JPS60190503A - Production of metallic powder - Google Patents

Production of metallic powder

Info

Publication number
JPS60190503A
JPS60190503A JP4646784A JP4646784A JPS60190503A JP S60190503 A JPS60190503 A JP S60190503A JP 4646784 A JP4646784 A JP 4646784A JP 4646784 A JP4646784 A JP 4646784A JP S60190503 A JPS60190503 A JP S60190503A
Authority
JP
Japan
Prior art keywords
metal
powder
molten metal
metal powder
colliding object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4646784A
Other languages
Japanese (ja)
Other versions
JPH0437122B2 (en
Inventor
Akira Horata
亮 洞田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4646784A priority Critical patent/JPS60190503A/en
Publication of JPS60190503A publication Critical patent/JPS60190503A/en
Publication of JPH0437122B2 publication Critical patent/JPH0437122B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain metallic powder having the irregular shapes suitable as a raw material for powder metallurgy in a centrifugal atomization method by bringing the metallic powder right after atomization into contact with a colliding object. CONSTITUTION:A powder raw material consisting of an active metal, etc. is melted in a melting furnace 2 in a vessel in which a non-oxidative atmosphere is maintained to form a molten metal 5. While a rotating body 9 is kept rotated at a high speed, the furnace 2 is tilted to pour the metal 5 into a tundish 6. The metal 5 flows out in the form of molten metal flow 8 through the opening in the bottom of the tundish 6 and falls onto the molten metal receiving surface of the body 9. The flow 8 is then spread on the molten metal receiving surface by centrifugal force and is detached therefrom after flowing in the form of a thin film. The divided and scattered metal collide against a colliding object 13 by which the metal is deformed or crushed to have irregular shapes and thereafter the metal is accumulated as powder 14 in the bottom of the vessel.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、粉末冶金用の原料として用いらセる金属粉
末の製造に適した金属粉末の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing metal powder suitable for producing metal powder used as a raw material for powder metallurgy.

(従来技術) 近年、各種部品や製品の製造に際して、従来の切削加工
やtJf造に代わって、粉末冶金の千〇、が多く取り入
れられるようになってきている。この粉末冶金用の原石
粉末を製造するにあたっては、水噴霧法、ガス噴り法、
真空噴露法、遠心噴霧状などがある。これらのうち、水
噴霧法によって製造された粉末は、−殻に複雑形状の粉
末が得られるため成形性が良好であり、粉末成形→焼結
、あるいは粉末圧延→焼結といった工程を容易に採用す
ることができる。しかしながら、水噴Ai法では、酸化
性雪囲気であるため、活性金属または活性金属を多く含
む合金粉末の製造には不適当である。
(Prior Art) In recent years, powder metallurgy has been increasingly used in place of conventional cutting and tJf manufacturing in the manufacture of various parts and products. In producing this raw ore powder for powder metallurgy, water spray method, gas spray method,
There are vacuum spray methods, centrifugal spray methods, etc. Among these, the powder produced by the water spray method has good moldability because the shell has a complex shape, and processes such as powder molding → sintering or powder rolling → sintering can be easily adopted. can do. However, since the water jet Ai method uses an oxidizing atmosphere, it is not suitable for producing active metals or alloy powders containing a large amount of active metals.

そこで、このような活性金属または活に1金属を多く含
む合金粉末の製胎には、主に、ガス噴り法。
Therefore, the gas blowing method is mainly used to produce such active metals or alloy powders containing a large amount of one active metal.

真空噴り法、遠心噴霧法を採用していた。ところが、こ
のような噴霧性による場合、得られる粉末の形状はほぼ
球状であるため、特殊なへインターを使用しなければ成
形は不jif能である。しかし、バインターを使用して
成形した場合には、このバインダーが焼結晶に悪影響を
及ぼし、焼結晶の強周、靭fド(・を低下させてしまう
ことが多l/こという問題点かあった。
Vacuum spraying method and centrifugal spraying method were used. However, in the case of such sprayability, the shape of the obtained powder is almost spherical, so it is impossible to mold it without using a special interferer. However, when molding is performed using a binder, this binder has a negative effect on the sintered crystal, often resulting in a decrease in the hard circumference and toughness of the sintered crystal. Ta.

(発明の目的) この発明は、」一連した従来の問題点に着目してなされ
たもので、遠心噴霧法によって不規則形状の金属粉末を
製造することができる金属粉末の製造方法を提供するこ
とを目的としている。
(Objective of the Invention) This invention was made by focusing on a series of conventional problems, and an object of the present invention is to provide a method for producing metal powder that can produce irregularly shaped metal powder by centrifugal atomization. It is an object.

(発明の構成) この発明は、遠心力によって溶融金属を露化させる遠心
噴り法において、6化直後の金属粉末を種1突物体に当
てて当該金属粉末を不規則形状化するようにしたことを
特徴としている。
(Structure of the Invention) In the centrifugal jetting method in which molten metal is exposed by centrifugal force, the metal powder immediately after 6ization is applied to a seed 1 protrusion to make the metal powder into an irregular shape. It is characterized by

この遠心噴五法は、非醇化性雰囲気等の制御雰囲気中で
行うことができるため、活性金属または活性金属を多く
含む合金の粉末製造に適している。そして、この遠心噴
霧によって露化された直後の金Itバ粉末が温石的およ
び強度的に脆い領域にあるときに杼j突物体に当てて変
形ないしは破砕することにより不規則形状化yせ、4り
染のない不規則形状の金属粉末をイ1することが可能ど
なり、これによって、バインダーを必らずしも使用しな
くとも勇しく良好な成形性が得られるようにしたもので
ある。
This centrifugal jetting method can be carried out in a controlled atmosphere such as a non-melting atmosphere, and is therefore suitable for producing powder of active metals or alloys containing a large amount of active metals. Immediately after being exposed by this centrifugal spraying, the gold powder is placed in a brittle region in terms of hot stone and strength, and is deformed or crushed by applying it to a shaft projecting object, thereby forming an irregular shape. It is now possible to form irregularly shaped metal powders without dyeing, and as a result, strong and good moldability can be obtained without necessarily using a binder.

ここで、より望ましくは、6化直後の金属粉末を衝突物
体に当てる際の金属粉末の温Inか、(mr点−10’
c)−(融点−3oo′c)の範囲にあるようにするこ
とがよく、また、h比的後の金属粉末の飛行方向と衝突
物体とのなす角度が5°〜85°の範囲であるようにす
ることがよい。
Here, more preferably, the temperature In of the metal powder when the metal powder immediately after 6ization is applied to the colliding object is (mr point -10'
c) - (melting point - 3oo'c), and the angle between the flying direction of the metal powder after h ratio and the colliding object is in the range of 5° to 85°. It is better to do so.

なお、この発明による金属粉末の製造力jノ、は、活性
金属または活性金属を多く含む合金の粉末を製造する場
合に適しているが、必らずしも活+1金hバのみに適用
されるものではなく、秤々の金属(合金を含む)に適用
されることはいうまでもないところであり、汚染のない
不規則形状の金14粉末を11することによって、パイ
ンターを必らずしも使用しなくとも訊しく優れた成形性
がイ1)られ、バインダーを使用した場合に伴う悪影響
を完全にJJ1除することが可能となり、重密度でかつ
高強度・高靭性の焼結晶を得ることができるようになる
Note that the metal powder manufacturing capability according to the present invention is suitable for manufacturing powder of active metals or alloys containing a large amount of active metals, but is not necessarily applicable only to active metal powders. Needless to say, it is applied to all metals (including alloys), and not necessarily to pinters, by grinding irregularly shaped gold powder without contamination. Excellent formability is achieved even without the use of a binder (1), and the negative effects associated with the use of a binder can be completely eliminated by JJ1, and sintered crystals with heavy density, high strength, and high toughness can be obtained. You will be able to do this.

(実施例) 添(=J図はこの発明の実施例において使用した金属粉
末製造装置の概略を示す縦断面図であって、1は雰囲気
γ換可能な容器、2は加熱用発熱体(又は誘導コイル)
3およびるつぼ4を備えた溶解炉、5は粉末原料となる
溶融金属、6はタンティッシュ、7はタンディツシュ6
を設置するために容器1に固定した支持台、8はタンデ
ィツシュ6の底部間1」6aより流下する溶融金属流、
2は前記溶融金属流8を受ける受湯面2aをイjする回
転体、10は回転軸11および回転伝達装置12を介し
て回転体2を高速回転させる駆動装置、13は前記支持
台7または容器1に固定された傘形状の衝突物体である
(Example) Figure J is a vertical sectional view schematically showing the metal powder manufacturing apparatus used in the example of the present invention, in which 1 is a container capable of exchanging atmosphere γ, 2 is a heating element (or induction coil)
3 and a melting furnace equipped with a crucible 4, 5 a molten metal serving as a powder raw material, 6 a tan tissue, and 7 a tan dish 6.
8 is a molten metal flow flowing down from the bottom of the tundish 6 1''6a;
Reference numeral 2 denotes a rotating body that moves along the receiving surface 2a that receives the molten metal flow 8, 10 a drive device that rotates the rotating body 2 at high speed via a rotating shaft 11 and a rotation transmission device 12, and 13 the supporting table 7 or This is an umbrella-shaped collision object fixed to the container 1.

このような装置によって粉末を製造するに際しては、ま
ず、容器1内をυ1気したのち例えば不活性カス(Ar
、He%’)を導入して非酸化性雰囲気とし、次に活性
金属t≦の粉末素材を溶解炉2内で溶解して溶融金属5
とする。この場合、溶融金属5の温度を例えは融点の1
00〜250°C程度高めに加熱する。次いで回転体2
を駆動装置10によって高速回転(例えば10000〜
15000 rpm )させた状yルにして、溶解炉2
を傾けることにより溶融金属5をタンディツシュ6内に
汁ぐ。クンディツシュ6内に移った溶融金属は、クンデ
ィッシ、=+−6の底部に設けた開l:+ 6 aより
溶融金属流8として流出し、回転体9の受湯面9aJ−
にi^下する。次いで溶融金属流8は」−記受湯面9a
lで遠心力によって広がり、ti、’、i I模状とな
って受湯面2aの外周端部に向けて流れたのち、911
れ、その後分断飛散して衝突物体13に種1突し、変形
ないしは破砕されて不規則形状化されたのち、容器1の
底部に粉末14として貯まる。
When producing powder using such an apparatus, first, the inside of the container 1 is aerated by υ1, and then, for example, inert scum (Ar
, He%') to create a non-oxidizing atmosphere, and then the active metal t≦ powder material is melted in the melting furnace 2 to form the molten metal
shall be. In this case, the temperature of the molten metal 5 is, for example, 1 of the melting point.
Heat to about 00-250°C. Next, rotating body 2
is rotated at high speed (for example, 10,000~
15000 rpm) and melting furnace 2.
By tilting the molten metal 5, the molten metal 5 is poured into the tundish 6. The molten metal that has moved into the kundish 6 flows out as a molten metal flow 8 through an opening provided at the bottom of the kundish, =+6a, and reaches the receiving surface 9aJ- of the rotating body 9.
I'll put it down. The molten metal flow 8 then reaches the recording surface 9a.
It spreads due to the centrifugal force at l, forms a pattern of ti,',iI, and flows toward the outer peripheral edge of the receiving surface 2a, and then 911
After that, it is fragmented and scattered, hitting the colliding object 13 as a seed, deformed or crushed into an irregular shape, and then stored as powder 14 at the bottom of the container 1.

そこで、この実施例においては、添伺図に示す遠心噴霧
式金属粉末製造装置において、容器1内をυ1気したの
ちHeを導入して雰囲気置換し、溶解炉2内でNiTi
合金を溶解し、回転体2を15000 rpm回転させ
、タンディツシュ6を通して4rj秒100gのN i
 T i溶融金属流8を回転体2上にン宕下させて遠心
噴入することにより金属粉末14を(llた。そして、
この遠心噴霜において、衝突物体13がない場合、およ
び衝突物体13の種1突而の角度(錫化直後の金属粉末
の51屯行方向に対する角度)を10〜90°まで変化
(この実施例では、各角爪毎の衝突物体13を交換する
。)させて、その場合の金属粉末14中における破砕粉
の含有比率とラトラー(lftを測定した。なお、破砕
粉の含有比率は顕微鏡観察により1llll定し、ラト
ラー埴は成形圧力フ ton/cm2で成形した成形体
に対して行った。その結果を次表に示す。
Therefore, in this embodiment, in the centrifugal spray type metal powder manufacturing apparatus shown in the accompanying drawing, after the inside of the container 1 was heated to υ1 atmosphere, He was introduced to replace the atmosphere, and NiTi was melted in the melting furnace 2.
The alloy was melted, the rotating body 2 was rotated at 15000 rpm, and 100 g of Ni was applied through the tundish 6 for 4rj seconds.
Ti molten metal flow 8 is lowered onto rotating body 2 and centrifugally injected to form metal powder 14.
In this centrifugal frost blowing, when there is no colliding object 13, the angle of the seed 1 of the colliding object 13 (the angle with respect to the 51st direction of the metal powder immediately after tinization) is changed from 10 to 90 degrees (this example Then, the collision object 13 for each square claw was replaced.The content ratio of crushed powder in the metal powder 14 in that case and rattler (lft) were measured.The content ratio of crushed powder was determined by microscopic observation. The rattler test was carried out on a molded article molded at a molding pressure of 1 lllll ton/cm2.The results are shown in the following table.

表に示すように、衝突物体13を配j5 Lない場合(
No、l)および衝突物体13の衝突面の角度(α)が
赤化直後の金IA粉末の飛イI方向に対して小さすきる
場合(No、 :2>には、得られた金属粉末14中に
おける破砕粉の含有比率が訊しく小さく、バインダーを
使用しない粉末の成形は不可能であった。また、仲j突
物体13の角度を次第に大きくしていくことによって、
金属粉末14中における破砕粉の含有比−44が大きく
なり、成形に1も良好である金属粉末14を得ることか
できたか、仲I突物体13の角度が大きすぎる場合(N
o、10)には赤化直後の金属粉末が種i突物体13に
堆JJrするII4か多くなることもわかった。したが
って、h北面後の金属粉末の飛行方向に対する衝突物体
13の衝突面の角度は5°〜85°程度とすることか望
ましいことが明らかとなった。
As shown in the table, if the colliding object 13 is not arranged j5 L (
No. l) and when the angle (α) of the collision surface of the colliding object 13 is small with respect to the flight I direction of the gold IA powder immediately after reddening (No. :2>, the obtained metal powder 14 The content ratio of crushed powder in the powder was extremely small, and it was impossible to mold the powder without using a binder.Also, by gradually increasing the angle of the protrusion 13,
If the content ratio -44 of crushed powder in the metal powder 14 becomes large and it is possible to obtain a metal powder 14 that is good for molding, or if the angle of the middle I protrusion 13 is too large (N
10), it was also found that more metal powder was deposited on the seed protrusion 13 immediately after reddening. Therefore, it has become clear that it is desirable that the angle of the collision surface of the collision object 13 with respect to the flight direction of the metal powder after the north face of h be approximately 5° to 85°.

−・力、衝突物体13に衝突する噴霜金属粉末の温度か
低すきる場合(No、11)には+Ji文物体13に)
1′またる金属粉末の変形ないしは破砕が困りUである
ため、イ!)られた金属粉末14中における破砕粉の含
有比率が著しく小さく、好ましくない結果となった。そ
して、種々の実験から、衝突物体13に当てる際の露化
直後の金属粉末の温度は(融点−10°C)〜(融点−
300℃)の範囲が好ましいことがわかった。
- force, if the temperature of the frost-spraying metal powder that collides with the collision object 13 is low (No, 11), +Ji to the object 13)
Since deformation or crushing of the metal powder across 1' is a problem, I! ) The content ratio of crushed powder in the metal powder 14 obtained was extremely small, resulting in an unfavorable result. From various experiments, the temperature of the metal powder immediately after exposure when it hits the collision object 13 is between (melting point -10°C) and (melting point -
300° C.) was found to be preferable.

(発明の効果) 以上説明してきたように、この発明によれば、遠心力に
よって溶融金属を霧化させる遠心用り法において、露化
直後の金属粉末を衝突物体に当てて当該金1+バ粉末を
不規則形状化するようにしたから、遠心噴六法によって
不規則形状の金属粉末を製造することが117能であり
、とくに金属か活+1金属あるいは活性金属を多く含む
合金であるときでも汚染の少ない不規則形状の金属粉末
を得ることがii)能であり、粉末の成形性が著しく良
好であって必ずしもパインターを使用しなくとも精度の
よい成形が可能であるため、高密度でかつ高強度・高靭
性の焼結晶を得ることができ、利点の多い粉末冶金法の
適用範囲をさらに拡大することが可能であるという著し
く優れた効果を有している。
(Effects of the Invention) As explained above, according to the present invention, in the centrifugal method in which molten metal is atomized by centrifugal force, the metal powder immediately after exposure is applied to a colliding object, and the gold 1+ba powder is It is possible to produce irregularly shaped metal powder by the centrifugal injection method, especially when the metal is an active+1 metal or an alloy containing a large amount of an active metal, without causing contamination. ii) It is possible to obtain a metal powder with a small number of irregular shapes, and the moldability of the powder is extremely good, and it is possible to form the powder with high precision without necessarily using a pinter, resulting in high density and high strength. - It has the remarkable effect of being able to obtain sintered crystals with high toughness and further expanding the scope of application of powder metallurgy, which has many advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

添イ・月図はこの発明の実施例において使用した金属粉
末製造装置の縦断面説明図である。 2・・・溶解炉、 5・・・溶融金属、 6・・・タンディツシュ、 8・・・溶1.?J!金屈lイこ、 2・・・回転体、 13・・・衝突物体、 14・・・金IIバ粉末。 特1負出願人 大同特殊鋼株式会社 代理人弁理士 小 11! 豊
The attached figure A is an explanatory longitudinal cross-sectional view of a metal powder manufacturing apparatus used in an embodiment of the present invention. 2... Melting furnace, 5... Molten metal, 6... Tandish, 8... Melting 1. ? J! 2... Rotating body, 13... Collision object, 14... Gold II powder. Special 1 Negative Applicant Daido Steel Co., Ltd. Representative Patent Attorney Elementary 11! Yutaka

Claims (3)

【特許請求の範囲】[Claims] (1)遠心力によって溶融金属を露化させる遠心’!I
’l A+法において、h化部後の金属粉末を種1突物
体に当てて当該金lf粉末を不規則形状化することを特
徴とする金属粉末の製造方法。
(1) Centrifugation' which exposes molten metal by centrifugal force! I
A method for producing metal powder, which comprises applying the metal powder after h-hardening to a seed 1 protrusion to give the gold lf powder an irregular shape in the 'l A+ method.
(2) ’ju化直後の金属粉末を衝突物体に当てる際
の金属粉末の温度が(融点−10°C)〜(融点−30
0°C)の範囲である特許請求の範囲第(1)tn記載
の金属粉末の製造方法。
(2) The temperature of the metal powder when it hits the colliding object immediately after being converted to
0°C).
(3)霧化直後の金属粉末の飛行方向と衝突物体とのな
す角度が5°〜85°の範囲である特許請求の範囲第(
+)jfiまたは第(2) JJ’(記載の金属粉末の
製J貴方法。
(3) Claim No. 2, wherein the angle between the flight direction of the metal powder immediately after atomization and the colliding object is in the range of 5° to 85°.
+) Jfi or No. (2) JJ' (J noble method of manufacturing the metal powder described.
JP4646784A 1984-03-13 1984-03-13 Production of metallic powder Granted JPS60190503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4646784A JPS60190503A (en) 1984-03-13 1984-03-13 Production of metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4646784A JPS60190503A (en) 1984-03-13 1984-03-13 Production of metallic powder

Publications (2)

Publication Number Publication Date
JPS60190503A true JPS60190503A (en) 1985-09-28
JPH0437122B2 JPH0437122B2 (en) 1992-06-18

Family

ID=12747972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4646784A Granted JPS60190503A (en) 1984-03-13 1984-03-13 Production of metallic powder

Country Status (1)

Country Link
JP (1) JPS60190503A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104704A (en) * 1987-10-16 1989-04-21 Tokin Corp Production of super quenched metal alloy powder
JPH01149906A (en) * 1987-12-05 1989-06-13 Tokin Corp Apparatus for manufacturing super rapidly cooled alloy metal powder
KR100386896B1 (en) * 2002-05-28 2003-06-18 에드호텍(주) apparatus for producing fine powder from molten liquid by high-pressure spray
WO2009155666A1 (en) * 2008-06-27 2009-12-30 Commonwealth Scientific And Industrial Research Organisation Granulation of molten material
KR20150136069A (en) * 2013-03-27 2015-12-04 신토고교 가부시키가이샤 Method and device for manufacturing shot particles
CN106735275A (en) * 2016-12-07 2017-05-31 深圳微纳增材技术有限公司 A kind of metal powder preparation method and device suitable for 3D printing
CN106862578A (en) * 2017-02-13 2017-06-20 连云港倍特超微粉有限公司 It is a kind of to combine the apparatus and method that atomization type prepares spherical metal alloy powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113806A (en) * 1979-02-26 1980-09-02 Nippon Steel Corp Production of elongated flat metal piece from molten metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113806A (en) * 1979-02-26 1980-09-02 Nippon Steel Corp Production of elongated flat metal piece from molten metal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104704A (en) * 1987-10-16 1989-04-21 Tokin Corp Production of super quenched metal alloy powder
JPH01149906A (en) * 1987-12-05 1989-06-13 Tokin Corp Apparatus for manufacturing super rapidly cooled alloy metal powder
KR100386896B1 (en) * 2002-05-28 2003-06-18 에드호텍(주) apparatus for producing fine powder from molten liquid by high-pressure spray
JP2014208344A (en) * 2008-06-27 2014-11-06 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Granulator of molten material
JP2011526200A (en) * 2008-06-27 2011-10-06 コモンウェルス サイエンティフィック アンドインダストリアル リサーチ オーガナイゼーション Molten material granulator
AU2009262368B2 (en) * 2008-06-27 2014-10-09 Commonwealth Scientific And Industrial Research Organisation Granulation of molten material
WO2009155666A1 (en) * 2008-06-27 2009-12-30 Commonwealth Scientific And Industrial Research Organisation Granulation of molten material
US9409235B2 (en) 2008-06-27 2016-08-09 Commonwealth Scientific And Industrial Research Organisation Granulation of molten material
KR20150136069A (en) * 2013-03-27 2015-12-04 신토고교 가부시키가이샤 Method and device for manufacturing shot particles
JP6041044B2 (en) * 2013-03-27 2016-12-07 新東工業株式会社 Method and apparatus for producing shot particles
US10293408B2 (en) 2013-03-27 2019-05-21 Sintokogio, Ltd. Method and device for producing shots
CN106735275A (en) * 2016-12-07 2017-05-31 深圳微纳增材技术有限公司 A kind of metal powder preparation method and device suitable for 3D printing
CN106735275B (en) * 2016-12-07 2019-08-09 深圳微纳增材技术有限公司 A kind of metal powder preparation method and device suitable for 3D printing
CN106862578A (en) * 2017-02-13 2017-06-20 连云港倍特超微粉有限公司 It is a kind of to combine the apparatus and method that atomization type prepares spherical metal alloy powder

Also Published As

Publication number Publication date
JPH0437122B2 (en) 1992-06-18

Similar Documents

Publication Publication Date Title
KR102292150B1 (en) Centrifugal atomization of iron-based alloys
US4066117A (en) Spray casting of gas atomized molten metal to produce high density ingots
US4830084A (en) Spray casting of articles
US4386896A (en) Apparatus for making metallic glass powder
US4689074A (en) Method and apparatus for forming ultrafine metal powders
JPS6016482B2 (en) Method and apparatus for producing flake particles from molten material
CN107716934A (en) A kind of preparation method of Inconel718 alloy powders for 3D printing technique
KR101426021B1 (en) Manufacturing method of amorphous alloy powder and apparatus for the same
US5954112A (en) Manufacturing of large diameter spray formed components using supplemental heating
CN113385681A (en) CoCrNi intermediate entropy alloy and atomization powder preparation method manufacturing process thereof
US4523621A (en) Method for making metallic glass powder
EP0017723B1 (en) Method and apparatus for making metallic glass powder
JPS60190503A (en) Production of metallic powder
JP2007332406A (en) Method for forming fine powder by using rotary crucible, and apparatus therefor
WO2010010627A1 (en) Device and method for manufacturing fine powder by using rotary crucible
JP2928965B2 (en) Injection molding method for ultra heat resistant and difficult to process materials
WO1982003809A1 (en) Apparatus for spraying metal or other material
JPH03219035A (en) Titanium base alloy for high strength structural member, manufacture of titanium base alloy for high strength structural member and manufacture of high strength structural member made of titanium base alloy
JPH08209207A (en) Production of metal powder
JPH024906A (en) Manufacture of flaky rapidly cooling solidified metal powder
JPH02290907A (en) Method and apparatus for manufacturing solder fine powder
JPH075938B2 (en) Method for producing rapidly solidified metal-based powder
JPS63227703A (en) Production of alloy powder containing nitrogen
JPH02290908A (en) Centrifugal atomizing method and apparatus thereof
JPS6024302A (en) Production of amorphous alloy powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees