solve the conventional problems regarding electrochemical electrodes using such metal hydrides, and to provide a high-performance, long-life, and low-cost electrode. .

発明の構成 本発明は、金属水素化物を形成する合金、一般式ABα
において、主たる合金相が少なくともNiを5−50原
子チ含んだC14(MgZn2)型Laves相構造を
有する合金であることを特徴とする金属水素化物を用い
た電気化学用電極である。
Structure of the Invention The present invention relates to an alloy forming a metal hydride, having the general formula ABα
An electrochemical electrode using a metal hydride characterized in that the main alloy phase is an alloy having a C14 (MgZn2) type Laves phase structure containing at least 5 to 50 atoms of Ni.

そして好ましくけ、合金の一般式ABaにおいて、Aは
主としてTi、Zr、Hfの少なくとも一種の元素、B
は5〜60原子−〇Niの他に主として、V、Nb、T
a、Cr、Mo、Mn、Fe、Co、Cu、La、Ce
の中から選ばれた少なくとも一種の元素で構成され、(
L = 1.5−2.5であるC 14 (Mg Z 
n 2 )型Laves相構造を有する合金相を主とす
る合金を用いるものである。
Preferably, in the general formula ABa of the alloy, A mainly represents at least one element of Ti, Zr, and Hf, and B
is 5 to 60 atoms - In addition to Ni, mainly V, Nb, T
a, Cr, Mo, Mn, Fe, Co, Cu, La, Ce
It is composed of at least one element selected from (
C 14 (Mg Z
An alloy mainly composed of an alloy phase having an n 2 ) type Laves phase structure is used.

実施例の説明 本発明者らは、C14型Laves 相合金の金属水素
化物としての性質を種々検討した結果、ガス反応での優
れた性能を電気化学的な反応でも生かすことを考えた。
DESCRIPTION OF EMBODIMENTS As a result of various studies on the properties of C14-type Laves phase alloys as metal hydrides, the present inventors have thought of utilizing the excellent performance in gas reactions in electrochemical reactions as well.

その検討において、合金が少なくともNiを5−50原
子チ含んだC14型Lavas相構造を有したものであ
ることが電気化学的な反応において重要であることを確
認した。この場合、合金中に含まれるN1は電気化学的
な反応の触媒作用を行なうものと考えられる。
In the study, it was confirmed that it is important for the electrochemical reaction that the alloy has a C14 type Lavas phase structure containing at least 5 to 50 atoms of Ni. In this case, N1 contained in the alloy is considered to catalyze the electrochemical reaction.

これまで、C14型Laves相合金でNiを6〜6Q
原子係含んだ合金は、金属水素化物材料としてあまり知
られていない。そして、これらの合金を用いて、電気化
学用電極とした例も無く、材料および用途的にも新しい
ものである。
Until now, Ni has been added to 6-6Q in C14 type Laves phase alloy.
Atomic-containing alloys are not well known as metal hydride materials. There are no examples of electrochemical electrodes using these alloys, and these alloys are new in terms of materials and uses.

市販のTi、Zr、Ni、V、Cr、Mn、Fe、Cu
等を使用して、表に示す様な合金になる様に原材料を秤
量し、アルゴンアーク溶解炉で、それぞれ加熱溶解を行
ない、表の試料に1〜28の合金を得た。
Commercially available Ti, Zr, Ni, V, Cr, Mn, Fe, Cu
The raw materials were weighed so as to form the alloys shown in the table, and heated and melted in an argon arc melting furnace to obtain alloys 1 to 28 as shown in the table.

アーク溶解によって得た合金試料の一部は、X線回折等
の合金分析用に使用し、残りは、水素ガスでの金属水素
化物の通常のP(平衡圧力>−C(、l成)−丁(温度
)等特用と電極用に用いた。
A part of the alloy sample obtained by arc melting was used for alloy analysis such as X-ray diffraction, and the rest was used for the normal P(equilibrium pressure>-C(,l)- It was used for special purposes such as temperature control and for electrodes.

