JPH01206624A - Dry etching of resist - Google Patents

Dry etching of resist

Info

Publication number
JPH01206624A
JPH01206624A JP3210488A JP3210488A JPH01206624A JP H01206624 A JPH01206624 A JP H01206624A JP 3210488 A JP3210488 A JP 3210488A JP 3210488 A JP3210488 A JP 3210488A JP H01206624 A JPH01206624 A JP H01206624A
Authority
JP
Japan
Prior art keywords
nitrogen
resist
gasses
mixed
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3210488A
Other languages
Japanese (ja)
Inventor
Yuko Hochido
宝地戸 雄幸
Takehiko Futaki
剛彦 二木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Original Assignee
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUJIYUNDO KAGAKU KENKYUSHO KK, Kojundo Kagaku Kenkyusho KK filed Critical KOUJIYUNDO KAGAKU KENKYUSHO KK
Priority to JP3210488A priority Critical patent/JPH01206624A/en
Publication of JPH01206624A publication Critical patent/JPH01206624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

PURPOSE:To provide the title dry etching process of resist with high etching rate by a method wherein the resist is plasma-etched using a gas comprising nitrogen or nitrogen exceeding 50vol.% mixed with any other gasses. CONSTITUTION:A mixed gas mainly comprising nitrogen substituting for oxygen or nitrogen exceeding 50vol.% mixed with any other balancing gasses is applied to this dry etching process. As for the balancing gasses, hydrogen, ozone, halogenated carbon, ammonia, halogenated nitrogen, nitrogen oxide or inert gas or two kinds of said gasses mixed with each other are applicable. Through these procedures, the etching rate of resist can be accelerated faster than that of oxygen plasma. Furthermore, said mixed gasses not to be oxidized different from the oxygen plasma have no effect on any applicable metal vulnerable to oxidation inside a device doing no damage to various annexed equipments in an etching device.

Description

【発明の詳細な説明】 (発明の目的) 産業上の利用分野 本発明は、半導体素子の製造工程における微細加工に用
いられるレジストのドライエツチング法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Object of the Invention) Industrial Field of Application The present invention relates to a resist dry etching method used for microfabrication in the manufacturing process of semiconductor devices.

従来の技術 従来、LSI等の半導体素子の製造工程における微細加
工の殆んどは、フォトレジストとエツチング技術を用い
るフォトリソグラフィによって行われている。
2. Description of the Related Art Conventionally, most of the fine processing in the manufacturing process of semiconductor devices such as LSIs has been performed by photolithography using photoresist and etching technology.

このフォトリソグラフイエ程は、でき上ったデバイスの
性能を左右する重要な工程であり、その工程の概要は次
の通りである。
This photolithography process is an important process that affects the performance of the completed device, and the outline of the process is as follows.

(1)フォトレジストの塗布 (2)プリベーク (3)露光 (4)現像 (5)ボストベーク (6)エツチング (7)レジスト除去 シストパターンを得ている。具体的な方法は、ノズルか
らウェーハ上に現像液を滴下させ、スピンナによりウェ
ーハを回転させて現像液を振り切つている。現像液は有
機溶剤またはアルカリ水溶液が用いられている。
(1) Application of photoresist (2) Prebake (3) Exposure (4) Development (5) Bost bake (6) Etching (7) Resist removal Obtaining a cyst pattern. A specific method is to drop a developer onto the wafer from a nozzle, and then rotate the wafer using a spinner to shake off the developer. An organic solvent or an alkaline aqueous solution is used as the developer.

また、レジスト除去工程は下地の微細加工が終了して不
要となったレジストを除去する工程であり、硫酸、過酸
化水素のようなハク離液を用いてレジストを除去してい
る。
Further, the resist removal step is a step of removing unnecessary resist after the microfabrication of the base is completed, and the resist is removed using a peeling liquid such as sulfuric acid or hydrogen peroxide.

この二つの工程は、現像液やハク離液を用いる湿式法で
あるが、しかし、最近、これらの工程に酸素プラズマを
用いるドライエツチング法が盛んになってきている。
These two steps are wet methods using a developing solution and a peeling solution, but recently, a dry etching method using oxygen plasma in these steps has become popular.

ドライエツチングは、エツチング液を用いる湿式エツチ
ングによっては加工しにくい基板(例えば窒化シリコン
)も容易に加工でき、またサイドプラズマに対する耐性
の違いを利用してパターニングを行なう方法であるが、
現像液を使用しないため、レジストの膨潤が全く伴わず
、そのため高解度のパターンが得られる利点がある。
Dry etching can easily process substrates that are difficult to process by wet etching using an etching solution (for example, silicon nitride), and is a method of patterning that takes advantage of the difference in resistance to side plasma.
Since no developer is used, there is no swelling of the resist at all, which has the advantage that a pattern with high resolution can be obtained.

