JPS60192333A - Method for removal of organic coated and hardened film - Google Patents

Method for removal of organic coated and hardened film

Info

Publication number
JPS60192333A
JPS60192333A JP4765384A JP4765384A JPS60192333A JP S60192333 A JPS60192333 A JP S60192333A JP 4765384 A JP4765384 A JP 4765384A JP 4765384 A JP4765384 A JP 4765384A JP S60192333 A JPS60192333 A JP S60192333A
Authority
JP
Japan
Prior art keywords
gas
organic
film
substrate
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4765384A
Other languages
Japanese (ja)
Other versions
JPH0144013B2 (en
Inventor
Harumi Matsuzaki
松崎 晴美
Sankichi Takahashi
燦吉 高橋
Masahiro Yoshida
正博 吉田
Tsunehiko Takakusaki
高草木 常彦
Joshiro Sato
佐藤 譲之良
Hideyuki Yagi
秀幸 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4765384A priority Critical patent/JPS60192333A/en
Publication of JPS60192333A publication Critical patent/JPS60192333A/en
Publication of JPH0144013B2 publication Critical patent/JPH0144013B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0021Cleaning by methods not provided for in a single other subclass or a single group in this subclass by liquid gases or supercritical fluids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor

Abstract

PURPOSE:To prevent the contamination of a protective film by impurities and the deterioration of element characteristics, to prevent the lowering of yield of production as well as to easily obtain a method in which a treatment solution will be reused by a method wherein, after a substrate and liquid gas or supercritical gas have been contacted with each other, the gas is expanded by changing its temperature and/or the condition of pressure. CONSTITUTION:After a substrate, whereon an organic coated and hardened film is joined together, and liquefied gas or supercritical gas have been contacted, the gas is expanded by changing its temperature and/or the condition of pressure. Non-oxidizing gas such as CO2, NH3, N2 and the like can be used as liquefied gas or supercritical gas, but CO2 is suitable taking into consideration of advantages in cost and operation. Also, a gaseous organic solvent can be used at the normal temperature, and propane, butane, methyl chloride and the like can be used as the organic solvent. When liquefied carbonic acid gas is used, as it is hardly infiltrated completely into the interior of the organic coated and hardened film and the like such as a photoresist coated film, or on the interface between said films and the substrate, it is desirable in this case that an organic solvent of high solubility is mixed into carbonic acid gas.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は有機塗布硬化膜が接合された基板から有機塗布
硬化膜を除去する方法に係り、特に半導体ウェハのホト
レジスト塗布膜の塗布膜を剥離するのに好適な方法に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for removing an organic coating cured film from a substrate to which the organic coating cured film is bonded, and particularly to a method for removing a photoresist coating film from a semiconductor wafer. A method suitable for

〔発明の背景〕[Background of the invention]

