JPH0144013B2 - - Google Patents

Info

Publication number
JPH0144013B2
JPH0144013B2 JP4765384A JP4765384A JPH0144013B2 JP H0144013 B2 JPH0144013 B2 JP H0144013B2 JP 4765384 A JP4765384 A JP 4765384A JP 4765384 A JP4765384 A JP 4765384A JP H0144013 B2 JPH0144013 B2 JP H0144013B2
Authority
JP
Japan
Prior art keywords
gas
organic
film
cured film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4765384A
Other languages
Japanese (ja)
Other versions
JPS60192333A (en
Inventor
Harumi Matsuzaki
Sankichi Takahashi
Masahiro Yoshida
Tsunehiko Takakusaki
Joshiro Sato
Hideyuki Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4765384A priority Critical patent/JPS60192333A/en
Publication of JPS60192333A publication Critical patent/JPS60192333A/en
Publication of JPH0144013B2 publication Critical patent/JPH0144013B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0021Cleaning by methods not provided for in a single other subclass or a single group in this subclass by liquid gases or supercritical fluids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は有機塗布硬化膜が接合された基板から
有機塗布硬化膜を除去する方法に係り、特に半導
体ウエハのホトレジスト塗布膜を剥離するのに好
適な方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for removing an organic coating cured film from a substrate to which the organic coating cured film is bonded, and is particularly suitable for removing a photoresist coating film from a semiconductor wafer. Concerning methods.

〔発明の背景〕[Background of the invention]

半導体はウエハはSi単結晶板にSiO2、SiN又は
アルミ等の保護膜が形成された後、これらの保護
膜の面にホトレジスト材を塗布し、所定のパター
ンで露光によつて所定のパターンに重合させ次い
でパターンエツチングによつて所定のパターンの
ホトレジスト塗布膜と保護膜を形成し、次いで不
純物をドーピングする操作が行なわれている。こ
のようなパターンエツチングが終了した半導体ウ
エハではホトレジスト塗布膜を除去する必要があ
る。従来このようなホトレジスト塗布膜の除去方
法として、熱硫酸、硫酸あるいは過酸化水素のよ
うな強力な酸化剤でホトレジスト塗布膜を溶解す
る方法が行なわれている。しかしこのような強力
な酸化剤を用いる方法では、処理剤中にホトレジ
スト膜成分が溶解するために処理液の再利用が困
難であり処理液の寿命が短いという欠点がある。
また処理の仕方によつてはホトレジスト膜の下地
材料を侵す恐れもある。一方ホトレジスト膜の下
地材料の耐薬品性を考慮してフエノール系有機材
料、ハロゲン系有機溶剤などの特別な剥離剤でホ
トレジスト塗布膜を剥離する方法も行なわれてい
る。しかしこれらの有機溶剤を用いる方法では溶
剤の後処理が環境保全上必要であり、引火性薬品
のため取り扱い上の問題も生じる。更に低温酸素
プラズマによる灰化方法も行なわれているが、こ
の方法ではホトレジスト膜中に含有される重金属
は除去できないためホトレジスト膜を除去した後
もこれらの重金属は半導体ウエハ面に残存するた
め新たに重金属を除去する処理が必要となる。
For semiconductor wafers, a protective film such as SiO 2 , SiN or aluminum is formed on a Si single crystal plate, then a photoresist material is applied to the surface of the protective film and exposed to light in a predetermined pattern. The process involves polymerization, followed by pattern etching to form a photoresist coating film and a protective film in a predetermined pattern, and then doping with impurities. It is necessary to remove the photoresist coating film from the semiconductor wafer after such pattern etching has been completed. Conventionally, a method for removing such a photoresist coating has been to dissolve the photoresist coating using a strong oxidizing agent such as hot sulfuric acid, sulfuric acid, or hydrogen peroxide. However, the method using such a strong oxidizing agent has the disadvantage that the photoresist film components are dissolved in the processing agent, making it difficult to reuse the processing solution and shortening the life of the processing solution.
Furthermore, depending on the processing method, there is a possibility that the underlying material of the photoresist film may be attacked. On the other hand, in consideration of the chemical resistance of the underlying material of the photoresist film, a method of removing the photoresist coating film using a special removing agent such as a phenol-based organic material or a halogen-based organic solvent has also been used. However, in methods using these organic solvents, post-treatment of the solvent is necessary for environmental protection, and problems arise in handling since the solvent is a flammable chemical. Furthermore, an ashing method using low-temperature oxygen plasma has been used, but this method cannot remove the heavy metals contained in the photoresist film, and these heavy metals remain on the semiconductor wafer surface even after the photoresist film is removed. Treatment to remove heavy metals is required.