また、多量の薬品を使用しなくても済むため、生産コス
トの低減化という大きな利点をもっている。
Furthermore, since it does not require the use of large amounts of chemicals, it has the great advantage of reducing production costs.

また、レジスト除去工程でも酸素プラズマが用いられる
ため、従来のような有害なハク離液を使用しないでも済
み、公害問題が起らない利点がある。
Furthermore, since oxygen plasma is used in the resist removal process, there is no need to use harmful synergic liquid as in the conventional method, which has the advantage of not causing pollution problems.

以上のような観点から、ガスの交換だけで、現像からエ
ツチング、レジストハク離までの連続的なTotal 
 dry  processが達成されようとしている
From the above point of view, continuous total processing from development to etching to resist stripping can be achieved simply by exchanging gas.
A dry process is about to be achieved.

解決しようとする問題点 酸素プラズマを用いるレジストのドライエツチング法は
上記のような様々な利点をもっているが、次のような欠
点もある。
Problems to be Solved Although the resist dry etching method using oxygen plasma has various advantages as described above, it also has the following disadvantages.

(1)エツチング速度が必ずしも速いとはいえない。(1) The etching speed cannot necessarily be said to be fast.

(2〉配線材料としてのAIのような下地金属に酸素が
プラズマによって打ち込まれるため、ストレスマイグレ
ーションを起し易い。
(2> Oxygen is implanted by plasma into the underlying metal such as AI as a wiring material, which tends to cause stress migration.

(3)デバイス内に構成された金属あるいは合金等によ
っては、電極配線材料が酸化され劣化することがある。
(3) Depending on the metal, alloy, etc. configured in the device, the electrode wiring material may be oxidized and deteriorated.

(4)酸素プラズマの発生は、エツチング装置内の電極
や真空計等の付属設備を酸化によって損傷し易い。
(4) Generation of oxygen plasma tends to damage attached equipment such as electrodes and vacuum gauges in the etching apparatus by oxidation.

(5)酸素ガスの使用は危険性が大きい。このため水素
ベースの前後工程、例えば、CF4+H2やCCl4+
H2を用いた穴あけエツチング工程との接続に難がある
(5) The use of oxygen gas is highly dangerous. Therefore, hydrogen-based pre- and post-processes, such as CF4+H2 and CCl4+
There is a problem in connection with the hole etching process using H2.

本発明は、上記のような欠点を除去し、エツチング速度
が速いレジストのドライエツチング法を提供しようとす
るものである。
The present invention aims to eliminate the above-mentioned drawbacks and to provide a resist dry etching method that has a high etching rate.

(発明の構成) 問題を解決するための手段 本発明の目的は、酸素の代りに窒素、あるいは50vo
 I%以fの窒素を主成分とし残りを他のガスを混合せ
しVた混合ガスを用いることによって達成できる。
(Structure of the Invention) Means for Solving the Problem The object of the present invention is to use nitrogen or 50 vol instead of oxygen.
This can be achieved by using a mixed gas in which nitrogen is the main component and the rest is other gases.

他のガスには、水素、酸素、オゾン、ハロゲン化炭素、
アンモニア、ハロゲン化窒素、酸化窒素あるいは不活性
ガス、またはこれらのガスを二種以上混合したガスを用
いることができる。
Other gases include hydrogen, oxygen, ozone, halogenated carbons,
Ammonia, halogenated nitrogen, nitrogen oxide, an inert gas, or a mixture of two or more of these gases can be used.

窒素に水素、アンモニアあるいはヒドラジン等を混合し
たガスは、レジストのエツチング時に発生するシアンの
生成を抑制し、また、小分子化効果によって不飽和結合
をもつ分子の再重合を防止することができる。そのため
エツチング速度が速くなる。
A gas containing hydrogen, ammonia, hydrazine, or the like mixed with nitrogen can suppress the generation of cyan that occurs during resist etching, and can also prevent repolymerization of molecules with unsaturated bonds by reducing the molecules to small molecules. Therefore, the etching speed becomes faster.

窒素にオゾンあるいは酸化窒素等を混合したガスは、プ
ラズマ中にラジカルが発生し、プラズマ効果が増大し、
そのためエツチング速度が速くなる。
A mixture of nitrogen and ozone or nitrogen oxide generates radicals in the plasma, increasing the plasma effect.
Therefore, the etching speed becomes faster.

