JPH02209729A - Manufacture of semiconductor device and apparatus for removing foreign substance - Google Patents

Manufacture of semiconductor device and apparatus for removing foreign substance

Info

Publication number
JPH02209729A
JPH02209729A JP3055289A JP3055289A JPH02209729A JP H02209729 A JPH02209729 A JP H02209729A JP 3055289 A JP3055289 A JP 3055289A JP 3055289 A JP3055289 A JP 3055289A JP H02209729 A JPH02209729 A JP H02209729A
Authority
JP
Japan
Prior art keywords
semiconductor device
gas
foreign matter
semiconductor substrate
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3055289A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Morita
清之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3055289A priority Critical patent/JPH02209729A/en
Publication of JPH02209729A publication Critical patent/JPH02209729A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a semiconductor device having high reliability with a high yield by a method wherein a semiconductor substrate is brought into contact with liquefied gas or super-critical gas and foreign substances produced in the manufacturing process of the semiconductor device are removed from the semiconductor substrate. CONSTITUTION:A second interlayer insulating film 10 is formed and through- holes 11 are formed. Also in an etching process for forming the through-holes, foreign substances 120 are deposited on the side walls of the through-holes 11. In order to remove the foreign substances 120, a semiconductor substance 1 is again brought into contact with super-critical carbon dioxide gas. Then a second aluminum wiring layer 12 is formed and a passivation film 13 is formed to complete a semiconductor device. If the foreign substances are completely removed like this, a semiconductor device with high reliability can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造工程において発生した異物
を半導体基板上から除去する半導体装置の製造方法及び
異物除去装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device and a foreign matter removal apparatus for removing foreign matter generated during the manufacturing process of a semiconductor device from a semiconductor substrate.

従来の技術 従来、半導体装置の製造工程において発生した異物が付
着したまま半導体装置を製造すると、半導体装置の信頓
性が確保できず、歩留まりも良くないため異物、を半導
体基板上から除去する必要があり、その工程として硫酸
と過酸化水素水の混合溶液中に半導体基板を浸す方法が
用いられていた。
Conventional technology Conventionally, if semiconductor devices are manufactured with foreign matter generated during the manufacturing process of semiconductor devices attached, the reliability of the semiconductor device cannot be ensured and the yield rate is also poor, so it is necessary to remove the foreign matter from the semiconductor substrate. The process involved immersing the semiconductor substrate in a mixed solution of sulfuric acid and hydrogen peroxide.

但し金属配線層形成後の半導体基板では、金属配線層が
硫酸と過酸化水素水の混合溶液に溶解してしまうために
、上記方法は採用できない。よって、金属薄膜形成後の
半導体基板では、t1硝酸中に半導体基板を浸す方法が
用いられていた。
However, in the case of a semiconductor substrate after a metal wiring layer has been formed, the above method cannot be adopted because the metal wiring layer will be dissolved in a mixed solution of sulfuric acid and hydrogen peroxide. Therefore, for a semiconductor substrate after forming a metal thin film, a method has been used in which the semiconductor substrate is immersed in t1 nitric acid.

発明が解決しようとする課題 しかし、かかる構成によれば、濃硝酸は硫酸−過酸化水
素水の混合溶液はど洗浄力が強くないため、洗浄後も半
導体基板上に異物が残存することがある。特にドライエ
ツチング後パターン側壁に付着するポリマーについては
非常に除去が困難であった。このようなポリマー等の異
物が付着したまま半導体装置を製造すると、半導体装置
の信頼性が確保できず、歩留まりも良くないという問題
があった。
Problems to be Solved by the Invention However, with this configuration, foreign matter may remain on the semiconductor substrate even after cleaning, since concentrated nitric acid does not have strong cleaning power as a mixed solution of sulfuric acid and hydrogen peroxide. . In particular, it was very difficult to remove the polymer that adhered to the sidewalls of the pattern after dry etching. If a semiconductor device is manufactured with such foreign matter such as polymer attached, there is a problem that the reliability of the semiconductor device cannot be ensured and the yield is also poor.

本発明は、上述の問題点に鑑みて試されたもので、金属
薄膜形成後の半導体基板において、異物を完全に除去す
ることができる半導体装置の製造方法及び異物除去装置
を提供することを目的とする。
The present invention has been attempted in view of the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device and a foreign matter removal device that can completely remove foreign matter from a semiconductor substrate after forming a metal thin film. shall be.