このように従来のホトレジスト塗布膜の除去方
法で生じる問題点は、処理液の異常拡散による素
子特性の劣化、不純物によるSiO2の汚染と素子
特性の不安定化、絶縁耐圧の劣化などによる素子
の歩溜まりを低下させているのが現状である。
Problems that arise with conventional photoresist coating film removal methods include deterioration of device characteristics due to abnormal diffusion of processing liquid, contamination of SiO 2 by impurities and instability of device characteristics, and deterioration of dielectric strength voltage. The current situation is that the yield is decreasing.

〔発明の目的〕[Purpose of the invention]

本発明は、不純物によるSiO2などの保護膜の
汚染や素子特性の劣化を防止し、素子の歩溜まり
の低下を防止できるとともに処理液の再使用が容
易な有機塗布硬化膜の除去方法を提供することに
ある。
The present invention provides a method for removing an organic coated cured film that prevents contamination of a protective film such as SiO 2 and deterioration of device characteristics due to impurities, prevents a decrease in device yield, and facilitates reuse of a processing solution. It's about doing.

〔発明の概要〕[Summary of the invention]

本発明はホトレジスト塗布膜のような有機塗布
硬化膜を溶解、化学的剥離、酸化などの現象を利
用することなく物理的に剥離する方法を提供する
ものであつて、有機塗布硬化膜が接合された基板
から有機塗布硬化膜を除去する方法において、前
記有機塗布硬化膜が接合された基板と液化ガス又
は超臨界ガスとを接触させた後、該ガスの温度及
び/又は圧力の条件を変えて前記ガスを膨張さ
せ、この膨張力によつて基板から有機塗布硬化膜
を除去するようにしたものである。
The present invention provides a method for physically peeling off an organic coated cured film such as a photoresist coated film without using phenomena such as dissolution, chemical peeling, or oxidation. In a method for removing an organic coated cured film from a substrate, the substrate to which the organic coated cured film is bonded is brought into contact with a liquefied gas or a supercritical gas, and then the temperature and/or pressure conditions of the gas are changed. The gas is expanded and the organic coating cured film is removed from the substrate by the expansion force.

本発明において、有機塗布硬化膜が接合された
基板を高圧下で液化ガス又は超臨界ガスと接触さ
せ有機塗布硬化膜自体にあるいは有機塗布硬化膜
と基板との界面部に液化ガス又は超臨界ガスを溶
解させ、液化ガス又は超臨界ガスの圧力を低減す
るか又は液化ガス又は超臨界ガスの温度を上昇さ
せる。これによつて有機塗布硬化膜内あるいは有
機塗布硬化膜と基板との界面部に存在する溶解液
化ガス又は溶解超臨界ガスが膨張し、この膨張力
によつて基板から有機塗布硬化膜が剥離される。
液化ガス又は超臨界ガスの溶剤としての特性を利
用した液化ガス抽出法が超臨界ガス抽出法は種々
提案されている。これらの方法では(A)溶解力が大
きいこと、(B)選択性を有すること、(C)抽出物と溶
剤との分離が容易であることなどの溶媒としての
特性が利用されている。
In the present invention, the substrate to which the cured organic film is bonded is brought into contact with liquefied gas or supercritical gas under high pressure, and the liquefied gas or supercritical gas is applied to the cured organic film itself or to the interface between the cured organic film and the substrate. The pressure of the liquefied gas or supercritical gas is reduced or the temperature of the liquefied gas or supercritical gas is increased. As a result, the dissolved liquefied gas or dissolved supercritical gas existing within the cured organic film or at the interface between the cured organic film and the substrate expands, and this expansion force causes the cured organic film to be peeled off from the substrate. Ru.
Various liquefied gas extraction methods and supercritical gas extraction methods have been proposed that utilize the properties of liquefied gas or supercritical gas as a solvent. These methods utilize the properties of solvents, such as (A) high dissolving power, (B) selectivity, and (C) easy separation of extract and solvent.