以下余白 表の試料厖1のTi2Niと爲2のLaNi5および爲
3のCa N i5は、従来例としての合金であり、こ
れらは合金分析の結果、いずれも目的とする単一な合金
相が確認された。そして、P−C−T特性の結果も従来
から知られている性能と一致していることを確認した。
In the margin table below, Ti2Ni in sample 1, LaNi5 in 2, and CaNi5 in 3 are conventional alloys, and as a result of alloy analysis, the intended single alloy phase was confirmed in all of them. It was done. It was also confirmed that the results of the PCT characteristics also matched the performance known from the past.

また、表の試料ガ4〜アの合金は、従来から良く知られ
たC14型Laves相のTi−Mn系合金の代表例で
あり、合金相はいずれもC14型Lavas相になって
いるが、本発明に係るNi を適当量含んだ合金となっ
ていないものである。
In addition, the alloys in samples G4 to A in the table are typical examples of well-known Ti-Mn alloys with C14 type Laves phase, and the alloy phases are all C14 type Lavas phase. This is not an alloy containing an appropriate amount of Ni according to the present invention.

さらに、試料爲8〜28の合金は、いずれも本発明によ
る合金の例を示すものである。これらの合金は合金分析
の結果いずれも単一なC14型Lavas相構造を有す
る合金か、もしくはC14型Laves相主成分とする
別の相との混合物になっていることを確認した。そして
、これらの合金は、′水素ガスでの金属水素化物として
の通常のP−C−T特性結果も比較的良好であることを
確認した。
Furthermore, the alloys of samples 8 to 28 all represent examples of alloys according to the present invention. As a result of alloy analysis, it was confirmed that these alloys were all alloys having a single C14-type Lavas phase structure, or were mixtures of C14-type Lavas phase with another phase as a main component. It was also confirmed that these alloys also had relatively good P-C-T characteristics as metal hydrides in hydrogen gas.

以jの様な爲1〜/K 28の合金について電気化学用
電極としての性能を評価するために、アルカリニ次電池
用金属水素化物負極についての例をのべる。
In order to evaluate the performance of the following alloys of 1 to 28 as electrochemical electrodes, an example of metal hydride negative electrodes for alkaline secondary batteries will be described.

まず、爲1〜爲28のそれぞれのアーク溶解によって得
られた合金を、200メソシユ以下の粒径になる様に粉
砕した。そして、この合金粉末を6Pずつ、結着剤とし
てのポリエチレン粉末0.61と、導電剤としてのカー
ボニルニッケル粉末2ノと共に十分混合攪拌し、これを
、導電性芯材とシテニッケルスクリーン(線径0 、2
m 、 16 メツシュ)を中心にプレスにより加圧し
板状にそれぞれ成形した。これを120℃、1時間真空
中に置き、加熱してポリエチレンを溶融し金属水素化物
用負極電極とした。
First, the alloys obtained by arc melting each of Nos. 1 to 28 were crushed to a particle size of 200 mesosius or less. Then, 6P each of this alloy powder was thoroughly mixed and stirred with 0.61 parts of polyethylene powder as a binder and 2 parts of carbonyl nickel powder as a conductive agent. 0, 2
16 m, 16 mesh) was pressurized with a press to form each into a plate shape. This was placed in a vacuum at 120° C. for 1 hour and heated to melt the polyethylene and form a metal hydride negative electrode.

電極としての評価のためK、市販の焼結式ニッケル極を
正極に選び、ポリアミド不織布をセパレータとし、比重
1.25の苛性カリ水溶液に水酸化リチウムを20y/
を加えた溶液を電解液とし、一定電流での充電と放電を
繰り返えした。この時の充電電気量は、500mAx4
暇であり、放電は250 mAでO,aV以下はカット
した。その結果を第1図から第5図に示す。第1図から
第6図で、横軸は充・放電サイクル数(→を、たて軸は
放電容量を合金1yあたシについて示した。なお図中の
番号は表の試料泥を示す。
For evaluation as an electrode, a commercially available sintered nickel electrode was selected as the positive electrode, a polyamide nonwoven fabric was used as the separator, and lithium hydroxide was added to a caustic potassium aqueous solution with a specific gravity of 1.25 at a concentration of 20 y/ml.
The electrolyte was a solution containing 100% of the electrolyte, and charging and discharging at a constant current were repeated. The amount of electricity charged at this time is 500mA x 4
Since I had some free time, I cut the discharge below O.aV at 250 mA. The results are shown in FIGS. 1 to 5. In FIGS. 1 to 6, the horizontal axis shows the number of charge/discharge cycles (→), and the vertical axis shows the discharge capacity for Alloy 1Y Atashi.The numbers in the figures indicate the sample mud in the table.