課題を解決するための手段 本発明は上述の課題を解決するため、半導体基板を液化
ガス又は超臨界ガスと接触させ、半導体装置の製造工程
において発生した異物を前記半導体基板上から除去させ
るという構成を備えたものである。また他の発明は液化
ガス又は超臨界ガスを生成する機構と、物品を前記液化
ガス又は超臨界ガスと接触させる機構を備えたものであ
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention has a structure in which a semiconductor substrate is brought into contact with liquefied gas or supercritical gas, and foreign substances generated during the manufacturing process of a semiconductor device are removed from the semiconductor substrate. It is equipped with the following. Still another invention includes a mechanism for generating liquefied gas or supercritical gas, and a mechanism for bringing an article into contact with the liquefied gas or supercritical gas.

作用 本発明は上述の構成によって、有機物質からなる異物を
超臨界ガス又は液化ガスと接触させると、異物は容易に
超臨界ガス又は液化ガス中に溶解する。ここで液化ガス
とは、圧力−温度の状態図において飽和蒸気圧線以上の
圧力状態にあり、大気圧下、常温ではガス状であるもの
をいう。超臨界ガスとは、圧力−温度の状態図において
臨界温度以上かつ、臨界圧力以上の状態にあるものをい
う。
Effect of the present invention With the above-described structure, when a foreign substance made of an organic substance is brought into contact with a supercritical gas or liquefied gas, the foreign substance easily dissolves in the supercritical gas or liquefied gas. Here, the liquefied gas refers to gas that is in a pressure state equal to or higher than the saturated vapor pressure line in a pressure-temperature phase diagram and is gaseous at atmospheric pressure and room temperature. A supercritical gas is a gas that is in a state of a critical temperature or more and a critical pressure in a pressure-temperature phase diagram.

一般にこの臨界温度は低いため(二酸化炭素:31℃)
、熱により金属配線等に悪影響を与えることなく半導体
基板上の異物を除去することができる。
Generally, this critical temperature is low (carbon dioxide: 31℃)
, foreign matter on a semiconductor substrate can be removed without adversely affecting metal wiring or the like due to heat.

また超臨界ガスの粘性は非常に低いため、液体を用いた
洗浄よりも効率良く微細なパターンの間に浸透し洗浄を
行なうことができる。よって、本発明による方法を用い
れば、半導体基板上の異物を完全に除去することができ
、高信頼性の半導体装置を歩留まり良(製造することが
できる。
Furthermore, since the viscosity of supercritical gas is very low, it can penetrate between fine patterns and perform cleaning more efficiently than cleaning using liquid. Therefore, by using the method according to the present invention, foreign substances on a semiconductor substrate can be completely removed, and highly reliable semiconductor devices can be manufactured at a high yield.

実施例 (実施例1) 以下、図面に基づいて本発明について更に詳しく説明す
る。第1図は、本発明の一実施例における半導体装置の
製造方法を示す工程断面図である。
Example (Example 1) Hereinafter, the present invention will be described in more detail based on the drawings. FIG. 1 is a process cross-sectional view showing a method of manufacturing a semiconductor device in an embodiment of the present invention.

第1図(a)において、p型半導体基板1上に選択酸化
法を用いてフィールド酸化膜2を形成する。ゲート酸化
膜3、ゲート電極4を形成し、イオン注入法によりn型
拡散層5を形成する。第1層間絶縁膜6を堆積し、コン
タクトホール7を設け、アルミ薄膜81を堆積する。さ
らに、レジストパターン82を形成する。次に、レジス
トパターン82をマスクにしてアルミ薄膜8Iを反応性
イオンエツチング(RIE)によりエツチングする。エ
ツチング及びレジスト除去を行った後の部分拡大断面図
を第1図(b)に示す。第1図(b)において、形成さ
れた第1アルミ配線層8の側壁には異物9が堆積する。
In FIG. 1(a), a field oxide film 2 is formed on a p-type semiconductor substrate 1 using a selective oxidation method. A gate oxide film 3 and a gate electrode 4 are formed, and an n-type diffusion layer 5 is formed by ion implantation. A first interlayer insulating film 6 is deposited, a contact hole 7 is formed, and an aluminum thin film 81 is deposited. Furthermore, a resist pattern 82 is formed. Next, using the resist pattern 82 as a mask, the aluminum thin film 8I is etched by reactive ion etching (RIE). A partially enlarged sectional view after etching and resist removal is shown in FIG. 1(b). In FIG. 1(b), foreign matter 9 is deposited on the side wall of the first aluminum wiring layer 8 that has been formed.