本発明は(A)溶剤ガスの溶解性と(B)減圧又は昇温
による液化ガス又は超臨界ガスの膨張力を利用す
るものであつて、従来の抽出法とは原理も目的も
異なる。
The present invention utilizes (A) the solubility of a solvent gas and (B) the expansion power of liquefied gas or supercritical gas by reducing pressure or increasing temperature, and is different in principle and purpose from conventional extraction methods.

ここで、超臨界ガスとは、圧力一温度の状態図
において、臨界温度以上、かつ、臨界圧力以上の
状態にあるものを言う。液化ガスとは、圧力一温
度の状態図において、飽和蒸気圧線以上の圧力状
態にあり、大気圧下で通常の温度においてはガス
状であるものを言う。
Here, the supercritical gas refers to a gas that is in a state of not less than a critical temperature and not less than a critical pressure in a pressure-temperature phase diagram. Liquefied gas refers to gas that is at a pressure above the saturated vapor pressure line in a pressure-temperature phase diagram and is gaseous at normal temperatures under atmospheric pressure.

本発明において液化ガス又は超臨界ガスとして
はCO2、NH3、N2などの非酸化性ガスが使用で
きるが、コストおよび操作面でCO2が好適であ
る。また常温でガス状の有機溶剤は単独でも使用
できる。このような有機溶剤としてプロパン、ブ
タン、塩化メチル、などを用いることができる。
これらのガス状有機溶剤は高圧及び低温にするこ
とによつて液化ガス又は超臨界ガスとすることが
できる。液化炭酸ガスの場合、ホトレジスト塗布
膜のような有機塗布硬化膜などの内部又はこれら
の膜と基板との界面に完全に侵透しにくいので、
この場合炭酸ガスに溶解性の高い有機溶媒を混合
することが望ましい。有機溶媒の混合によつて液
化ガスの急激な減圧を行なう場合、急激な減圧時
の衝撃を緩和する役目を果たす。液化炭酸ガスと
相互溶解性の高い有機溶媒としては、炭化水素
系、ハロゲン化炭化水素系、アルコール系、ケト
ン系などの有機溶媒があげらる。炭化水素系有機
溶媒、例えば、ヘキサン、石油エーテル、ベンゼ
ン、トルエンなどの有機溶媒は液化炭酸ガスに完
全に溶解する。またハロゲン化炭化水素系有機溶
媒、例えばジクロルメタン、フロンなどは静止状
態では不溶であるが撹拌すれば溶解する。アルコ
ール系有機溶媒、例えばエタノール(無水)は液
化炭酸ガスに完全に溶解するが、エタノール(含
水)は液化炭酸ガスに一部溶解する。またケトン
系有機溶媒、例えばアセトンは液化炭酸ガスに完
全に溶解する。従つて液化炭酸ガスに混合する有
機溶媒は有機塗布硬化膜に対する溶解性あるいは
基体を損傷しない特性などを総合的に考慮して選
択すべきである。超臨界ガスの場合にも塗布硬化
膜に対する溶解及び有機塗布硬化膜と基板との界
面に対する侵透性をより完全なものにするために
は超臨界ガスに有機溶媒を混合することが望まし
い。有機溶媒を用いる場合、少量の有機溶媒中に
多量の溶剤ガスが溶解するため使用する有機溶剤
量は少なくてすむ。第1図は液化炭酸ガス(以下
L−CO2と略す)とエチルアルコール水溶液との
総合溶解性を示す実験データである。横軸は温
度、縦軸はエチルアルコール水溶液中に溶解する
L−CO2量及びL−CO2中に溶解するエチルアル
コール水溶液量であつて、エチルアルコール水溶
液のアルコール濃度がバラメータである。第1図
から温度16℃一定とし、横軸にエチルアルコール
のアルコール濃度をとると第2図のように示さ
れ、濃度が90vol%以上では相当量のL−CO2
エチルアルコール水溶液中に溶解することがわか
る。
In the present invention, non-oxidizing gases such as CO 2 , NH 3 , and N 2 can be used as the liquefied gas or supercritical gas, but CO 2 is preferable in terms of cost and operation. Furthermore, organic solvents that are gaseous at room temperature can be used alone. Propane, butane, methyl chloride, etc. can be used as such an organic solvent.
These gaseous organic solvents can be turned into liquefied gases or supercritical gases by subjecting them to high pressure and low temperature. In the case of liquefied carbon dioxide gas, it is difficult to completely penetrate into the interior of organic coating cured films such as photoresist coatings or the interface between these films and the substrate.
