JPS60226570A - Copper powder for electrically-conductive coating compound and its preparation - Google Patents

Copper powder for electrically-conductive coating compound and its preparation

Info

Publication number
JPS60226570A
JPS60226570A JP59083290A JP8329084A JPS60226570A JP S60226570 A JPS60226570 A JP S60226570A JP 59083290 A JP59083290 A JP 59083290A JP 8329084 A JP8329084 A JP 8329084A JP S60226570 A JPS60226570 A JP S60226570A
Authority
JP
Japan
Prior art keywords
copper powder
surface area
specific surface
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59083290A
Other languages
Japanese (ja)
Other versions
JPH0139693B2 (en
Inventor
Yukiyoshi Yoshitake
吉武 征義
Seiji Inoue
井上 精二
Jiro Yamamoto
次郎 山本
Osamu Kajita
治 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Kinzoku Hakufun Kogyo Kk
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Kinzoku Hakufun Kogyo Kk
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Kinzoku Hakufun Kogyo Kk, Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Kinzoku Hakufun Kogyo Kk
Priority to JP59083290A priority Critical patent/JPS60226570A/en
Publication of JPS60226570A publication Critical patent/JPS60226570A/en
Publication of JPH0139693B2 publication Critical patent/JPH0139693B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:The titled copper powder in a branch state of tree having improved electrical conductivity corresponding to specific surface area, obtained by reducing specific electrolytic copper powder in a reducing atmosphere. CONSTITUTION:Electrolytic copper powder having >=1,200cm<2>/g specific surface area by subsieve sizer method, having >=90wt% particles passing through a sieve having <=44-75mum, is reduced in a reducing atmosphere (e.g., ammonia decomposition gas) at 120-400 deg.C, to give the desired copper powder having a particulate form of dendritic state and <=0.20wt% loss in reduction.

Description

【発明の詳細な説明】 本発明は銀粉に匹敵する導電性が得られる導電塗料用銅
粉およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper powder for use in conductive paints that can provide conductivity comparable to that of silver powder, and a method for producing the same.

導電塗料用金属粉として銀粉は優れた導電性を導電性塗
料に付与できる金属粉であるが、高価であるため、電子
回路の印刷配線用塗料、電磁波シールド用導電材料等の
導電性付与材料として、より安価な導電塗料用金属粉が
望まれている。
Silver powder as a metal powder for conductive paints is a metal powder that can impart excellent conductivity to conductive paints, but because it is expensive, it is used as a conductive material for printed wiring paints for electronic circuits, conductive materials for electromagnetic shielding, etc. , a cheaper metal powder for conductive paint is desired.

銀粉に代わり、良好な導電性を付与できる安価な金属粉
としては銅粉が考えられるが、単に銅粉を塗料中に混入
したのみでは良好な導電性は得られない。
Copper powder can be considered as an inexpensive metal powder that can provide good conductivity in place of silver powder, but good conductivity cannot be obtained simply by mixing copper powder into a paint.

最近、銅粉を添加した塗料にアミン類、リン化合物、お
よび有機チタン化合物等の各種添加剤を加えて銅粉の変
質を防止して良好な導電性を付与する試みが数多くなさ
れている。しかしながら、本発明者らの調査によれば、
これら添加剤を加えた銅粉を添加した塗料は長期に安定
した導電性を保持する効果は認められるものの銀粉を添
加した塗料によって得ら−れる塗膜の比抵抗値である1
0−3Ω・cm以下と、なるものは得られていない。
Recently, many attempts have been made to add various additives such as amines, phosphorus compounds, and organic titanium compounds to paints containing copper powder to prevent deterioration of the copper powder and impart good conductivity. However, according to the investigation by the present inventors,
Although paints containing copper powder containing these additives are effective in maintaining stable conductivity over a long period of time, the specific resistance value of the coating film obtained with paints containing silver powder is 1.
A value of 0-3 Ω·cm or less has not been obtained.

本発明者等は銀粉に匹敵する優れた導電性を有する導電
塗料用銅粉の研究を重ねた結果、比抵抗が高い原因は銅
粉自体にあることを突き止め、銅粉の形状、還元減量を
特定した銅粉を用いて導電塗料を作成すれば、銀粉を用
いた場合と同等の塗膜の比抵抗が得られることを見出し
本発明を完成した。
As a result of repeated research into copper powder for conductive paints, which has excellent conductivity comparable to that of silver powder, the present inventors discovered that the cause of the high resistivity was the copper powder itself, and determined that the shape of the copper powder and its reduction weight could be improved. The present invention was completed based on the discovery that if a conductive paint was made using the specified copper powder, the resistivity of the coating film would be equivalent to that obtained using silver powder.

即ち本発明は粒子形状が樹枝状であり、サブシーブサイ
ザー法による比表面積が1200cJ/g以」L、75
μm以下で44μmの篩を90重量パーセント以上通過
し、還元減量が0.20%以下であることを特徴とする
導電塗料用銅粉。およびサブシーブサイザー法による比
表面積が1200c+d/g以上で、かつ75μ以下で
44μmの篩を90重量パーセント以上通過する電解銅
粉を還元性雰囲気中で120℃〜400℃の低温度で還
元すことを特徴とする導電塗料用銅粉の製造方法である
That is, in the present invention, the particle shape is dendritic, and the specific surface area by the subsieve sizer method is 1200 cJ/g or more.
Copper powder for conductive paint, characterized in that it passes through a 44 μm sieve by 90% by weight or less in micrometers or less, and has a reduction loss of 0.20% or less. and reduction of electrolytic copper powder that has a specific surface area of 1200c+d/g or more by the subsieve sizer method, and that passes through a 44μm sieve by 90% by weight or less with a size of 75μ or less at a low temperature of 120°C to 400°C in a reducing atmosphere. A method for producing copper powder for conductive paint, characterized by:

本発明の導電塗料用銅粉は粒子形状が樹枝状であること
が一つの特徴である。これは導電塗料となした場合、銅
粉同士の接触の機会が多くなることを目的としている。
One of the characteristics of the copper powder for conductive paint of the present invention is that the particle shape is dendritic. The purpose of this is to increase the chances of contact between copper powders when used as a conductive paint.

通常、この樹枝状の粉末は電解法により金属粉末を製造
した場合に得られるものであるが、単に樹枝状と言って
も種々の形状がある。そこで、本発明では比表面積を特
定している。
Usually, this dendritic powder is obtained when metal powder is produced by an electrolytic method, but even if it is simply called dendritic, there are various shapes. Therefore, in the present invention, the specific surface area is specified.

比表面積をサブシーブサイザー法で測定して1200c
J/g以上としたのは、それ以下の比表面積では粒子形
状が樹枝状であっても、技の部分が少なく、塗料とした
場合には銅粉同士の接触の機会が少なくなり、塗料中に
大量に銅粉が混入しても優れた導電性が得られず、また
大量に混入することは、作業性、塗膜の密着性をも悪く
してしまうので好ましくないことによる。
The specific surface area was measured using the subsieve sizer method and was 1200c.
The reason why the specific surface area is set at J/g or more is that even if the particle shape is dendritic, there are fewer technical areas with a smaller specific surface area, and when used as a paint, there is less chance of contact between copper powders, and the Even if a large amount of copper powder is mixed in, excellent conductivity cannot be obtained, and mixing in a large amount is also undesirable because it impairs workability and adhesion of the coating film.

75μm以下で44μ川の篩を90重量パーセント以上
通過するよう粒度を選定した理由は、それより粗い粒度
であると導電塗料とした場合、塗膜の平滑性が劣り、ま
た塗料中での銅粉の沈降が早く、塗料用としては好まし
くないためである。
The reason why we selected the particle size so that 90% by weight or less passes through a 44 μm sieve at 75 μm or less is because if the particle size is coarser than that, the smoothness of the coating will be poor when used as a conductive paint, and the copper powder in the paint will be reduced. This is because it settles quickly and is not suitable for use in paints.

本発明の導電塗料用銅粉は還元減量を0.20%以下と
限定しているが、この理由は還元減量が導電塗料とした
場合の塗膜の比抵抗に重大な影響を及ぼすためである。
The reduction loss of the copper powder for conductive paint of the present invention is limited to 0.20% or less, and this is because reduction loss has a significant effect on the resistivity of the coating film when used as a conductive paint. .

即ち、銅粉粒子の表面には酸化膜の他、電解液や水等が
不純物として付着しており、この銅粉を塗料に混入して
導電塗料とした時これらの不純物が銅粉と反応し、酸化
物なとを生成して導電性を阻害しているためであると考
える。
In other words, in addition to an oxide film, impurities such as electrolyte and water adhere to the surface of copper powder particles.When this copper powder is mixed into paint to make a conductive paint, these impurities react with the copper powder. This is thought to be due to the formation of oxides and other substances that inhibit conductivity.

従って、本発明では還元減量を0.20%以下と限定し
た。
Therefore, in the present invention, the reduction loss is limited to 0.20% or less.

還元減量はMPIF!−64に規定されている測定方法
で、銅粉の場合875℃30分水素中で還元した時の重
量減少率を測定するものであるが、導電性を阻害する酸
化膜の他、電解液や水等はこの測定によって除去される
MPIF for reduction weight loss! -64, which measures the weight loss rate of copper powder when it is reduced in hydrogen at 875°C for 30 minutes. Water etc. are removed by this measurement.

本発明の導電塗料用銅粉は通常の電解法により製造し酸
化しないよう充分に洗浄、乾燥することにより得ること
か可能であるが、より確実に製造するには、電解法によ
り製造した後、還元性雰囲気中で120°C〜400°
Cの温度で還元処理を行うことが好ましい。
The copper powder for conductive paint of the present invention can be obtained by manufacturing it by a normal electrolytic method, washing and drying it sufficiently to prevent oxidation, but in order to manufacture it more reliably, after manufacturing it by an electrolytic method, 120°C to 400° in reducing atmosphere
It is preferable to carry out the reduction treatment at a temperature of C.

還元性雰囲気は、水素、−酸化炭素、天然ガスアンモニ
ア分解ガスなどの還元性気体または真空雰囲気か適用で
きる。
The reducing atmosphere may be a reducing gas such as hydrogen, carbon oxide, natural gas or ammonia decomposition gas, or a vacuum atmosphere.

還元温度を120°C〜400°Cの範囲としたのは、
120℃より低い温度であると長時間加熱しても銅粉に
含まれる酸化物、電解液、水等の不純物が除去できず導
電性の向上が認められない。
The reduction temperature was set in the range of 120°C to 400°C because
If the temperature is lower than 120° C., impurities such as oxides, electrolyte, and water contained in the copper powder cannot be removed even if heated for a long time, and no improvement in conductivity is observed.

400℃より高い温度で還元すると、還元した銅粉が仮
焼結し、スポンジ状ケーキとなる。機械的に粉砕して粉
末化し、塗料に使用しても塗膜面にブッが発生しやすく
、またえられた塗膜の導電性は逆に悪くなる。これは、
スポンジ状ケーキを粉砕する時、樹枝状の銅粉の枝の部
分が折れてしまい得られた粉末の比表面積が少なくなる
ためと考えられる。工業的に好ましい温度は200’c
〜300℃であり、短時間に優れた導電性を有する銅粉
が得られる。
When reduced at a temperature higher than 400°C, the reduced copper powder is temporarily sintered to form a spongy cake. Even if it is mechanically crushed into powder and used in paints, blistering tends to occur on the surface of the paint film, and the electrical conductivity of the resulting paint film is adversely affected. this is,
This is thought to be because the branches of the dendritic copper powder are broken when the sponge cake is crushed, resulting in a decrease in the specific surface area of the resulting powder. Industrially preferred temperature is 200'c
~300°C, and copper powder with excellent conductivity can be obtained in a short time.

還元時間は温度によるが200℃〜300℃においては
10分以内で十分な効果が得られる。
Although the reduction time depends on the temperature, a sufficient effect can be obtained within 10 minutes at 200°C to 300°C.

なお、一般に行われている還元銅粉の還元条件は700
℃〜800°Cと高温であり、この方法によって得られ
た銅粉は導電塗料用としては使用できないことは前述の
通りである。
The commonly used reduction conditions for reduced copper powder are 700
As mentioned above, the copper powder obtained by this method cannot be used as a conductive paint because the temperature is high, ranging from 800°C to 800°C.

本発明の銅粉を導電塗料に使用した場合、優れた導電性
が得られる理由は定かではないが、電解銅粉の特徴であ
る比表面積の大きい樹枝状の形状であること\、銅粉表
面の酸化膜が十分に除去されたためと考えられる。
It is not clear why the copper powder of the present invention achieves excellent conductivity when used in conductive paint, but it is due to the dendritic shape with a large specific surface area, which is a characteristic of electrolytic copper powder, and the copper powder surface. This is thought to be because the oxide film was sufficiently removed.

電解銅粉は水溶液中で析出した樹枝状の形状を有する粉
末であるため、電解液が粒子の間隙に残って表面酸化が
起こりやすい。特に比表面積が大きくなると、その表面
酸化を防止することは非常に難しくなる。一方、一般に
導電塗料用導電性粒子として少ない添加量で優れた導電
性を得るためには比表面積の大きいものを使用する方が
良いと考えられるが、しかし銅粉については、上に述べ
た表面酸化の問題があり、比表面積の大きい銅粉を使用
しても安定した良導電性が得られず、表面酸化により逆
に導電性が悪い。しかし本発明方法によると、銅粉の表
面酸化の問題がなくなり、比表面積に応した優れた導電
性が得られるようになる。
Since electrolytic copper powder is a powder having a dendritic shape that is precipitated in an aqueous solution, the electrolytic solution remains in the gaps between the particles and surface oxidation tends to occur. In particular, when the specific surface area becomes large, it becomes very difficult to prevent surface oxidation. On the other hand, it is generally considered that it is better to use particles with a large specific surface area in order to obtain excellent conductivity with a small amount added as conductive particles for conductive paints. There is a problem with oxidation, and even if copper powder with a large specific surface area is used, stable and good conductivity cannot be obtained; on the contrary, conductivity is poor due to surface oxidation. However, according to the method of the present invention, the problem of surface oxidation of copper powder is eliminated, and excellent conductivity corresponding to the specific surface area can be obtained.

従来まで試みられていた各種添加剤を加えて、良好な導
電性を与える方法では、銅粉の表面酸化膜が十分に除去
されていないため導電性において良い結果が得られなか
ったと考えられる。
Previously attempted methods of adding various additives to provide good conductivity are thought to have failed to produce good results in terms of conductivity because the surface oxide film on the copper powder was not sufficiently removed.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例1 サブシーブサイザー法による比表面積2300ca1g
、75μm以下で44μm以下の粒子を93重量パーセ
ント含む通常の電解銅粉を水素ガス雰囲気の還元炉で1
20℃、200℃、300℃、400℃の温度にて、そ
れぞれ10分間還元処理した。このようにして得られた
銅粉は粉末の凝集が認められずそのまま塗料用として使
用できるものであった。
Example 1 Specific surface area 2300ca1g by subsieve sizer method
, ordinary electrolytic copper powder containing 93% by weight of particles of 75 μm or less and 44 μm or less was heated in a reduction furnace in a hydrogen gas atmosphere.
Reduction treatment was performed at temperatures of 20°C, 200°C, 300°C, and 400°C for 10 minutes each. The copper powder thus obtained could be used as it is for paints, with no powder agglomeration observed.