異物9はエツチングの異方性を向上させるために用いた
ポリマー等の堆積物である。次に、第2図においてp型
半導体基板1を適当なベッセル200内に設置し、超臨
界二酸化炭素ガス201に接触させる。
The foreign matter 9 is a deposit of a polymer or the like used to improve the anisotropy of etching. Next, in FIG. 2, the p-type semiconductor substrate 1 is placed in a suitable vessel 200 and brought into contact with supercritical carbon dioxide gas 201.

超臨界二酸化炭素ガス20+の圧力及び温度はそれぞれ
75〜100気圧、50−100’Cが適当である。超
臨界二酸化炭素ガス201は有機物に対する溶解力が非
常に高い。このため、ポリマー等の堆積物である異物9
は超臨界二酸化炭素ガス201中に容易に溶解して、p
型半導体基板1上から除去できる。異物除去後の部分拡
大断面図を第1図(C)に示す。第1図(d)において
第1層間絶縁膜6Oを形成し、スルーホールロを形成す
る。スルーホール形成のエツチングにおいてもスルーホ
ール11側壁に異物9類似の異物+20が堆積する。よ
って、この異物12Gを除去するために再度半導体基板
1を超臨界二酸化炭素ガスに接触させる。異物+20除
去後の部分拡大断面図を第1図(e)に示す。次に第2
アルミ配線層12を形成し、パッジベージロン膜13を
形成して半導体装置が完成する。完成後の部分拡大断面
図を第1図(f)に示す。本実施例のように、完全に異
物を除去すると信頼性の高い半導体装置が製造できる。
The pressure and temperature of the supercritical carbon dioxide gas 20+ are preferably 75 to 100 atm and 50 to 100'C, respectively. Supercritical carbon dioxide gas 201 has a very high ability to dissolve organic matter. For this reason, foreign matter 9 which is a deposit of polymer etc.
is easily dissolved in supercritical carbon dioxide gas 201, and p
It can be removed from the top of the semiconductor substrate 1. A partially enlarged cross-sectional view after removing foreign matter is shown in FIG. 1(C). In FIG. 1(d), a first interlayer insulating film 6O is formed, and through holes are formed. Also in the etching for forming the through hole, foreign matter +20 similar to foreign matter 9 is deposited on the side wall of the through hole 11. Therefore, in order to remove this foreign material 12G, the semiconductor substrate 1 is brought into contact with supercritical carbon dioxide gas again. A partially enlarged cross-sectional view after foreign matter +20 has been removed is shown in FIG. 1(e). Then the second
An aluminum wiring layer 12 is formed, a padding film 13 is formed, and the semiconductor device is completed. A partially enlarged sectional view after completion is shown in FIG. 1(f). As in this embodiment, if foreign matter is completely removed, a highly reliable semiconductor device can be manufactured.

なお本実施例においては異物除去に超臨界二酸化炭素ガ
スを用いたが、液化状態の二酸化炭素ガスを用いても良
い。また、異物を溶解し、除去することができる溶剤な
ら何を用いても良い。但し、金属薄膜を溶解するものは
用いることができない。
In this embodiment, supercritical carbon dioxide gas was used to remove foreign matter, but liquefied carbon dioxide gas may also be used. Further, any solvent that can dissolve and remove foreign matter may be used. However, materials that dissolve metal thin films cannot be used.