半導体ウェハはSi単結晶板に5i02.SiN又はア
ルミ等の保瞳膜が形成された後、これらの保護膜の面に
ホトレジスト材を塗布し、所定のパターンで露光によっ
て所定のパターンに重合させ次いでパターンエツチング
によって所定のパターンのホトレジスト塗布膜と保護膜
を形成し、次いで不純物をドーピングする操作が行なわ
れている。このようなパターンエツチングが終了した半
導体ウェハではホトレジスト塗布膜を除去する必要があ
る。従来このようなホトレジスト塗布膜の除去方法とし
て、熱硫酸、硫酸あるいは過酸化水素のような強力な酸
化剤でホトレジスト塗布膜を溶解する方法が行なわれて
いる。しかしこのような強力な酸化剤を用いる方法では
、処理剤中にホトレジスト膜成分が溶解するために処理
液の再使用が困難であシ処理液の特命が短いという欠点
がある。また処理の仕方によってはホトレジスト膜の下
地材料を侵す恐れもある。一方ホトレジスト膜の下地材
料の耐薬品性を考慮してフェノール系有機材料、ハロゲ
ン系有機溶剤などの特別な剥離剤でホトレジスト塗布膜
を剥離する方法も行なわれている。しかしこれらの有機
溶剤を用いる方法では溶剤の後処理が環境保全上必要で
あシ、引火性薬品のため取シ扱い上の問題も生じる。更
に低温酸素プラズマによる灰化方法も行なわれているが
、この方法ではホトレジスト膜中に含有される重金属は
除去できないためホトレジスト膜を除去した後もこれら
の重金属は半導体ウェハ面に残存するため新たに重金属
を除去する処理が必要となる。
The semiconductor wafer is a Si single crystal plate with 5i02. After a pupil retaining film such as SiN or aluminum is formed, a photoresist material is applied to the surface of these protective films, polymerized into a predetermined pattern by exposure to light in a predetermined pattern, and then a photoresist coating film in a predetermined pattern is formed by pattern etching. A protective film is then formed, and then impurities are doped. It is necessary to remove the photoresist coating film from the semiconductor wafer after such pattern etching has been completed. Conventionally, a method for removing such a photoresist coating has been to dissolve the photoresist coating using a strong oxidizing agent such as hot sulfuric acid, sulfuric acid, or hydrogen peroxide. However, the method using such a strong oxidizing agent has the drawback that the photoresist film components are dissolved in the processing agent, making it difficult to reuse the processing solution and short-lived the processing solution. Furthermore, depending on the processing method, there is a possibility that the underlying material of the photoresist film may be attacked. On the other hand, in consideration of the chemical resistance of the underlying material of the photoresist film, a method of removing the photoresist coating film using a special removing agent such as a phenolic organic material or a halogenated organic solvent has also been used. However, in methods using these organic solvents, post-treatment of the solvent is necessary for environmental protection, and problems arise in handling since the solvent is a flammable chemical. Furthermore, an ashing method using low-temperature oxygen plasma has been used, but this method cannot remove the heavy metals contained in the photoresist film, and these heavy metals remain on the semiconductor wafer surface even after the photoresist film is removed. Treatment to remove heavy metals is required.

このように従来のホトレジスト塗布膜の除去方法で生じ
る問題点は、処理液の異常拡散による素子特性の劣化、
不純物にょるSingの汚染と素子特性の不安定化、絶
縁耐圧の劣化などによる素子の少滴まりを低下させてい
るのが現状である。
The problems that arise with conventional photoresist coating film removal methods are deterioration of device characteristics due to abnormal diffusion of the processing solution,
The current situation is that contamination of Sing by impurities, destabilization of device characteristics, deterioration of dielectric breakdown voltage, etc. are reducing the number of droplets in the device.

〔発明の目的〕[Purpose of the invention]

本発明は、不純物にょる5i02などの保護膜の汚染や
素子特性の劣化を防止し、素子の少滴まジの低下を防止
できるとともに処理液の再使用が容易な有機塗布硬化膜
の除去方法を提供することにある。
The present invention provides a method for removing a cured organic coating film that prevents contamination of a protective film such as 5i02 due to impurities and deterioration of device characteristics, prevents deterioration of small droplets of the device, and allows easy reuse of the processing solution. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明はホトレジスト塗布膜のような有機塗布硬化膜を
溶解、化学的剥離、酸化などの現象を利用することなく
物理的に剥離する方法を提供するものであって、有機塗
布硬化膜が接合された基板から有機塗布硬化膜を除去す
る方法において、前記有機塗布硬化膜が接合された基板
と液化ガスは超臨界ガスとを接触させた後、該ガスの温
度及び/又は圧力の条件を変えて前記ガスを膨張させ、
この膨張力によって基板から有機塗布硬化膜を除去する
ようにしたものである。
The present invention provides a method for physically peeling off an organic coated cured film such as a photoresist coated film without using phenomena such as dissolution, chemical peeling, or oxidation, and in which the organic coated cured film is bonded. In a method for removing an organic coated cured film from a substrate, the substrate on which the organic coated cured film is bonded is brought into contact with a liquefied gas, which is a supercritical gas, and then the temperature and/or pressure conditions of the gas are changed. expanding the gas;
The organic coating cured film is removed from the substrate by this expansion force.

本発明において、有機塗布硬化膜が接合された基板を高
圧下で液化ガスは超臨界ガスと接触させ有機塗布硬化膜
自体にあるいは有機塗布硬化膜と基板との界面部に液化
ガス又は超臨界ガスを溶解させ、液化ガス超臨界ガスの
圧力を低減するか又は液化ガス又は超臨界ガスの温度を
上昇させる。
In the present invention, the substrate to which the cured organic film is bonded is brought into contact with supercritical gas under high pressure, and the liquefied gas or supercritical gas is applied to the cured organic film itself or to the interface between the cured organic film and the substrate. The pressure of the liquefied gas supercritical gas is reduced or the temperature of the liquefied gas or supercritical gas is increased.