このようにして得られた銅粉の比表面積および還元減量
を測定した後、銅粉が75重量部、アクリル樹脂25重
量部になるように混合し、ドルオールで希釈して銅塗料
を製造した。製造した銅塗料をABS樹脂板に吹付圧力
2.5kg/cntにて吹付塗装し膜厚50μmの塗膜
を作成し、塗膜の比抵抗値を測定した。
After measuring the specific surface area and reduction loss of the copper powder thus obtained, 75 parts by weight of copper powder and 25 parts by weight of acrylic resin were mixed, and the mixture was diluted with doluol to produce a copper paint. . The produced copper paint was spray-painted onto an ABS resin plate at a spraying pressure of 2.5 kg/cnt to form a coating film with a thickness of 50 μm, and the specific resistance value of the coating film was measured.

各測定結果を第1表に示す。The results of each measurement are shown in Table 1.

なお、第1表に同時に示した比較例1は実施例1で使用
した還元処理を施さない通常の電解銅粉 jを使用した
場合であり、比較例2は実施例1と同し方法で還元処理
温度を100’c、5oo℃、600”cの温度にて還
元した銅粉を使用した場合であり、更に、比較例3は銀
粉を使用した場合の測定結果である。
Comparative Example 1, which is also shown in Table 1, is a case where normal electrolytic copper powder J used in Example 1, which is not subjected to reduction treatment, is used, and Comparative Example 2 is a case where ordinary electrolytic copper powder j that is not subjected to the reduction treatment used in Example 1 is used. This is the case where copper powder reduced at processing temperatures of 100'C, 500C, and 600''C is used, and Comparative Example 3 is the measurement result when silver powder is used.

第 1 表 第1表に示したように本発明方法による銅粉を使用した
塗料の塗膜は非常に優れた導電性を有している。
Table 1 As shown in Table 1, the paint film using the copper powder produced by the method of the present invention has very excellent conductivity.

500℃以上の高温で還元した銅粉は電解銅粉の焼結化
が進み、機械的に粉砕して粉末化しても塗装面にブッが
多く認められた。
In the case of copper powder reduced at a high temperature of 500° C. or higher, sintering of the electrolytic copper powder proceeded, and even if it was mechanically pulverized into powder, many lumps were observed on the painted surface.

実施例2 サブシーブサイザー法による比表面積3200cal/
g44μm以下の粒子が100重量パーセントである通
常の電解銅粉をアンモニア分解ガス雰囲気の還元炉で2
00℃30分間還元処理し導電塗料用銅粉を製造した。
Example 2 Specific surface area 3200 cal/by subsieve sizer method
Normal electrolytic copper powder containing 100% by weight of particles of 44 μm or less was heated in a reduction furnace in an ammonia decomposition gas atmosphere for 2 hours.
A reduction treatment was performed at 00°C for 30 minutes to produce copper powder for conductive paint.

このようにして得た銅粉の比表面積を測定したところ3
000cm”7gであった。また還元減量は0.13%
であった。
When the specific surface area of the copper powder obtained in this way was measured, 3
000cm”7g.The reduction loss was 0.13%.
Met.

この銅粉を75重量部、エポキシ樹脂10重量部、エチ
ルカルピトール15重量部および硬化剤、反応促進剤を
適量添加し銅ペーストを製造した。製造した銅ペースト
を350メソシユのスクリーンを使用してスクリーン印
、刷方法にて塗膜を作成し、この塗膜の比抵抗を測定し
たところ2X10−’Ω・印であり良好なものであった
A copper paste was prepared by adding 75 parts by weight of this copper powder, 10 parts by weight of an epoxy resin, 15 parts by weight of ethylcarpitol, and appropriate amounts of a curing agent and a reaction accelerator. A coating film was created from the produced copper paste using a screen printing method using a 350 mesh screen, and the specific resistance of this coating film was measured and was found to be 2×10-'Ω・marked, which was good. .