窒素にハロゲン化炭素を混合したガスは、レジスト中の
微量元素、例えば、シリカ(Si02)を気体化もしく
は蒸気圧を増大させレジストをエツチングした後の無機
物アッシュの残存を低減する。
The gas containing nitrogen and halogenated carbon gasifies trace elements such as silica (Si02) in the resist or increases its vapor pressure, thereby reducing the amount of inorganic ash remaining after etching the resist.

窒素に不活性ガスを混合したガスは、プラズマの発生電
圧を下げプラズマ密度を増大し、スパッター効果が大き
くエツチング速度が速くなる。
A mixture of nitrogen and an inert gas lowers the plasma generation voltage and increases the plasma density, resulting in a greater sputtering effect and faster etching rate.

上記のように、窒素プラズマあるいは他のガスと混合の
窒素プラズマは、酸素プラズマよりレジストのエツチン
グ速度が速い特徴がある。特にレジスト中に窒素を含む
化学構造のレジストにこの特徴が顕著である。
As mentioned above, nitrogen plasma or nitrogen plasma mixed with other gases is characterized by a faster resist etching rate than oxygen plasma. This characteristic is particularly noticeable in resists with chemical structures containing nitrogen.

実施例 シリコンウェーハ上にレジストとしてRD−200ON
をスピンコータを使用し0.1ミクロンの厚さで全面に
塗布した。そののちホットプレートを用いて90°Cで
プリベークした。
Example RD-200ON as a resist on a silicon wafer
was applied to the entire surface using a spin coater to a thickness of 0.1 micron. Thereafter, it was prebaked at 90°C using a hot plate.

このウェーハを2分割し、その中の1枚を酸素プラズマ
でエツチングを5分間行った。他の1枚を全く同一条件
で窒素プラズマでエツチングを行った。
This wafer was divided into two parts, and one of the parts was etched with oxygen plasma for 5 minutes. The other sheet was etched with nitrogen plasma under exactly the same conditions.

この結果、窒素プラズマエツチングではウェーハ上にレ
ジストの残膜は認められなかったが、酸素プラズマエツ
チングではウェーハ上に0.01ミクロンの厚さの断片
的な残膜が観察された。
As a result, no residual resist film was observed on the wafer in nitrogen plasma etching, but fragmentary residual film with a thickness of 0.01 micron was observed on the wafer in oxygen plasma etching.

また、酸素プラズマエツチングではパターンのダレが生
じたが、窒素プラズマエツチングではこのダレが認めら
れず、シャープなパターンが得られた。
Furthermore, while oxygen plasma etching caused pattern sagging, nitrogen plasma etching did not show this sagging and a sharp pattern was obtained.

(発明の効果) 本発明によれば、酸素プラズマよりレジストのエツチン
グ速度が速い僑徴がある。特にレジスト中に窒素を含む
化学構造のレジストにこの特徴が顕著である。
(Effects of the Invention) According to the present invention, the etching rate of the resist is faster than that of oxygen plasma. This characteristic is particularly noticeable in resists with chemical structures containing nitrogen.

また、酸素プラズマのように酸化されることがないから
、デバイス内の酸化され易い金属の使用にも影響を与え
ず、エツチング装置内の諸付属設備を損傷することがな
い利点がある。
Furthermore, since it does not cause oxidation unlike oxygen plasma, it does not affect the use of metals that are easily oxidized in the device, and has the advantage that it does not damage various auxiliary equipment in the etching apparatus.

また、下地金属のストレスマイグレーションを起こしに
くい特徴がある。
It also has the characteristic of being less likely to cause stress migration of the underlying metal.

さらに、窒素ガスの使用は酸素ガスより使用上の危険性
が少ない利点がある。
Furthermore, the use of nitrogen gas has the advantage of being less dangerous than oxygen gas.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子の製造工程中のリソグラフィにおいて
、窒素、あるいは50vol%以上の窒素と他のガスと
の混合物によって、レジストをプラズマエッチングする
ことを特徴とするレジストのドライエッチング法。
(1) A resist dry etching method characterized by plasma etching the resist using nitrogen or a mixture of 50 vol% or more nitrogen and another gas in lithography during the manufacturing process of semiconductor devices.
(2)他のガスが、水素、酸素、オゾン、ハロゲン化炭
素、アンモニア、ハロゲン化窒素、酸化窒素あるいは不
活性ガス、あるいはこれらのガスを二種以上混合したガ
スである、特許請求の範囲第1項記載のレジストのドラ
イエッチング法。
(2) The other gas is hydrogen, oxygen, ozone, halogenated carbon, ammonia, halogenated nitrogen, nitrogen oxide, an inert gas, or a mixture of two or more of these gases. The resist dry etching method described in item 1.
JP3210488A 1988-02-15 1988-02-15 Dry etching of resist Pending JPH01206624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210488A JPH01206624A (en) 1988-02-15 1988-02-15 Dry etching of resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210488A JPH01206624A (en) 1988-02-15 1988-02-15 Dry etching of resist