第1図から第6図の結果、次のことが確認できる。まず
従来から有望とされているTi2Ni (41) 。
From the results shown in Figures 1 to 6, the following can be confirmed. First, Ti2Ni (41) has been considered promising.

CaN15(A3)は、充・放電サイクルの初期におい
ては、0.3Ah/p以上の放電容量が得られるものの
寿命性能においては大きな問題がある。一方L a N
 15(42)は寿命性能では比較的良好であるものの
放電容量自身が小さい点に問題がある。爲4〜厖7の試
料については、C14型Laves相構造の合金である
ものの、おそらく電気化学反応での触媒能が不足するこ
とに原因すると思われる水素ガスの発生が主になってお
り、殆んど電気化学的な充・放電が行なわれていない。
Although CaN15 (A3) can obtain a discharge capacity of 0.3 Ah/p or more at the beginning of the charge/discharge cycle, there is a major problem in the life performance. On the other hand, L a N
Although No. 15 (42) has relatively good life performance, it has a problem in that its discharge capacity itself is small. Regarding the samples from 4 to 7, although they are alloys with a C14 type Laves phase structure, hydrogen gas was mainly generated, probably due to insufficient catalytic ability in the electrochemical reaction, and most of the Most of the time, electrochemical charging and discharging is not performed.

これらに対し、第2図から第6図に示した本発明に係る
合金の場合には、放電容量も0.2〜0.4Ah/pに
分布しており、比較的高容量である。捷たそれ以上に優
れた点は、充・放電サイクルを200サイクル程度まで
継続しても、放電容量は殆んど低下していないことであ
り、この結果は、これまでの金属水素化物材料では見ら
れなかったことである。
On the other hand, in the case of the alloys according to the present invention shown in FIGS. 2 to 6, the discharge capacity is also distributed between 0.2 and 0.4 Ah/p, which is a relatively high capacity. What is even better than this is that the discharge capacity hardly decreases even if the charge/discharge cycle is continued for up to 200 cycles, which is unlike any metal hydride material to date. That was something I couldn't see.

ただし、第2図の&;13のT 1 o 、 sZ X
 o 、7Mno 、2Cro 、 1N 11.y合
金は、有効合金相であるC14型Lavas相以外にも
別の合金相がかなり存在しており、第2図で見られるよ
うに性能低下は、別の合金相が作用したものと考えられ
る。この厖13の合金はNi含有量が56.7atqb
であり、爲12の合金(Ti0.3zr0.7Mno、
4Cr0,1N11.6)のNi含有量60.Oat%
が性能的には上限値である。一方、Niの下限値は、電
気化学反応の触媒能に大きく関係があり、約5at%が
下限値である。第2図のg8(Tlo、32r0.7M
no、8°”1.0N10.2 )はNi含有量が6.
7atチであるが、安定した性能を維持するのに、約4
0サイクルの充・放電が必要であった。Ni含有量が、
この6.7at%よシさらに低下すると、水素ガスの発
生が多く有効に金属水素化物を形成することが困難にな
り、その下限値は別の結果から約6at%であった。
However, T 1 o, sZ X of &;13 in Fig. 2
o, 7Mno, 2Cro, 1N 11. In addition to the C14-type Lavas phase, which is the effective alloy phase, the y alloy has a considerable amount of other alloy phases, and as seen in Figure 2, it is thought that the decrease in performance was caused by another alloy phase. . This alloy No. 13 has a Ni content of 56.7 atqb.
and the alloy of 12 (Ti0.3zr0.7Mno,
4Cr0,1N11.6) Ni content 60. Oat%
is the upper limit in terms of performance. On the other hand, the lower limit of Ni is largely related to the catalytic ability of electrochemical reactions, and the lower limit is about 5 at%. g8 (Tlo, 32r0.7M
No. 8°"1.0N10.2) has a Ni content of 6.
7atchi, but it takes about 4at to maintain stable performance.
Zero cycles of charging and discharging were required. The Ni content is
When the content is further reduced from 6.7 at%, a large amount of hydrogen gas is generated, making it difficult to effectively form a metal hydride, and the lower limit was found to be about 6 at%, based on another result.

一方、C14型Laves相合金水素化物の基本組成は
、一般式ABαにおいて、α=2.0であるが、爲16
〜爲17の様にαを、1.6,2.0,2.5と変えた
場合でも、第3図の結果より2.0が最良の性能である
が、α−1,5〜2.5においてほぼ満足な性能が得ら
れることがわかった。ただし、a値が1.6より小さい
場合や逆にa値が2.6より大きい場合の合金において
は、有効合金であるC14型Lavas相の割合が減少
するかもしくは、全く別の合金相になるかのいずれかの
場合になることが多く、これらの組成範囲では、電極と
しての性能も大幅に低下することを確認した。
On the other hand, the basic composition of the C14 type Laves phase alloy hydride is α=2.0 in the general formula ABα, but 16
~ Even when α is changed to 1.6, 2.0, and 2.5 as in 17, 2.0 has the best performance according to the results in Figure 3, but α-1, 5 to 2 It was found that almost satisfactory performance was obtained at .5. However, in alloys with a value smaller than 1.6 or conversely larger than 2.6, the proportion of the C14 type Lavas phase, which is an effective alloy, decreases or changes to a completely different alloy phase. It has been confirmed that in most cases, one of the following is the case, and in these composition ranges, the performance as an electrode is also significantly reduced.

なお、本発明は、表に示す合金以外に多くの合金組成が
構成元素を変えることによって可能である。この場合、
有効合金相がC14型Lave8相であり、これにN1
が5〜6o原子チ含まれていることが重要な要件である
Note that the present invention allows many alloy compositions other than those shown in the table by changing the constituent elements. in this case,
The effective alloy phase is the C14 type Lave8 phase, which is supplemented by N1
An important requirement is that 5 to 6 o atoms are included.

以上のことから、本発明の合金を使用したアルカリニ次
電池用金属水素化物負極は、高性能化が可能であり、さ
らに長寿命であることがわかった。
From the above, it was found that the metal hydride negative electrode for alkaline secondary batteries using the alloy of the present invention can have higher performance and has a longer life.

また、本発明の電極はアルカリニ次電池の電極以外にも
、燃料電池の水素極、電気分解用の電極キャパシタなど
に応用することも先の二次電池の結果から有力である。
Furthermore, in addition to the electrodes of alkaline secondary batteries, the electrode of the present invention is also likely to be applied to hydrogen electrodes of fuel cells, electrode capacitors for electrolysis, etc., based on the results of the secondary batteries described above.

発明の効果 本発明の金属水素化物を用いた電気化学用電極は、高容
量化が可能であり、かつ、反応の可逆性に優れ長寿命化
に大きな効果を有している。また、金属水素化物合金は
原材料が比較的低価格であることから、安価であり、電
極の製造においても従来からの技術で充分対応できるも
のである。
Effects of the Invention The electrochemical electrode using the metal hydride of the present invention can have a high capacity, has excellent reaction reversibility, and has a great effect on extending the life. In addition, metal hydride alloys are inexpensive because their raw materials are relatively inexpensive, and conventional techniques can be used to manufacture electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第6図は本発明の異なる実施例の電気化学用
電極として用いた金属水素化物負極の性能結果を示す図
である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 □光・R党すイクル数(〜2 第2図 □克・次覚サイクル[(%)
FIGS. 1 to 6 are diagrams showing the performance results of metal hydride negative electrodes used as electrochemical electrodes in different embodiments of the present invention. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure □ Number of light/R cycle (~2 Figure 2 □ Katsu/Next cycle [(%)

Claims (2)