なお、上記還元処理を行わない通常の電解銅粉を用いて
実施例2と同じ方法により作成した塗膜の比抵抗値は2
 X 10−3Ω・cmであった。
In addition, the specific resistance value of the coating film created by the same method as Example 2 using ordinary electrolytic copper powder that is not subjected to the above reduction treatment is 2.
X 10 −3 Ω·cm.

実施例3 サブシーブサイザー法による比表面積1250cal/
g、53μI以下で44μm以下の粒子が90重量パー
セントである通常の電解銅粉を水素ガス雰囲気の還元炉
で200℃10分間還元処理して導電塗料用銅粉を得た
。このようにして得た銅粉の比表面積および還元減量を
測定し、その後実施例1と同し吹付塗装条件で塗膜を作
成した。
Example 3 Specific surface area 1250 cal/by subsieve sizer method
A normal electrolytic copper powder containing 90% by weight of particles of 53 μm or less and 44 μm or less was subjected to reduction treatment at 200° C. for 10 minutes in a hydrogen gas atmosphere to obtain copper powder for conductive paint. The specific surface area and reduction loss of the copper powder thus obtained were measured, and then a coating film was prepared under the same spray coating conditions as in Example 1.

銅粉の比表面積、還元減量および塗膜の比抵抗値を第2
表に示す。
The specific surface area of the copper powder, the reduction loss, and the specific resistance value of the coating film are
Shown in the table.

なお、第2表に同時に示した比較例4は実施例3で使用
した通常の電解銅粉を使用した場合、比較例5はサブシ
ーブサイザー法による比表面積が1000c+d/g、
53μm以下で44μm以下の粒子が85重量パーセン
トである通常の電解銅粉を実施例3と同じ方法にて還元
処理した銅粉を用いた場合、さらに比較例6は比較例5
で使用した通常の電解銅粉を使用した場合で、それらの
塗膜の作成は実施例3と同じ方法で行った。
In addition, in Comparative Example 4 shown at the same time in Table 2, when the normal electrolytic copper powder used in Example 3 was used, in Comparative Example 5, the specific surface area by the subsieve sizer method was 1000 c + d / g,
When using copper powder obtained by reducing ordinary electrolytic copper powder containing 85% by weight of particles of 53 μm or less and 44 μm or less in the same manner as in Example 3, Comparative Example 6 was further compared to Comparative Example 5.
The coating films were created in the same manner as in Example 3, using the usual electrolytic copper powder used in Example 3.

第2表 ※l MPIF32−60のサブシーブサイザー法実施
例4 硫酸銅の硫酸酸性浴を用い、電流密度7 A/dm”。
Table 2 *l MPIF32-60 subsieve sizer method Example 4 A sulfuric acid acid bath of copper sulfate was used, and the current density was 7 A/dm.

電解温度30℃で電解して銅粉を析出させ、充分に水洗
した後、真空中で100℃30分間乾燥した。
Copper powder was precipitated by electrolysis at an electrolysis temperature of 30°C, thoroughly washed with water, and then dried in vacuum at 100°C for 30 minutes.

この粉末を53μmの篩で篩分け、−53μmの電解銅
粉を得た。この粉末は44μm以下の粒子を95重量パ
ーセント含み、比表面積は2200cm27g 、還元
減電は0.20%であった。
This powder was sieved through a 53 μm sieve to obtain −53 μm electrolytic copper powder. This powder contained 95% by weight of particles with a diameter of 44 μm or less, had a specific surface area of 2200 cm 27 g, and a reduced charge loss of 0.20%.