これによって有機塗布硬化膜内あるいは有機塗布硬化膜
と基板との界面部に存在する溶解液化カス又は溶解超臨
界ガスが膨張し、この膨張力によって基板から有機塗布
硬化膜が剥離される。液化ガス又は超臨界ガスの溶剤と
しての特性を利用した液化ガス抽出法や超臨界ガス抽出
法は種々提案されている。これらの方法では(A)溶解
力が大きいこと、(B)選択性を有すること、(C)抽
出物と溶剤との分離が容易であることなどの溶媒として
の特性が利用されている。
As a result, the dissolved liquefied scum or dissolved supercritical gas existing within the cured organic film or at the interface between the cured organic film and the substrate expands, and the expansion force causes the cured organic film to be peeled off from the substrate. Various liquefied gas extraction methods and supercritical gas extraction methods have been proposed that utilize the properties of liquefied gas or supercritical gas as a solvent. These methods utilize the properties of solvents, such as (A) high dissolving power, (B) selectivity, and (C) ease of separating the extract from the solvent.

本発明は(A)溶剤ガスの溶解性と(B)減圧又は昇温
による液化ガス又は超臨界ガスの膨張力を利用するもの
であって、従来の抽出法とは原理も目的も異なる。
The present invention utilizes (A) the solubility of a solvent gas and (B) the expansion power of liquefied gas or supercritical gas by reducing pressure or increasing temperature, and is different from conventional extraction methods in principle and purpose.

ここで、超臨界ガスとは、圧力一温度の状態図において
、臨界温度以上、かつ、臨界圧力以上の状態にあるもの
を言う。液化ガスとは、圧力一温度の状態図において、
飽和蒸気圧線以上の圧力状態にあム大気圧下で通常の温
度においてはガス状であるものを言う。
Here, the supercritical gas refers to a gas that is in a state of not less than a critical temperature and not less than a critical pressure in a pressure-temperature phase diagram. In the pressure-temperature phase diagram, liquefied gas is
A substance that is in a gaseous state at normal temperatures under atmospheric pressure and at a pressure above the saturated vapor pressure line.

本発明において液化ガス又は超臨界ガスとしてた常温で
ガス状の有機溶剤は単独でも使用できる。
In the present invention, the organic solvent which is gaseous at normal temperature as a liquefied gas or a supercritical gas can be used alone.

このような有機溶剤としてプロパン、ブタン、塩化メチ
ル、などを用いることができる。これらのガス状有機溶
剤は高圧及び低温にすることによって液化ガス又は超臨
界ガスとすることができる。
Propane, butane, methyl chloride, etc. can be used as such an organic solvent. These gaseous organic solvents can be turned into liquefied gases or supercritical gases by subjecting them to high pressure and low temperature.