また、本実施例においては金属薄膜としてアルミニウム
を用いたが、他の金属を用いても良い。ただし、溶剤と
の組合せを考慮し、金属の溶解を防ぐ必要がある。さら
に、本実施例においては物品としてp型半導体基板を用
いたが、n型半導体基板やガラス基板等その他の無機材
料を用いても良い。付着している異物の種類によっては
、超臨界ガス又は液化ガス中に抽出助剤としてアルコー
ル、芳香族化合物等の有機溶剤や酸などを含膏させるこ
とが効果的である。
Further, although aluminum is used as the metal thin film in this embodiment, other metals may be used. However, it is necessary to consider the combination with the solvent and prevent the metal from dissolving. Further, in this embodiment, a p-type semiconductor substrate is used as the article, but other inorganic materials such as an n-type semiconductor substrate or a glass substrate may also be used. Depending on the type of foreign matter attached, it is effective to impregnate the supercritical gas or liquefied gas with an organic solvent such as alcohol, an aromatic compound, or an acid as an extraction aid.

(実施例2) 第3図は本発明の一実施例における異物除去装置の部分
拡大断面図である。本装置の主要部分は、圧力温度制御
機構102とベッセル103から構成される。圧力温度
制御機構102は超臨界ガス又は液化ガスを生成するた
めのものであり、ベッセル103は異物を除去させたい
物品と超臨界ガス又は液化ガスを接触させるためのもの
である。第3図において、異物を除去させたい物品10
4をベッセル103内に設置する。二酸化炭素ボンベ1
01より二酸化炭素ガスを圧力温度制御機構102に導
入し、ガスの圧力、及び温度をそれぞれ75〜100気
圧、50〜100℃に制御する。この時、二酸化炭素ガ
スは超臨界状態となる。このようにして生成した超臨界
二酸化炭素ガス105をベッセル103内に導入する。
(Embodiment 2) FIG. 3 is a partially enlarged sectional view of a foreign matter removing device in an embodiment of the present invention. The main parts of this device are comprised of a pressure and temperature control mechanism 102 and a vessel 103. The pressure and temperature control mechanism 102 is for generating supercritical gas or liquefied gas, and the vessel 103 is for bringing the supercritical gas or liquefied gas into contact with the article from which foreign substances are to be removed. In FIG. 3, an article 10 from which foreign matter is to be removed
4 is installed in the vessel 103. Carbon dioxide cylinder 1
Carbon dioxide gas is introduced into the pressure and temperature control mechanism 102 from 01, and the pressure and temperature of the gas are controlled to 75 to 100 atm and 50 to 100°C, respectively. At this time, carbon dioxide gas becomes supercritical. The supercritical carbon dioxide gas 105 thus generated is introduced into the vessel 103.

超臨界二酸化炭素ガス105は有機物に対する溶解力が
非常に高い。
Supercritical carbon dioxide gas 105 has a very high ability to dissolve organic matter.

このため、物品104上の異物は超臨界二酸化炭素ガス
105中に容易に溶解して、物品104上から除去でき
る。物品!04上の異物の種類によって超臨界二酸化炭
素ガス105を連続して流したほうがよいものと、断続
的に流したほうがよいものがある。ベッセル103は、
物品104と超臨界二酸化炭素ガス105が効率良く接
触できる形状であればどのようなものでもよい。本実施
例においては異物除去に超臨界二酸化炭素ガスを用いた
が、液化状態の二酸化炭素ガスを用いても良い。また、
異物を溶解し、除去することができる溶剤なら何を用い
ても良い。また付着している異物の種類によっては、超
臨界ガス又は液化ガス中に抽出助剤としてアルコール、
芳香族化合物等の有機溶剤や酸などを含有させることが
効果的であるため、抽出助剤を用いる場合は、圧力温度
制御機構102内に抽出助剤混合器を設ける必要がある
Therefore, foreign matter on the article 104 can be easily dissolved in the supercritical carbon dioxide gas 105 and removed from the article 104. Goods! Depending on the type of foreign matter on 04, there are some cases in which it is better to flow the supercritical carbon dioxide gas 105 continuously, and there are cases in which it is better to flow the supercritical carbon dioxide gas 105 intermittently. Vessel 103 is
Any shape may be used as long as the article 104 and the supercritical carbon dioxide gas 105 can come into contact with each other efficiently. In this embodiment, supercritical carbon dioxide gas was used to remove foreign matter, but liquefied carbon dioxide gas may also be used. Also,
Any solvent that can dissolve and remove foreign matter may be used. Depending on the type of foreign matter attached, alcohol may be used as an extraction aid in supercritical gas or liquefied gas.
Since it is effective to contain organic solvents such as aromatic compounds, acids, etc., when using an extraction aid, it is necessary to provide an extraction aid mixer in the pressure and temperature control mechanism 102.