Publications (1)

Publication Number Publication Date
JPH01206624A true JPH01206624A (en) 1989-08-18

Family

ID=12349594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210488A Pending JPH01206624A (en) 1988-02-15 1988-02-15 Dry etching of resist

Country Status (1)

Country Link
JP (1) JPH01206624A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280316A (en) * 1988-05-06 1989-11-10 Sony Corp Dry etching
US5230772A (en) * 1990-07-27 1993-07-27 Sony Corporation Dry etching method
EP1049142A1 (en) * 1998-11-13 2000-11-02 Mitsubishi Denki Kabushiki Kaisha Method and device for removing photoresist film
WO2001048804A1 (en) * 1999-12-29 2001-07-05 Lam Research Corporation In situ post-etch photoresist and polymer stripping and dielectric etch chamber cleaning
US6429140B1 (en) * 1996-10-24 2002-08-06 Hyundai Electronics Industries Co., Ltd. Method of etching of photoresist layer
US6465352B1 (en) 1999-06-11 2002-10-15 Nec Corporation Method for removing dry-etching residue in a semiconductor device fabricating process
WO2003017343A1 (en) * 2001-08-20 2003-02-27 Tokyo Electron Limited Dry developing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280316A (en) * 1988-05-06 1989-11-10 Sony Corp Dry etching
US5230772A (en) * 1990-07-27 1993-07-27 Sony Corporation Dry etching method
US6429140B1 (en) * 1996-10-24 2002-08-06 Hyundai Electronics Industries Co., Ltd. Method of etching of photoresist layer
EP1049142A1 (en) * 1998-11-13 2000-11-02 Mitsubishi Denki Kabushiki Kaisha Method and device for removing photoresist film
EP1049142A4 (en) * 1998-11-13 2003-01-02 Mitsubishi Electric Corp Method and device for removing photoresist film
US6465352B1 (en) 1999-06-11 2002-10-15 Nec Corporation Method for removing dry-etching residue in a semiconductor device fabricating process
WO2001048804A1 (en) * 1999-12-29 2001-07-05 Lam Research Corporation In situ post-etch photoresist and polymer stripping and dielectric etch chamber cleaning
WO2003017343A1 (en) * 2001-08-20 2003-02-27 Tokyo Electron Limited Dry developing method
US6986851B2 (en) 2001-08-20 2006-01-17 Tokyo Electron Limited Dry developing method

Similar Documents

Publication Publication Date Title
US4501061A (en) Fluorine plasma oxidation of residual sulfur species
JPH10199864A (en) Method of etching antireflection film
JPH01206624A (en) Dry etching of resist
JP2769038B2 (en) Pattern formation method
KR100271761B1 (en) Manufacturing method of semiconductor device
JP2639372B2 (en) Method for manufacturing semiconductor device
US6887793B2 (en) Method for plasma etching a wafer after backside grinding
US11488834B2 (en) Method for forming silicon or silicon compound pattern in semiconductor manufacturing process
KR20010113396A (en) Photoresist remover composition comprising ammonium fluoride
KR101345923B1 (en) Mask profile control for controlling feature profile
JPH03205465A (en) Resist releasing liquid
JP3304263B2 (en) ITO patterning method
JP2007173730A (en) Method of manufacturing semiconductor device
JP2002351092A (en) Etching method
TW527640B (en) Method of preventing generation of photoresist scum
JPS61214434A (en) Method for removing organic film
JPS629630A (en) Resist removing method
JPS6222263B2 (en)
JP5638883B2 (en) Method for forming photosensitive resist pattern and method for manufacturing semiconductor device
JPH07122534A (en) Etching method for platinum
JPH0259979B2 (en)
JPS6323538B2 (en)
JPH0394425A (en) Removal of resist
JPH08181109A (en) Ashing device and ashing removing method of resist
JPS62125627A (en) Removing method for organic film