液化炭酸ガスの場合、ホトレジスト塗布膜のような有機
塗布硬化膜などの内部又はこれらの膜と基板との界面に
完全に侵透しにくいので、この場合炭酸ガスに溶解性の
高い有機溶媒を混合するととが望ましい。有機溶媒の混
合によって液化ガスの急激な減圧を行なう場合、急激な
減圧時の衝撃を緩和する役目を果たす。液化炭酸ガスと
相互溶解性の高い有機溶媒としては、炭化水素系、ノ・
ロゲン化炭化水素系、アルコール系、ケトン系などの有
機溶媒があげられる。炭化水素系有機溶媒、例えば、ヘ
キサ乙石油エーテル、ベンゼン、トルエンなどの有ms
媒は液化炭酸ガスに完全に溶解する。またノ・ロダン化
炭化水素系有機溶媒、例えばジクロルメタン、フロンな
どは静止状態では不溶であるが攪拌すれば溶解する。ア
ルコール系有機溶媒、例えばエタノール(無水)は液化
炭酸ガスに完全に溶解するが、エタノール(含水)は液
化炭酸ガスに一部溶解する。またケトン系有機溶媒、例
えばアセトンは液化炭酸ガスに完全に溶解する。従って
液化炭酸ガスに混合する有機溶媒は有機塗布硬化膜に対
する溶解性あるいは基体を損傷しない特性などを総合的
に考慮して選択すべきで埴る。、超臨界ガスの場合にも
塗布硬化膜に対する溶解及び有機塗布硬化膜と基板との
界面に対する侵透性をよシ完全なものにするためには超
臨界ガスに有機溶媒を混合することが望ましい。
In the case of liquefied carbon dioxide gas, it is difficult to completely penetrate into the interior of organic coated cured films such as photoresist coatings or the interface between these films and the substrate, so in this case, an organic solvent with high solubility is mixed with carbon dioxide gas. Then, it is desirable. When a liquefied gas is rapidly depressurized by mixing an organic solvent, it serves to alleviate the shock caused by the rapid depressurization. Organic solvents with high mutual solubility with liquefied carbon dioxide include hydrocarbons,
Examples include organic solvents such as logenated hydrocarbons, alcohols, and ketones. Hydrocarbon organic solvents, such as hexane petroleum ether, benzene, toluene, etc.
The medium completely dissolves in liquefied carbon dioxide. Furthermore, organic solvents such as dichloromethane and fluorocarbons are insoluble in a static state, but dissolve when stirred. Alcohol-based organic solvents, such as ethanol (anhydrous), completely dissolve in liquefied carbon dioxide gas, while ethanol (hydrated) partially dissolves in liquefied carbon dioxide gas. Further, a ketone organic solvent such as acetone completely dissolves in liquefied carbon dioxide. Therefore, the organic solvent to be mixed with the liquefied carbon dioxide gas should be selected by comprehensively considering the solubility of the organic coating cured film and the property of not damaging the substrate. Even in the case of supercritical gas, it is desirable to mix an organic solvent with the supercritical gas in order to completely dissolve the cured coating film and penetrate the interface between the cured organic coating film and the substrate. .

有機溶媒を用いる場合、少量の有機溶媒中に多量の溶剤
ガスが溶解するため使用する有機溶剤量は少なくてすむ
。第1図は液化炭酸ガス(以下り−CO2と略す)とエ
チルアルコール水溶液との総合溶解性を示す実験データ
である。横軸は温度、縦軸はエチルアルコール水溶液中
に溶解するL −CO2量及びL CCh中に溶解する
エチルアルコール水溶液量であって、エチルアルコール
水溶液のアルコール濃度がパラメータである。第1図か
ら温度16C一定とし、横軸にエチルアルコールのアル
コール濃度をとると第2図のように示され、濃度が90
 vo1%以上では相当量のL CO2がエチルアルコ
ール水溶液中に溶解することがわかる。
When an organic solvent is used, the amount of organic solvent used can be small because a large amount of solvent gas is dissolved in a small amount of organic solvent. FIG. 1 shows experimental data showing the overall solubility of liquefied carbon dioxide gas (hereinafter abbreviated as -CO2) and an aqueous ethyl alcohol solution. The horizontal axis is the temperature, the vertical axis is the amount of L-CO2 dissolved in the aqueous ethyl alcohol solution, and the amount of the aqueous ethyl alcohol solution dissolved in the L CCh, and the alcohol concentration of the aqueous ethyl alcohol solution is the parameter. From Figure 1, if the temperature is constant at 16C and the alcohol concentration of ethyl alcohol is plotted on the horizontal axis, it is shown as in Figure 2, and the concentration is 90C.
It can be seen that a considerable amount of L CO2 is dissolved in the ethyl alcohol aqueous solution at vol 1% or more.

〔発明の実施例〕[Embodiments of the invention]

実施例により本発明の詳細な説明する。 The present invention will be explained in detail by way of examples.

実施例1 ホトレジスト塗布膜の厚さが約10μのパターンエツチ
ングが終了した電力用のウニノ・とL−COxを室温下
で所定時間、ベッセル内で接触させた後、ベッセル内圧
力を大気迄急激に減圧した。
Example 1 After pattern-etched photoresist coated film of approximately 10 μm was brought into contact with L-COx in a vessel at room temperature for a predetermined period of time, the pressure inside the vessel was rapidly increased to atmospheric pressure. The pressure was reduced.

ホトレジスト塗布膜は基板からきれいに剥離脱落した。The photoresist coating was cleanly peeled off from the substrate.

実施例2 ホトレジスト塗布膜厚さが約10μのパターンエツチン
グが終了した電力用のウニノ・と圧力フ5atg 、温
度351rの超臨界炭酸ガスとをベッセル内で接触させ
、ベッセル内圧力を大気圧まで急激に減圧した。この際
ガスの吸引方向を半導体ウェハの平面部と平行する方向
に行なった。その結果ホトレジスト塗布膜は基板からき
れいに細離脱落しウェハの破損はなかった。
Example 2 A power unit with a photoresist coating film thickness of about 10 μm after pattern etching is brought into contact with supercritical carbon dioxide gas at a temperature of 351 r in a vessel, and the pressure inside the vessel is rapidly raised to atmospheric pressure. The pressure was reduced to At this time, the direction of gas suction was parallel to the flat surface of the semiconductor wafer. As a result, the photoresist coating film was neatly separated from the substrate in small pieces, and the wafer was not damaged.

実施例3 ホトレジスト塗布膜厚さが約10μのノくターンエツチ
ングが終了した電力用のウニノーとL Co2およびエ
チルアルコールとの混合溶剤とを室温下でベッセル内で
接触させ、ベッセル内圧力を大気圧まで急激に減圧した
。その結果ホトレジスト塗布膜は基板からきれいに剥離
脱落した。なおガスの吸引方向は実施例1と同様であシ
、ウニノ・の破損はなかった。本実施しUにおいてはL
COa中のエチルアルコールの存在によって減圧時の衝
撃は緩和されたため、ウェハの破損は生じなかったもの
と思われる。
Example 3 A photoresist coated film with a thickness of approximately 10μ and a photoresist coated film that has been subjected to no-turn etching is brought into contact with a mixed solvent of L Co2 and ethyl alcohol in a vessel at room temperature, and the pressure inside the vessel is set to atmospheric pressure. The pressure was rapidly reduced to . As a result, the photoresist coating was clearly peeled off from the substrate. Note that the direction of gas suction was the same as in Example 1, and there was no damage to the unit. In this implementation U, L
It is thought that the presence of ethyl alcohol in COa eased the impact during depressurization, so no damage to the wafer occurred.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、基板に接合された有機塗
布硬化膜を物理的に剥離除去するため、薬品による酸化
分解、溶解等によって生じる素子特性の劣化がないため
素子の少滴まシ向上につながる。またホトレジスト塗布
膜のように酸化物薄膜からなる保護膜を設ける場合には
不純物によるSingの汚染と素子特性の不安定化、絶
縁耐圧の劣化がなく更に次工程における酸化膜除去洗浄
が不要となる。また剥離除去されたホトレジスト塗布膜
のような有機塗布硬化膜は処理液中に固形物として存在
するため回収が容易であり、このため排液処理は大幅に
簡略化される。
As described above, according to the present invention, since the organic coating cured film bonded to the substrate is physically peeled off and removed, there is no deterioration of device characteristics caused by oxidative decomposition or dissolution caused by chemicals. Leads to improvement. In addition, when a protective film made of a thin oxide film is provided like a photoresist coating film, there is no contamination of Sing by impurities, destabilization of device characteristics, and deterioration of dielectric strength, and there is no need for cleaning to remove the oxide film in the next process. . Furthermore, since the organic coated cured film such as the photoresist coated film that has been peeled off and removed exists as a solid substance in the processing solution, it is easy to recover, and therefore, the drainage treatment is greatly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は液化炭酸ガスとエチルアルコール水
溶液との総合溶解性を示すグラフである。 (−)4rjlpl’m’IO94I−C41J−第1
頁の続き ■発明者 佐原 譲之良 日立市幸町3]内 0発 明 者 八 木 秀 幸 日立市幸町3]内 1LQ−
FIGS. 1 and 2 are graphs showing the overall solubility of liquefied carbon dioxide and an aqueous ethyl alcohol solution. (-)4rjlpl'm'IO94I-C41J-1st
Continued page ■ Inventor Yoshinori Sahara 3] Saiwai-cho, Hitachi City 0 Inventor Hide Yagi 3] Saiwai-cho, Hitachi City 1 LQ-

Claims (1)