発明の効果 以上の説明から明らかなように本発明は、有機物質から
なる異物を超臨界ガス又は液化ガスと接触させると異物
は容易に超臨界ガス又は液化ガス中に溶解でき、物品上
から異物を完全に除去することができる。これにより、
高信頼性の半導体装置を歩留まり良く製造することがで
きる。よって、その実用的効果は大きい。
Effects of the Invention As is clear from the above explanation, the present invention has the advantage that when a foreign substance made of an organic substance is brought into contact with a supercritical gas or liquefied gas, the foreign substance can be easily dissolved in the supercritical gas or liquefied gas, and the foreign substance can be removed from the article. can be completely removed. This results in
Highly reliable semiconductor devices can be manufactured with high yield. Therefore, its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における半導体装置の製造方
法を示す工程断面図、第2図は本発明の一実施例におけ
る半導体基板上の異物除去の様子を示す断面図、第3図
は本発明の一実施例における異物除去装置の部分拡大断
面図である。 1・・・・p型半導体基板、8・・・・第1アルミ配線
[,9,120・・・・異物、II・・・・スルーホー
ル、12・・・・第2アルミ配線層、lOl・・・・二
酸化炭素ボンベ、102・・・・圧力温度制御機構、1
03.200・・・・ベッセル、104・・・・物品、
105.201・・・・超臨界二酸化炭素ガス。 代理人の氏名 弁理士 粟野重孝 ばか1名第 図 第 図 第 第 図 図 / ノP型千尊体基救
FIG. 1 is a process cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing how foreign matter is removed from a semiconductor substrate in an embodiment of the present invention, and FIG. FIG. 1 is a partially enlarged cross-sectional view of a foreign matter removing device according to an embodiment of the present invention. 1...p-type semiconductor substrate, 8...first aluminum wiring [,9,120...foreign matter, II...through hole, 12...second aluminum wiring layer, lOl ... Carbon dioxide cylinder, 102 ... Pressure temperature control mechanism, 1
03.200...Vessel, 104...Goods,
105.201...Supercritical carbon dioxide gas. Name of agent: Patent attorney Shigetaka Awano Idiot 1 person / NoP type Senson body Kisaku

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板を液化ガス又は超臨界ガスと接触させ
、半導体装置の製造工程において発生した異物を前記半
導体基板上から除去することを特徴とする半導体装置の
製造方法。
(1) A method for manufacturing a semiconductor device, which comprises bringing a semiconductor substrate into contact with liquefied gas or supercritical gas to remove foreign matter generated during the semiconductor device manufacturing process from the semiconductor substrate.
(2)金属配線層のエッチング工程において発生した異
物を除去することを特徴とする特許請求の範囲第1項記
載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, characterized in that foreign matter generated during the etching process of the metal wiring layer is removed.
(3)金属配線層間を接続するコンタクト孔のエッチン
グ工程において発生した異物を除去することを特徴とす
る特許請求の範囲第1項記載の半導体装置の製造方法。
(3) A method for manufacturing a semiconductor device according to claim 1, characterized in that foreign matter generated during the etching process of a contact hole connecting metal wiring layers is removed.
(4)液化ガス又は超臨界ガスを生成する機構と、物品
を前記液化ガス又は超臨界ガスと接触させる機構を備え
た異物除去装置。
(4) A foreign matter removal device comprising a mechanism for generating liquefied gas or supercritical gas and a mechanism for bringing an article into contact with the liquefied gas or supercritical gas.
JP3055289A 1989-02-09 1989-02-09 Manufacture of semiconductor device and apparatus for removing foreign substance Pending JPH02209729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3055289A JPH02209729A (en) 1989-02-09 1989-02-09 Manufacture of semiconductor device and apparatus for removing foreign substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3055289A JPH02209729A (en) 1989-02-09 1989-02-09 Manufacture of semiconductor device and apparatus for removing foreign substance

Publications (1)

Publication Number Publication Date
JPH02209729A true JPH02209729A (en) 1990-08-21