In this case, it is desirable to mix an organic solvent with high solubility in carbon dioxide gas. When a liquefied gas is rapidly reduced in pressure by mixing an organic solvent, it serves to alleviate the shock caused by the sudden pressure reduction. Examples of organic solvents that have high mutual solubility with liquefied carbon dioxide include hydrocarbon-based, halogenated hydrocarbon-based, alcohol-based, and ketone-based organic solvents. Hydrocarbon-based organic solvents, such as hexane, petroleum ether, benzene, and toluene, are completely dissolved in liquefied carbon dioxide. Furthermore, halogenated hydrocarbon organic solvents such as dichloromethane and chlorofluorocarbons are insoluble in a static state, but dissolve when stirred. Alcohol-based organic solvents, such as ethanol (anhydrous), completely dissolve in liquefied carbon dioxide gas, while ethanol (hydrated) partially dissolves in liquefied carbon dioxide gas. Further, a ketone organic solvent such as acetone completely dissolves in liquefied carbon dioxide. Therefore, the organic solvent to be mixed with the liquefied carbon dioxide gas should be selected by comprehensively considering the solubility of the organic coating cured film and the property of not damaging the substrate. Even in the case of a supercritical gas, it is desirable to mix an organic solvent with the supercritical gas in order to achieve more complete dissolution in the cured coating film and permeability to the interface between the cured organic coating film and the substrate. When an organic solvent is used, the amount of organic solvent used can be small because a large amount of solvent gas is dissolved in a small amount of organic solvent. FIG. 1 shows experimental data showing the overall solubility of liquefied carbon dioxide gas (hereinafter abbreviated as L-CO 2 ) and an aqueous ethyl alcohol solution. The horizontal axis is the temperature, and the vertical axis is the amount of L-CO 2 dissolved in the aqueous ethyl alcohol solution and the amount of the aqueous ethyl alcohol solution dissolved in the L-CO 2 , with the alcohol concentration of the aqueous ethyl alcohol solution being a parameter. From Figure 1, if the temperature is kept constant at 16℃ and the alcohol concentration of ethyl alcohol is plotted on the horizontal axis, it is shown in Figure 2, and when the concentration is 90 vol% or more, a considerable amount of L-CO 2 dissolves in the ethyl alcohol aqueous solution. I understand that.

〔発明の実施例〕[Embodiments of the invention]

実施例により本発明を詳細に説明する。 The present invention will be explained in detail by way of examples.