【特許請求の範囲】 1、有機塗布硬化膜が接合された基板から有機塗布硬化
膜を除去する方法において、前記有機塗布硬化膜が接合
された基板と液化ガス又は超臨界ガスとを接触させた後
、該ガスの温度および/又は圧力の条件を変えて前記ガ
スを膨張させることを特徴とする有機塗布硬化膜の除去
方法。 2 前記ガスが有機溶剤を含有することを特徴とする特
許請求の範囲第1項記載の有機塗布硬化膜の除去方法。 3、前記基板が半導体ウェハであり、前記有機塗布硬化
膜が、ホトレジスト材からなることを特徴とする特許請
求の範囲第1項記載の有機塗布硬化膜の除去方法。 4、前記半導体ウェハは、Si単結晶板に5iOa。 SiN又はAt等の保護膜が形成され、ホトレジスト材
および保護膜はパターンエツチングが、14了されたも
のであることを特徴とする特許請求の範囲第3項記載の
有機塗布硬化膜の除去方法。 5、 前記ホトレジスト材が、ネガ又はポジタイプであ
ることを特徴とする特許請求の範囲第3項又は第4項記
載の有機塗布硬化膜の除去方法。
[Claims] 1. A method for removing an organic coated cured film from a substrate to which the organic coated cured film is bonded, the method comprising: bringing the substrate to which the organic coated cured film is bonded into contact with liquefied gas or supercritical gas; A method for removing an organic coated cured film, characterized in that the temperature and/or pressure conditions of the gas are then changed to expand the gas. 2. The method for removing an organic coated cured film according to claim 1, wherein the gas contains an organic solvent. 3. The method for removing an organic coating cured film according to claim 1, wherein the substrate is a semiconductor wafer and the organic coating cured film is made of a photoresist material. 4. The semiconductor wafer is a Si single crystal plate with a thickness of 5 iOa. 4. The method of removing a cured organic coating film according to claim 3, wherein a protective film such as SiN or At is formed, and the photoresist material and the protective film are pattern-etched for 14 days. 5. The method for removing an organic coating cured film according to claim 3 or 4, wherein the photoresist material is of a negative or positive type.
JP4765384A 1984-03-13 1984-03-13 Method for removal of organic coated and hardened film Granted JPS60192333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4765384A JPS60192333A (en) 1984-03-13 1984-03-13 Method for removal of organic coated and hardened film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4765384A JPS60192333A (en) 1984-03-13 1984-03-13 Method for removal of organic coated and hardened film

Publications (2)

Publication Number Publication Date
JPS60192333A true JPS60192333A (en) 1985-09-30
JPH0144013B2 JPH0144013B2 (en) 1989-09-25

Family

ID=12781208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4765384A Granted JPS60192333A (en) 1984-03-13 1984-03-13 Method for removal of organic coated and hardened film

Country Status (1)

Country Link
JP (1) JPS60192333A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179530A (en) * 1987-01-21 1988-07-23 Hitachi Ltd Method and apparatus for washing substrate using supercritical gas or liquefied gas
EP0391035A2 (en) * 1989-04-03 1990-10-10 Hughes Aircraft Company Dense fluid photochemical process for substrate treatment
JPH0383065A (en) * 1989-08-28 1991-04-09 Masaru Nishikawa Method for forming pattern of resist, method for removing resist and method for washing substrate
US5013366A (en) * 1988-12-07 1991-05-07 Hughes Aircraft Company Cleaning process using phase shifting of dense phase gases
JPH03261128A (en) * 1990-03-09 1991-11-21 Sumitomo Seika Chem Co Ltd Method of removing organic hardening film
US5185296A (en) * 1988-07-26 1993-02-09 Matsushita Electric Industrial Co., Ltd. Method for forming a dielectric thin film or its pattern of high accuracy on a substrate
FR2686351A1 (en) * 1992-01-20 1993-07-23 Metalimphy Process for cleaning and degreasing metal products packaged in reel or sheet form forming a stack and plant for its use
WO1998026886A1 (en) * 1996-12-02 1998-06-25 The University Of North Carolina At Chapel Hill Use of co2-soluble materials as transient spacers, templates, adhesives, binders, coatings and molds
US6764552B1 (en) 2002-04-18 2004-07-20 Novellus Systems, Inc. Supercritical solutions for cleaning photoresist and post-etch residue from low-k materials
US6823880B2 (en) 2001-04-25 2004-11-30 Kabushiki Kaisha Kobe Seiko Sho High pressure processing apparatus and high pressure processing method
US6880560B2 (en) 2002-11-18 2005-04-19 Techsonic Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
WO2007083791A1 (en) * 2006-01-23 2007-07-26 National Institute Of Advanced Industrial Science And Technology Method of liftoff working and liftoff working apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179530A (en) * 1987-01-21 1988-07-23 Hitachi Ltd Method and apparatus for washing substrate using supercritical gas or liquefied gas
US5185296A (en) * 1988-07-26 1993-02-09 Matsushita Electric Industrial Co., Ltd. Method for forming a dielectric thin film or its pattern of high accuracy on a substrate
US5304515A (en) * 1988-07-26 1994-04-19 Matsushita Electric Industrial Co., Ltd. Method for forming a dielectric thin film or its pattern of high accuracy on substrate
US5013366A (en) * 1988-12-07 1991-05-07 Hughes Aircraft Company Cleaning process using phase shifting of dense phase gases
EP0391035A2 (en) * 1989-04-03 1990-10-10 Hughes Aircraft Company Dense fluid photochemical process for substrate treatment
JPH0383065A (en) * 1989-08-28 1991-04-09 Masaru Nishikawa Method for forming pattern of resist, method for removing resist and method for washing substrate
JPH03261128A (en) * 1990-03-09 1991-11-21 Sumitomo Seika Chem Co Ltd Method of removing organic hardening film
FR2686351A1 (en) * 1992-01-20 1993-07-23 Metalimphy Process for cleaning and degreasing metal products packaged in reel or sheet form forming a stack and plant for its use
WO1998026886A1 (en) * 1996-12-02 1998-06-25 The University Of North Carolina At Chapel Hill Use of co2-soluble materials as transient spacers, templates, adhesives, binders, coatings and molds
US6298902B1 (en) 1996-12-03 2001-10-09 Univ North Carolina Use of CO2-soluble materials as transient coatings
US6823880B2 (en) 2001-04-25 2004-11-30 Kabushiki Kaisha Kobe Seiko Sho High pressure processing apparatus and high pressure processing method
US7000653B2 (en) 2001-04-25 2006-02-21 Kabushiki Kaisha Kobe Seiko Sho High pressure processing apparatus and high pressure processing method
US7252719B2 (en) 2001-04-25 2007-08-07 Kabushiki Kaisha Kobe Seiko Sho High pressure processing method
US6764552B1 (en) 2002-04-18 2004-07-20 Novellus Systems, Inc. Supercritical solutions for cleaning photoresist and post-etch residue from low-k materials
US6880560B2 (en) 2002-11-18 2005-04-19 Techsonic Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
WO2007083791A1 (en) * 2006-01-23 2007-07-26 National Institute Of Advanced Industrial Science And Technology Method of liftoff working and liftoff working apparatus
JP2007221096A (en) * 2006-01-23 2007-08-30 Ryusyo Industrial Co Ltd Lift-off processing method and lift-off processing apparatus

Also Published As

Publication number Publication date
JPH0144013B2 (en) 1989-09-25

Similar Documents

Publication Publication Date Title
US7022655B2 (en) Highly polar cleans for removal of residues from semiconductor structures
JPS60192333A (en) Method for removal of organic coated and hardened film
US6509141B2 (en) Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
KR100559017B1 (en) Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
KR100551864B1 (en) Composition for removing residues from the microstructure of an object
US20030027085A1 (en) Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
KR960001907A (en) How to remove etch residue
US20110289793A1 (en) Supercritical drying method
KR100720249B1 (en) Method for cleaning microstructure
TW201021101A (en) Method and apparatus for cleaning semiconductor device fabrication equipment using supercritical fluids
JP2003206497A (en) Method for cleansing and drying
US6683008B1 (en) Process of removing ion-implanted photoresist from a workpiece
TW201206578A (en) Drying method for surface structure body
JP4004318B2 (en) Method and agent for removing organic coating
JP3095296B2 (en) Resist stripping method, method of manufacturing thin film circuit element using the same, and resist stripping solution
JP3265340B2 (en) Resist removal method and resist stripper
JPS63231343A (en) Resist pattern removing solution
Kim et al. The effect of ultrasonic agitation on the stripping of photoresist using supercritical CO2 and co-solvent formulation
US6887793B2 (en) Method for plasma etching a wafer after backside grinding
JPH02209729A (en) Manufacture of semiconductor device and apparatus for removing foreign substance
Levitin et al. Reactions Between CO 2 and Tetramethylammonium Hydroxide in Cleaning Solutions
JPH01206624A (en) Dry etching of resist
JP2007035714A (en) Method for cleaning base material surface
JPH03261128A (en) Method of removing organic hardening film
KR20090085247A (en) Method of recycling chemical