得られた電解銅粉を75重量部、エポキシ樹脂10重量
部、エチルカルピトール15重量部および硬化剤、反応
促進剤を適量添加して銅ペーストを製造した。製造した
銅ペーストを250メツシユのスクリーンを使用してス
クリーン印刷方法にて塗膜を作成し、この塗膜の比抵抗
を測定したところ5×10−4Ω・cmであり良好なも
のであった。
A copper paste was prepared by adding 75 parts by weight of the obtained electrolytic copper powder, 10 parts by weight of an epoxy resin, 15 parts by weight of ethylcarpitol, and appropriate amounts of a curing agent and a reaction accelerator. A coating film was formed from the produced copper paste by a screen printing method using a 250 mesh screen, and the specific resistance of this coating film was measured to be 5 x 10 -4 Ω·cm, which was good.

以上本発明の実施例で明らかなように、比表面積が12
00cm”7g以上、還元減量が0.2%以下の樹枝状
の銅粉を用いた導電塗料は優れた導電性が得られる。こ
れに対し、各比較例で示したように、比表面積が120
0cm2/g以下、還元減量が0.2%以上の銅粉は、
それを導電塗料とした場合の比抵抗が10−3Ω・cm
以上となり、銀粉を使用したものに比べ非常に劣ったも
のとなる。
As is clear from the examples of the present invention, the specific surface area is 12
Conductive paints using dendritic copper powder with a weight loss of 0.00cm" 7g or more and a reduction loss of 0.2% or less can provide excellent conductivity. On the other hand, as shown in each comparative example, conductive paints with a specific surface area of 120
Copper powder with a reduction weight of 0.2% or less and a reduction weight of 0cm2/g or less is
When it is used as a conductive paint, the specific resistance is 10-3Ω・cm
As a result, the product is extremely inferior to those using silver powder.

また、本発明の導電塗料用銅粉の製造方法にあっては、
還元処理温度を120℃以下とすると不純物が除去でき
ず、還元処理温度を400℃以上とすると還元処理前の
銅粉に比べ比表面積が低下していずれの場合も塗膜の導
電性が悪くなる。
Furthermore, in the method for producing copper powder for conductive paint of the present invention,
If the reduction treatment temperature is 120℃ or less, impurities cannot be removed, and if the reduction treatment temperature is 400℃ or higher, the specific surface area will decrease compared to the copper powder before reduction treatment, and in either case, the conductivity of the coating film will deteriorate. .

本発明の銅粉は、それ自体で塗料に混入しても良好な導
電性を有する導電塗料を製造できるが、塗料とした後長
期に放置する場合や、塗料中に銅粉と反応するような添
加剤が混入される場合には防錆処理を行うか、または塗
料中に防錆剤を添加すれば、より優れた導電性が得られ
ると同時に長期に安定した導電性を確保できる。
The copper powder of the present invention can be mixed into a paint by itself to produce a conductive paint with good conductivity, but if it is left for a long time after being made into a paint, or if it reacts with the copper powder in the paint. If additives are mixed, rust prevention treatment or addition of a rust preventive agent to the paint will provide better electrical conductivity and at the same time ensure long-term stable electrical conductivity.

特許出願人 福田金属笛粉工業株式会社patent applicant Fukuda Metal Fue Powder Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)粒子形状が樹枝状であり、ザブシーツサイザー法
による比表面積が1200c+d/g以上、75μm以
下で44μmの篩を90重量パーセント以上通過し、還
元減量が0.20%以下であることを特徴とする導電塗
料用銅粉。
(1) The particle shape is dendritic, the specific surface area is 1200c+d/g or more, 75μm or less, passes through a 44μm sieve by 90% by weight or more, and the reduction loss is 0.20% or less. Features of copper powder for conductive paint.
(2)ザブシーツサイザー法による比表面積が1200
cA/g以上で、かつ75μm以下で44μmの篩を9
0重量パーセント以上通過する電解銅粉を還元性雰囲気
中で、120°C〜400°Cの温度で還元処理するこ
とを特徴とする導電塗料用銅粉の製造方法。
(2) The specific surface area is 1200 by the Zabu Sheetsizer method.
cA/g or more and 75 μm or less through a 44 μm sieve at 9
A method for producing copper powder for conductive paint, which comprises reducing electrolytic copper powder passing through at 0 weight percent or more at a temperature of 120°C to 400°C in a reducing atmosphere.
JP59083290A 1984-04-25 1984-04-25 Copper powder for electrically-conductive coating compound and its preparation Granted JPS60226570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59083290A JPS60226570A (en) 1984-04-25 1984-04-25 Copper powder for electrically-conductive coating compound and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59083290A JPS60226570A (en) 1984-04-25 1984-04-25 Copper powder for electrically-conductive coating compound and its preparation

Publications (2)

Publication Number Publication Date
JPS60226570A true JPS60226570A (en) 1985-11-11
JPH0139693B2 JPH0139693B2 (en) 1989-08-23

Family

ID=13798256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59083290A Granted JPS60226570A (en) 1984-04-25 1984-04-25 Copper powder for electrically-conductive coating compound and its preparation

Country Status (1)

Country Link
JP (1) JPS60226570A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221301A (en) * 1989-02-23 1990-09-04 Daido Steel Co Ltd Method for treating surface of spherical metal fine powder
JP2013089576A (en) * 2011-10-21 2013-05-13 Mitsui Mining & Smelting Co Ltd Silver-coated copper powder
JP2013100592A (en) * 2011-10-21 2013-05-23 Mitsui Mining & Smelting Co Ltd Silvered copper powder

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE AUSTRALIAN INSTITUTE OF METALS=1962 *
NEUE HUETTE 23 JG. HEFT8=1978 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221301A (en) * 1989-02-23 1990-09-04 Daido Steel Co Ltd Method for treating surface of spherical metal fine powder
JP2013089576A (en) * 2011-10-21 2013-05-13 Mitsui Mining & Smelting Co Ltd Silver-coated copper powder
JP2013100592A (en) * 2011-10-21 2013-05-23 Mitsui Mining & Smelting Co Ltd Silvered copper powder

Also Published As

Publication number Publication date
JPH0139693B2 (en) 1989-08-23

Similar Documents

Publication Publication Date Title
TWI570196B (en) Silver-clad copper powder
KR100480863B1 (en) Copper fine powder and method for preparing the same
JP6166012B2 (en) Conductive powder and conductive paste
US7285152B2 (en) Method of manufacturing chain-structure metal powder
KR20010061982A (en) Copper powder and process for producing copper powder
JP2010013726A (en) Copper powder for electroconductive paste, and electroconductive paste
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
JP5622127B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
JP4223754B2 (en) Silver-coated copper powder and method for producing the same
TWI680470B (en) Silver-coated copper powder, method for producing same, electrically conductive paste using the silver-coated copper powder, and method for producing electrode for solar cell using the electrically conductive paste
JP2009046708A (en) Silver powder
JP2017002401A (en) Silver-coated copper powder
JP2008111175A (en) Composite metal powder, its production method, and electrically conductive paste
JPS60226570A (en) Copper powder for electrically-conductive coating compound and its preparation
CA2489893C (en) Nickel powder and production method therefor
KR20060018496A (en) Composite metal powder manufaturing method of silver and copper
WO2002047856A2 (en) Irregular shaped copper particles and methods of use
JP4163278B2 (en) Method for producing flake copper powder for conductive paint
JPH07226110A (en) Copper powder for conductive paste and conductive copper paste using it
JPH11310806A (en) Production of copper-silver composite powder for electrically conductive paste
JPH05190240A (en) Manufacture of electric brush and copper powder material for manufacturing electric brush
JP4074369B2 (en) Method for producing flake copper alloy powder for conductive paste
JPH05222413A (en) Production of copper monodisperse particle
JP3245965B2 (en) Production method of copper powder
JPH0762276A (en) Electrically conductive polymer composite and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term