【特許請求の範囲】[Claims] (1)一般式ABaにおいて、主たる合金相が少なくと
もNiを5−50原子チ含んだC14(MgZn2)型
Lavas相構造を有する合金であることを特徴とする
金属水素化物を用いた電気化学用電極。
(1) An electrochemical electrode using a metal hydride characterized in that, in the general formula ABa, the main alloy phase is an alloy having a C14 (MgZn2) type Lavas phase structure containing at least 5 to 50 atoms of Ni. .
(2)一般式ABαにおいて、Aは主としてTi、Zr
。 Hfの少なくとも一種の元素、BはNi、V、Nb。 Ta 、Cr 、Mo 、Mn 、Fe 、Co 、C
u 、La 、Ceの中から選ばれた少なくとも一種の
元素で構成され、α=1.6〜2.5である特許請求の
範囲第1項記載の金属水素化物を用いた電気化学用電極
(2) In the general formula ABα, A is mainly Ti, Zr
. At least one element of Hf, B is Ni, V, or Nb. Ta, Cr, Mo, Mn, Fe, Co, C
An electrochemical electrode using a metal hydride according to claim 1, which is composed of at least one element selected from U, La, and Ce, and α=1.6 to 2.5.
JP59097968A 1984-05-16 1984-05-16 Electrochemical electrode employing metal hydride Granted JPS60241652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59097968A JPS60241652A (en) 1984-05-16 1984-05-16 Electrochemical electrode employing metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59097968A JPS60241652A (en) 1984-05-16 1984-05-16 Electrochemical electrode employing metal hydride

Publications (2)

Publication Number Publication Date
JPS60241652A true JPS60241652A (en) 1985-11-30
JPH0514017B2 JPH0514017B2 (en) 1993-02-24

Family

ID=14206464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59097968A Granted JPS60241652A (en) 1984-05-16 1984-05-16 Electrochemical electrode employing metal hydride

Country Status (1)