実施例 1 ホトレジスト塗布膜の厚さが約10μのパターン
エツチングが終了した電力用のウエハとL−CO2
を室温下で所定時間、ベツセル内で接触させた
後、ベツセル内圧力を大気圧迄急激に減圧した。
ホトレジスト塗布膜は基板からきれいに剥離脱落
した。
Example 1 A power wafer with a photoresist coated film on which pattern etching has been completed with a thickness of about 10μ and L-CO 2
were brought into contact with each other in the vessel for a predetermined time at room temperature, and then the pressure inside the vessel was rapidly reduced to atmospheric pressure.
The photoresist coating was cleanly peeled off from the substrate.

実施例 2 ホトレジスト塗布膜厚さが約10μのパターンエ
ツチングが終了した電力用のウエハと圧力75atg、
温度35℃の超臨界炭酸ガスとをベツセル内で接触
させ、ベツセル内圧力を大気圧まで急激に減圧し
た。この際ガスの吸引方向を半導体ウエハの平面
部と平行する方向に行なつた。その結果ホトレジ
スト塗布膜は基板からきれいに剥離脱落しウエハ
の破損はなかつた。
Example 2 A power wafer with a pattern-etched photoresist film thickness of about 10 μm and a pressure of 75 atg,
The vessel was brought into contact with supercritical carbon dioxide gas at a temperature of 35°C, and the pressure inside the vessel was rapidly reduced to atmospheric pressure. At this time, the direction of gas suction was parallel to the flat surface of the semiconductor wafer. As a result, the photoresist coating was cleanly peeled off from the substrate and the wafer was not damaged.

実施例 3 ホトレジスト塗布膜厚さが約10μのパターンエ
ツチングが終了した電力用のウエハとL−CO2
よびエチルアルコールとの混合溶剤とを室温下で
ベツセル内で接触させ、ベツセル内圧力を大気圧
まで急激に減圧した、その結果ホトレジスト塗布
膜は基板からきれりに剥離脱落した。なおガスの
吸引方向は実施例1と同様であり、ウエハの破損
はなかつた。本実施例においてはL−CO2中のエ
チルアルコールの存在によつて減圧時の衝激は緩
和されたため、ウエハに破損は生じなかつたもの
と思われる。
Example 3 A power wafer with a pattern-etched photoresist film thickness of about 10μ is brought into contact with a mixed solvent of L-CO 2 and ethyl alcohol in a vessel at room temperature, and the pressure inside the vessel is brought to atmospheric pressure. As a result, the photoresist coating completely peeled off from the substrate. Note that the gas suction direction was the same as in Example 1, and there was no damage to the wafer. In this example, the presence of ethyl alcohol in L-CO 2 alleviated the impact during depressurization, so it seems that no damage occurred to the wafer.

実施例 4 本実施例は、ガスの膨張を温度上昇によつて達
成するものである。ホトレジスト塗布膜の厚さが
約10μのパターンエツチングが終了した電力用の
ウエハとL−CO2を室温下で所定時間、ベツセル
内で接触させたのち、ベツセル内圧力を100atgに
保持して、ヒーターでガス温度を50℃に上昇さ
せ、室温と50℃との間で繰返し3回温度を上下さ
せた。ホトレジスト塗布膜は、基板から剥離脱落
した。脱落した該膜の小片にも亀裂が存在し、基
板界面及び該膜内に該ガスの膨張力が作用したこ
とを示すものであつた。
Example 4 In this example, expansion of gas is achieved by increasing temperature. After pattern-etched power wafer with photoresist coating film thickness of about 10μ is brought into contact with L-CO 2 in a vessel at room temperature for a predetermined time, the pressure inside the vessel is maintained at 100 atg, and a heater is heated. The gas temperature was raised to 50°C, and the temperature was raised and lowered repeatedly between room temperature and 50°C three times. The photoresist coating peeled off from the substrate. Cracks were also present in the small pieces of the film that had fallen off, indicating that the expansion force of the gas had acted on the substrate interface and within the film.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、基板に接合され
た有機塗布硬化膜を物理的に剥離除去するため、
薬品による酸化分解、溶解等によつて生じる素子
特性の劣化がないため素子の歩溜まり向上につな
がる。またホトレジスト塗布膜のように酸化物薄
膜からなる保護膜を設ける場合には不純物による
SiO2の汚染と素子特性の不安定化、絶縁耐圧の
劣化がなく更に次工程における酸化膜除去洗浄が
不要となる。また剥離除去されたホトレジスト塗
布膜のような有機塗布硬化膜は処理液中に固形物
として存在するため回収が容易であり、このため
排液処理は大幅に簡略化される。
As described above, according to the present invention, in order to physically peel off and remove the organic coating cured film bonded to the substrate,
Since there is no deterioration of device characteristics caused by oxidative decomposition, dissolution, etc. caused by chemicals, the yield of devices can be improved. In addition, when providing a protective film made of a thin oxide film such as a photoresist coating, impurities may
There is no SiO 2 contamination, destabilization of device characteristics, or deterioration of dielectric strength, and there is no need for oxide film removal cleaning in the next step. Furthermore, since the organic coated cured film such as the photoresist coated film that has been peeled off and removed exists as a solid substance in the processing solution, it is easy to recover, and therefore, the drainage treatment is greatly simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は液化炭酸ガスとエチルアル
コール水溶液との総合溶解性を示すグフである。
Figures 1 and 2 are diagrams showing the overall solubility of liquefied carbon dioxide and an aqueous ethyl alcohol solution.

Claims (1)

【特許請求の範囲】 1 有機塗布硬化膜が接合された基板から有機塗
布硬化膜を除去する方法において、前記有機塗布
硬化膜が接合された基板と液化ガス又は超臨界ガ
スとを接触させた後、該ガスの温度および/又は
圧力の条件を変えて前記ガスを膨張させることを
特徴とする有機塗布硬化膜の除去方法。 2 前記ガスが有機溶剤を含有することを特徴と
する特許請求の範囲第1項記載の有機塗布硬化膜
の除去方法。 3 前記基板が半導体ウエハであり、前記有機塗
布硬化膜が、ホトレジスト材からなることを特徴
とする特許請求の範囲第1項記載の有機塗布硬化
膜の除去方法。 4 前記半導体ウエハは、Si単結晶板にSiO2
SiN又はAl等の保護膜が形成され、ホトレジスト
材および保護膜はパターンエツチングが終了され
たものであることを特徴とする特許請求の範囲第
3項記載の有機塗布硬化膜の除去方法。 5 前記ホトレジスト材が、ネガ又はポジタイプ
であることを特徴とする特許請求の範囲第3項又
は第4項記載の有機塗布硬化膜の除去方法。
[Claims] 1. A method for removing an organic coated cured film from a substrate to which the organic coated cured film is bonded, after the substrate to which the organic coated cured film is bonded is brought into contact with liquefied gas or supercritical gas. . A method for removing an organic coated cured film, which comprises expanding the gas by changing the temperature and/or pressure conditions of the gas. 2. The method for removing an organic coated cured film according to claim 1, wherein the gas contains an organic solvent. 3. The method for removing an organic coating cured film according to claim 1, wherein the substrate is a semiconductor wafer, and the organic coating cured film is made of a photoresist material. 4 The semiconductor wafer includes SiO 2 on a Si single crystal plate,
4. The method for removing a cured organic coating film according to claim 3, wherein a protective film of SiN or Al is formed, and pattern etching has been completed on the photoresist material and the protective film. 5. The method for removing an organic coating cured film according to claim 3 or 4, wherein the photoresist material is of a negative or positive type.
JP4765384A 1984-03-13 1984-03-13 Method for removal of organic coated and hardened film Granted JPS60192333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4765384A JPS60192333A (en) 1984-03-13 1984-03-13 Method for removal of organic coated and hardened film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4765384A JPS60192333A (en) 1984-03-13 1984-03-13 Method for removal of organic coated and hardened film

Publications (2)

Publication Number Publication Date
JPS60192333A JPS60192333A (en) 1985-09-30
JPH0144013B2 true JPH0144013B2 (en) 1989-09-25

Family

ID=12781208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4765384A Granted JPS60192333A (en) 1984-03-13 1984-03-13 Method for removal of organic coated and hardened film

Country Status (1)

Country Link
JP (1) JPS60192333A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574781B2 (en) * 1987-01-21 1997-01-22 株式会社日立製作所 Substrate cleaning method using supercritical gas or liquefied gas
US5185296A (en) * 1988-07-26 1993-02-09 Matsushita Electric Industrial Co., Ltd. Method for forming a dielectric thin film or its pattern of high accuracy on a substrate
US5013366A (en) * 1988-12-07 1991-05-07 Hughes Aircraft Company Cleaning process using phase shifting of dense phase gases
US5068040A (en) * 1989-04-03 1991-11-26 Hughes Aircraft Company Dense phase gas photochemical process for substrate treatment
JP2675406B2 (en) * 1989-08-28 1997-11-12 勝 西川 Resist pattern forming method, resist removing method, and substrate cleaning method
JPH03261128A (en) * 1990-03-09 1991-11-21 Sumitomo Seika Chem Co Ltd Method of removing organic hardening film
FR2686351A1 (en) * 1992-01-20 1993-07-23 Metalimphy Process for cleaning and degreasing metal products packaged in reel or sheet form forming a stack and plant for its use
US5860467A (en) * 1996-12-03 1999-01-19 The University Of North Carolina At Chapel Hill Use of CO2 -soluble materials in making molds
US6823880B2 (en) 2001-04-25 2004-11-30 Kabushiki Kaisha Kobe Seiko Sho High pressure processing apparatus and high pressure processing method
US6764552B1 (en) 2002-04-18 2004-07-20 Novellus Systems, Inc. Supercritical solutions for cleaning photoresist and post-etch residue from low-k materials
US6880560B2 (en) 2002-11-18 2005-04-19 Techsonic Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
JP2007221096A (en) * 2006-01-23 2007-08-30 Ryusyo Industrial Co Ltd Lift-off processing method and lift-off processing apparatus

Also Published As

Publication number Publication date
JPS60192333A (en) 1985-09-30

Similar Documents

Publication Publication Date Title
US7022655B2 (en) Highly polar cleans for removal of residues from semiconductor structures
JPH0144013B2 (en)
KR0137841B1 (en) Method for removing a etching waste material
US6509141B2 (en) Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
US6669785B2 (en) Methods and compositions for etch cleaning microelectronic substrates in carbon dioxide
US7276447B1 (en) Plasma dielectric etch process including ex-situ backside polymer removal for low-dielectric constant material
US20030027085A1 (en) Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
JP3326644B2 (en) Processing method of silicon-based material layer
JP2009530851A (en) Plasma dielectric etching method including in situ backside polymer removal of low dielectric constant materials
JP2000012514A (en) Post-treating method
JPH0527245B2 (en)
TW201021101A (en) Method and apparatus for cleaning semiconductor device fabrication equipment using supercritical fluids
JP2004507087A (en) Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide method
KR100720249B1 (en) Method for cleaning microstructure
EP1363851A2 (en) Micromachined component and method of manufacture
JP2003206497A (en) Method for cleansing and drying
KR20060082484A (en) Method of removing a low-dielectric layer and method of recycling a wafer using the same
US8017568B2 (en) Cleaning residues from semiconductor structures
JP2983356B2 (en) Method for manufacturing semiconductor device
US6887793B2 (en) Method for plasma etching a wafer after backside grinding
JP2007536730A (en) Compositions and methods for drying patterned wafers during the manufacture of integrated circuit products
JPH02209729A (en) Manufacture of semiconductor device and apparatus for removing foreign substance
JP2007281148A (en) Method for washing base body, method for manufacturing semiconductor device, and washing device
JPH0943857A (en) Resist removing method and resist stripping solution
CN113424299A (en) Novel method for forming silicon or silicon compound pattern in semiconductor manufacturing process