Family

ID=12306960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3055289A Pending JPH02209729A (en) 1989-02-09 1989-02-09 Manufacture of semiconductor device and apparatus for removing foreign substance

Country Status (1)

Country Link
JP (1) JPH02209729A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192990A (en) * 1997-09-16 1999-04-06 Ebara Corp Plating pretreatment
WO2001082368A2 (en) * 2000-04-25 2001-11-01 Tokyo Electron Limited Method of depositing metal film and metal deposition cluster tool including supercritical drying/cleaning module
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
JP2003513466A (en) * 1999-11-02 2003-04-08 東京エレクトロン株式会社 Method and apparatus for supercritical processing multiple workpieces
JP2004228526A (en) * 2003-01-27 2004-08-12 Tokyo Electron Ltd Method of processing substrate and method of manufacturing semiconductor device
WO2004081255A1 (en) * 2003-01-27 2004-09-23 Tokyo Electron Limited Semiconductor device
US7220714B2 (en) 2002-05-23 2007-05-22 Air Products And Chemicals, Inc. Process and composition for removing residues from the microstructure of an object

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192990A (en) * 1997-09-16 1999-04-06 Ebara Corp Plating pretreatment
JP2003513466A (en) * 1999-11-02 2003-04-08 東京エレクトロン株式会社 Method and apparatus for supercritical processing multiple workpieces
WO2001082368A2 (en) * 2000-04-25 2001-11-01 Tokyo Electron Limited Method of depositing metal film and metal deposition cluster tool including supercritical drying/cleaning module
WO2001082368A3 (en) * 2000-04-25 2002-05-16 Tokyo Electron Ltd Method of depositing metal film and metal deposition cluster tool including supercritical drying/cleaning module
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
US6793793B2 (en) 2000-08-24 2004-09-21 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
US7220714B2 (en) 2002-05-23 2007-05-22 Air Products And Chemicals, Inc. Process and composition for removing residues from the microstructure of an object
JP2004228526A (en) * 2003-01-27 2004-08-12 Tokyo Electron Ltd Method of processing substrate and method of manufacturing semiconductor device
WO2004081255A1 (en) * 2003-01-27 2004-09-23 Tokyo Electron Limited Semiconductor device
WO2004095557A1 (en) * 2003-01-27 2004-11-04 Tokyo Electron Limited Semiconductor device
US7476619B2 (en) 2003-01-27 2009-01-13 Tokyo Electron Limited Semiconductor device

Similar Documents

Publication Publication Date Title
US4343677A (en) Method for patterning films using reactive ion etching thereof
US3846166A (en) Method of producing multilayer wiring structure of integrated circuit
JPH06260470A (en) Cleaning prepared of metal layer created on pattern
US6811714B1 (en) Micromachined component and method of manufacture
JPS61280621A (en) Optochemical patterning system
JPH09102483A (en) Preparation that forms upper structure body of silicon material on semiconductor substrate
JPH02209729A (en) Manufacture of semiconductor device and apparatus for removing foreign substance
JP3087726B2 (en) Patterning method in manufacturing process of semiconductor device
JPH07201820A (en) Method of etching mercury-cadmium-tellurium substrate
JP2983356B2 (en) Method for manufacturing semiconductor device
JP2002075986A (en) SURFACE TREATING METHOD FOR GaAs SUBSTRATES
JPS58101428A (en) Method of etching silicon nitride film
JPH0582496A (en) Method of removing resist and device thereof
US7189305B2 (en) Gas-assist systems for applying and moving ozonated resist stripper to resist-bearing surfaces of substrates
JPS59167021A (en) Manufacture of semiconductor device
JPH1187290A (en) Semiconductor substrate cleaning method and manufacture of semiconductor device using the same
JPH06295993A (en) Dry etching method
KR100199373B1 (en) Method of cleaning wafer
JPH0492429A (en) Manufacture of semiconductor device
JPH06168917A (en) Resist removing method
JPH02222145A (en) Cleaning method of semiconductor
JP2003017436A (en) Manufacturing method of semiconductor device
JPH07122534A (en) Etching method for platinum
JPH0316217A (en) Manufacture of semiconductor device
JPH04337633A (en) Etching method in manufacture of semiconductor device