Country Link
JP (1) JPS60241652A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184765A (en) * 1986-02-06 1987-08-13 Matsushita Electric Ind Co Ltd Hydrogen absorbing electrode
EP0273624A2 (en) * 1986-12-29 1988-07-06 Energy Conversion Devices, Inc. Enhanced charge retention electrochemical hydrogen storage alloys and an enhanced charge retention electrochemical cell
JPS6435863A (en) * 1987-07-30 1989-02-06 Matsushita Electric Ind Co Ltd Hydrogen absorbing electrode
JPS6448370A (en) * 1987-08-19 1989-02-22 Matsushita Electric Ind Co Ltd Hydrogen-storing electrode
JPS6460961A (en) * 1987-08-31 1989-03-08 Matsushita Electric Ind Co Ltd Hydrogen absorption electrode
FR2623271A1 (en) * 1987-11-17 1989-05-19 Khuochih Kong METHOD FOR STORING HYDROGEN AND MATERIALS FOR HYDRIDE ELECTRODES
US4946646A (en) * 1987-05-15 1990-08-07 Matsushita Electric Industrial Co., Ltd. Alloy for hydrogen storage electrodes
US5278001A (en) * 1992-01-24 1994-01-11 Hitachi Maxell, Ltd. Hydrogen storage alloy, electrode comprising the same and hydrogen storage alloy cell
US5277998A (en) * 1991-04-10 1994-01-11 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode
USRE34588E (en) * 1987-11-17 1994-04-19 Hong; Kuochih Hydrogen storage hydride electrode materials
EP0621647A1 (en) * 1993-04-20 1994-10-26 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
WO1995012218A1 (en) * 1993-10-27 1995-05-04 Hyundai Motor Company Titanium-niobium-nickel hydrogen storage alloy for battery
US5501917A (en) * 1994-01-28 1996-03-26 Hong; Kuochih Hydrogen storage material and nickel hydride batteries using same
EP0753590A1 (en) * 1995-07-12 1997-01-15 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
EP0761833A1 (en) * 1995-08-21 1997-03-12 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
EP0749170A3 (en) * 1995-06-13 1997-06-25 Mitsubishi Materials Corp Hydrogen occluding alloy and electrode made of the alloy
US5810981A (en) * 1995-03-09 1998-09-22 Mitsubishi Materials Corporation Three phase hydrogen occluding alloy and electrode made of the alloy
US5932369A (en) * 1996-04-25 1999-08-03 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
KR100477718B1 (en) * 1997-07-28 2005-05-16 삼성에스디아이 주식회사 Hydrogen storage alloy for nickel hydrogen battery
WO2022250093A1 (en) * 2021-05-27 2022-12-01 愛知製鋼株式会社 High-entropy hydrogen storage alloy, negative electrode for alkaline storage batteries, and alkaline storage battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273342A (en) * 1975-12-16 1977-06-20 Matsushita Electric Ind Co Ltd Storage battery
JPS5413938A (en) * 1977-07-04 1979-02-01 Matsushita Electric Ind Co Ltd Method of making hydrogen occlusion electrode
JPS5468702A (en) * 1977-11-11 1979-06-02 Matsushita Electric Ind Co Ltd Material for preserving hydrogen
US4160014A (en) * 1977-05-10 1979-07-03 Matsushita Electric Industrial Co., Ltd. Hydrogen storage material
JPS5848481A (en) * 1981-09-17 1983-03-22 Nec Corp Surface emitting type light emitting diode built in monitoring light detector
DE3031471A1 (en) * 1980-08-21 1983-09-29 Daimler-Benz Ag, 7000 Stuttgart Hydrogen storage alloy - comprising titanium, manganese, vanadium, nickel, chromium and rare earth or calcium
JPS6024336A (en) * 1983-07-20 1985-02-07 Agency Of Ind Science & Technol Alloy for storing hydrogen
JPS6145563A (en) * 1984-04-16 1986-03-05 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Active substance for hydrogen storage electrode, method of forming same and electrochemical application
US4946646A (en) * 1987-05-15 1990-08-07 Matsushita Electric Industrial Co., Ltd. Alloy for hydrogen storage electrodes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273342A (en) * 1975-12-16 1977-06-20 Matsushita Electric Ind Co Ltd Storage battery
US4160014A (en) * 1977-05-10 1979-07-03 Matsushita Electric Industrial Co., Ltd. Hydrogen storage material
JPS5413938A (en) * 1977-07-04 1979-02-01 Matsushita Electric Ind Co Ltd Method of making hydrogen occlusion electrode
JPS5468702A (en) * 1977-11-11 1979-06-02 Matsushita Electric Ind Co Ltd Material for preserving hydrogen
DE3031471A1 (en) * 1980-08-21 1983-09-29 Daimler-Benz Ag, 7000 Stuttgart Hydrogen storage alloy - comprising titanium, manganese, vanadium, nickel, chromium and rare earth or calcium
JPS5848481A (en) * 1981-09-17 1983-03-22 Nec Corp Surface emitting type light emitting diode built in monitoring light detector
JPS6024336A (en) * 1983-07-20 1985-02-07 Agency Of Ind Science & Technol Alloy for storing hydrogen
JPS6145563A (en) * 1984-04-16 1986-03-05 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Active substance for hydrogen storage electrode, method of forming same and electrochemical application
US4946646A (en) * 1987-05-15 1990-08-07 Matsushita Electric Industrial Co., Ltd. Alloy for hydrogen storage electrodes

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184765A (en) * 1986-02-06 1987-08-13 Matsushita Electric Ind Co Ltd Hydrogen absorbing electrode
JPH0815079B2 (en) * 1986-02-06 1996-02-14 松下電器産業株式会社 Hydrogen storage electrode
EP0273624A2 (en) * 1986-12-29 1988-07-06 Energy Conversion Devices, Inc. Enhanced charge retention electrochemical hydrogen storage alloys and an enhanced charge retention electrochemical cell
JPH01119636A (en) * 1986-12-29 1989-05-11 Energy Conversion Devices Inc Charge holding and strengthening electrochemical hydrogen occlusion alloy and cell
US4946646A (en) * 1987-05-15 1990-08-07 Matsushita Electric Industrial Co., Ltd. Alloy for hydrogen storage electrodes
JPH0650633B2 (en) * 1987-07-30 1994-06-29 松下電器産業株式会社 Hydrogen storage electrode
JPS6435863A (en) * 1987-07-30 1989-02-06 Matsushita Electric Ind Co Ltd Hydrogen absorbing electrode
JPS6448370A (en) * 1987-08-19 1989-02-22 Matsushita Electric Ind Co Ltd Hydrogen-storing electrode
JPH0650634B2 (en) * 1987-08-19 1994-06-29 松下電器産業株式会社 Hydrogen storage electrode
JPS6460961A (en) * 1987-08-31 1989-03-08 Matsushita Electric Ind Co Ltd Hydrogen absorption electrode
FR2623271A1 (en) * 1987-11-17 1989-05-19 Khuochih Kong METHOD FOR STORING HYDROGEN AND MATERIALS FOR HYDRIDE ELECTRODES
USRE34588E (en) * 1987-11-17 1994-04-19 Hong; Kuochih Hydrogen storage hydride electrode materials
US5277998A (en) * 1991-04-10 1994-01-11 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode
US5278001A (en) * 1992-01-24 1994-01-11 Hitachi Maxell, Ltd. Hydrogen storage alloy, electrode comprising the same and hydrogen storage alloy cell
EP0621647A1 (en) * 1993-04-20 1994-10-26 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
US5532076A (en) * 1993-04-20 1996-07-02 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
WO1995012218A1 (en) * 1993-10-27 1995-05-04 Hyundai Motor Company Titanium-niobium-nickel hydrogen storage alloy for battery
US5501917A (en) * 1994-01-28 1996-03-26 Hong; Kuochih Hydrogen storage material and nickel hydride batteries using same
US5810981A (en) * 1995-03-09 1998-09-22 Mitsubishi Materials Corporation Three phase hydrogen occluding alloy and electrode made of the alloy
US5951945A (en) * 1995-06-13 1999-09-14 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
EP0749170A3 (en) * 1995-06-13 1997-06-25 Mitsubishi Materials Corp Hydrogen occluding alloy and electrode made of the alloy
EP0753590A1 (en) * 1995-07-12 1997-01-15 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
US5885378A (en) * 1995-07-12 1999-03-23 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
EP0761833A1 (en) * 1995-08-21 1997-03-12 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
US5932369A (en) * 1996-04-25 1999-08-03 Mitsubishi Materials Corporation Hydrogen occluding alloy and electrode made of the alloy
KR100477718B1 (en) * 1997-07-28 2005-05-16 삼성에스디아이 주식회사 Hydrogen storage alloy for nickel hydrogen battery
WO2022250093A1 (en) * 2021-05-27 2022-12-01 愛知製鋼株式会社 High-entropy hydrogen storage alloy, negative electrode for alkaline storage batteries, and alkaline storage battery

Also Published As

Publication number Publication date
JPH0514017B2 (en) 1993-02-24

Similar Documents

Publication Publication Date Title
JPS60241652A (en) Electrochemical electrode employing metal hydride
JPH0821379B2 (en) Hydrogen storage electrode
JP3123049B2 (en) Hydrogen storage alloy electrode
JP3381264B2 (en) Hydrogen storage alloy electrode
JP2595967B2 (en) Hydrogen storage electrode
JPS5944748B2 (en) Chikudenchi
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0650634B2 (en) Hydrogen storage electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JPH05287422A (en) Hydrogen occluding alloy electrode
JP2563638B2 (en) Hydrogen storage alloy electrode
JP2715434B2 (en) Hydrogen storage alloy electrode
JPH0797497B2 (en) Hydrogen storage electrode
JPH04187733A (en) Hydrogen storage alloy electrode
JP2989356B2 (en) Hydrogen storage alloy electrode
JPS62184765A (en) Hydrogen absorbing electrode
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JPH0953137A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0463240A (en) Hydrogen storage alloy electrode and battery using it
JPH0953135A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0650633B2 (en) Hydrogen storage electrode
JPH0265060A (en) Hydrogen storage electrode
JPH08319529A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0696762A (en) Hydrogen storage alloy electrode and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees