JPH024906A - Manufacture of flaky rapidly cooling solidified metal powder - Google Patents

Manufacture of flaky rapidly cooling solidified metal powder

Info

Publication number
JPH024906A
JPH024906A JP15387688A JP15387688A JPH024906A JP H024906 A JPH024906 A JP H024906A JP 15387688 A JP15387688 A JP 15387688A JP 15387688 A JP15387688 A JP 15387688A JP H024906 A JPH024906 A JP H024906A
Authority
JP
Japan
Prior art keywords
metal powder
metal
flaky
cooling body
drip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15387688A
Other languages
Japanese (ja)
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Tomoyoshi Komura
朋美 小村
Masahiro Oguchi
小口 昌弘
Hitoshi Yamaguchi
均 山口
Yuuichi Tatsutani
雄一 立谷
Junji Saida
才田 淳治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Tokin Corp
TPR Co Ltd
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Tokin Corp
Teikoku Piston Ring Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Tokin Corp, Teikoku Piston Ring Co Ltd, Nisshin Steel Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP15387688A priority Critical patent/JPH024906A/en
Publication of JPH024906A publication Critical patent/JPH024906A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently manufacture flaky rapidly cooling solidified metal powder having small particle size at low cost by colliding drip formed by injecting gas to flowing molten metal against a rotated cooling body coated with ceramic or high m.p. metal. CONSTITUTION:The molten metal 2 contained in a crucible 1 is flowed out from a discharging nozzle 3 and the gas is injected to this flowing stream from a blowing pipe 5 in a ultrasonic gas atomizing device 4, to form the drip. This drip is collided against the surface of the rotating roll 6 made of copper, etc., to make this the flaky metal powder. In the above method, the surface of the rotating roll 6 to be the rotated cooling body is coated with the ceramic, high m.p. metal having at least >=1,000 deg.C m.p. or these composite materials. It is suitable to use TiN as the ceramic and Cr as the high m.p. metal. By this coating, sticking of the drip to the cooling body is prevented and the obtd. flaky rapidly cooling solidified metal powder is made fine and also by improving heat resistance of the cooling body, water cooling is not needed and the production cost is reduced and the efficiency is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粒任の小さいフレーク状の金属粉末を効率よ
く製造できる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for efficiently producing flaky metal powder with small particle sizes.

(従来技術) 金属粉末を加圧、加熱状態で成形する粉末冶金は、従来
上り機械部品、超硬工具、磁気材料の製造など種々の分
野で行なわれている。この粉末冶金に使用する金属粉末
は、主としてガスアトマイズ法により製造されているが
、この方法は、ノズルより流出させた金属溶湯に高圧ガ
スを噴射して金属溶湯を液滴にすると同時に急冷凝固さ
せる方法であるため、特性が徐冷した場合より改善され
る金属、例えば、非晶質合金、過飽和固溶体金属の粉末
製造に適している。
(Prior Art) Powder metallurgy, in which metal powder is molded under pressure and heat, has been used in various fields such as the manufacture of upstream machine parts, cemented carbide tools, and magnetic materials. The metal powder used in this powder metallurgy is mainly manufactured by the gas atomization method, which involves injecting high-pressure gas into the molten metal flowing out of a nozzle to turn the molten metal into droplets and simultaneously rapidly solidifying it. Therefore, it is suitable for producing powders of metals whose properties are improved by slow cooling, such as amorphous alloys and supersaturated solid solution metals.

しかし、この方法で製造した金属粉末は、一般に、球状
もしくは極めて比表面積の小さい形状のものであるため
、粒子同志の焼結性が劣り、ホットプレス法などで焼結
する場合、高密度に焼結することは困難であった。一般
に、急冷により得られる粉末使用による粉末冶金の場合
、急冷効果を失わないためには、できるだけ低温で焼結
する必要がある。とくに、非晶質合金粉末の場合には、
結晶化温度以下の低温、短時間で焼結が完了しなければ
ならない。しかし、従来の〃スアトマイズ法で製造した
球状粉末では、急冷効果を損なわない低温で強固に焼結
した製品を得ることが困難であった。
However, metal powder produced by this method is generally spherical or has a shape with an extremely small specific surface area, so the sinterability of the particles is poor, and when sintered by hot pressing, etc., it is difficult to sinter at high density. It was difficult to conclude. Generally, in the case of powder metallurgy using powder obtained by rapid cooling, it is necessary to sinter at as low a temperature as possible in order to maintain the rapid cooling effect. In particular, in the case of amorphous alloy powder,
Sintering must be completed in a short time at a low temperature below the crystallization temperature. However, with the spherical powder produced by the conventional atomizing method, it is difficult to obtain a product that is strongly sintered at a low temperature that does not impair the quenching effect.

ホットプレス法などを用い低温焼結(約100〜500
℃)して金属粉末を強固に焼結するためには、比表面積
の大きいフレーク状の金属粉末を使用する必要があり、
これによって、例えば、非晶質合金粉末の場合でも、9
9%以上の商密度で強固に焼結することができる。
Low-temperature sintering (approximately 100 to 500
In order to strongly sinter the metal powder by
By this, for example, even in the case of amorphous alloy powder, 9
It can be strongly sintered with a commercial density of 9% or more.

このフレーク状の金属粉末の製造には、〃スアトマイズ
法で液滴にした金属溶湯を凝固前に回転冷却体に衝突さ
せて偏平形状にする方法を用いることができる。
To produce this flaky metal powder, a method can be used in which molten metal is made into droplets by the atomization method and is made to collide with a rotating cooling body to form a flat shape before solidification.

例えば、金属粉末のすべてもしくは大部分をフレーク状
のものにしたい場合は、ttS3図に示すように、ルツ
ボ1に金属溶湯2を入れて、ルツボ1の下部に設けた流
出ノズル3がら流出させた後、流出7ズル3の下方に周
設した超音波〃スアトマイズ装置4(ガスを吹き込み管
5より供給)より超音速ガスを噴射させて、流出溶湯に
超音波振動を与えなから液滴にし、その液滴が凝固しな
いうちに回転ロール6のロール面に衝突させて急冷凝固
させる方法が知られている。
For example, if you want to make all or most of the metal powder into flakes, put the molten metal 2 into the crucible 1 and let it flow out through the outflow nozzle 3 provided at the bottom of the crucible 1, as shown in Figure ttS3. After that, supersonic gas is injected from an ultrasonic atomizing device 4 (gas is supplied from a blowing pipe 5) installed below the outflow nozzle 3, and the outflowing molten metal is turned into droplets without applying ultrasonic vibrations. A method is known in which the droplets are made to collide with the roll surface of the rotating roll 6 before they solidify to rapidly solidify them.

また、フレーク状と球状のものが混合したものを製造す
る場合には、第4図に示すように、金属溶湯の流出ノズ
ル3の下方に〃ス噴射ノズル7を配置して、流出ノズル
3がら流出させた金属溶湯に高速ガスを噴射することに
上り液滴にし、この液滴を円錐型回転冷却体8の斜面に
衝突させる方法により行っている。この方法では、液滴
が流出ノズル3に近接した斜面部分に凝固前に衝突し、
流出ノズル3より離れた斜面部分には凝固後衝突するの
で、フレーク状と球状の混合したものが製造される。
In addition, when producing a mixture of flakes and spheres, as shown in FIG. This is carried out by injecting high-speed gas into the flowing molten metal to form liquid droplets, and causing the liquid droplets to collide with the slope of the conical rotary cooling body 8. In this method, the droplets collide with the inclined surface near the outflow nozzle 3 before solidifying.
Since it collides with the slope portion away from the outflow nozzle 3 after solidification, a mixture of flake and spherical shapes is produced.

(発明が解決しようとする問題点) ところで、これらのフレーク状金属粉末製造法では、液
滴が回転ロール6や円錐型回転冷却体8などの回転冷却
体に衝突したとき、衝突と同時に急冷されるようにする
ため、通常、回転冷却体として、熱伝導率の良好な銅を
使用するが、銅は金属の溶湯液滴との濡れ性が良好であ
るために、衝突しだ液滴が回転冷却体表面に付着して脱
離し難い。また、高温の液滴を長時間衝突させると、液
滴の一部は銅と反応して融着し、回転冷却体表面の温度
を上昇させてしまう。このため、回転冷却体に衝突した
液滴が凝固して飛散する前にその上に次の液滴が衝突し
てお互に結合し、大部分が粒径の大きいものになってし
まう。
(Problems to be Solved by the Invention) By the way, in these flaky metal powder manufacturing methods, when droplets collide with a rotary cooling body such as the rotary roll 6 or the conical rotary cooling body 8, they are rapidly cooled at the same time as the collision. To achieve this, copper, which has good thermal conductivity, is usually used as a rotating cooling body. However, since copper has good wettability with molten metal droplets, the droplets collide and rotate. It adheres to the surface of the cooling body and is difficult to detach. Furthermore, if high-temperature droplets are allowed to collide for a long time, some of the droplets will react with copper and fuse together, raising the temperature of the surface of the rotary cooling body. For this reason, before the droplets that collide with the rotary cooling body solidify and scatter, the next droplets collide with them and combine with each other, resulting in most of the droplets having a large particle size.

冷却体表面への液滴の融着は、回転冷却体を水などで内
部冷却すれば防止できるが、水冷にすると、装置の複雑
化、生産コストの上昇、回転体の回転数制限や形状限定
など様々の弊害が生じる。
The adhesion of droplets to the surface of the cooling body can be prevented by internally cooling the rotating cooling body with water, but water cooling increases the complexity of the equipment, increases production costs, and limits the number of rotations and shape of the rotating body. Various harmful effects occur.

本発明は、かかる点に鑑み、粒径の小さいフレーク状金
属粉末を安価で効率よく製造できる方法を提供するもの
である。
In view of the above, the present invention provides a method for producing flaky metal powder with a small particle size at low cost and efficiently.

(問題点を解決するための手段) 本発明は、回転冷却体の表面をセラミックス、少なくと
も1 (100℃以上の高融点金属またはこれらの複合
体で被覆して、粒径の小さいフレーク状金属粉末を容易
に、がっ、大量に製造するものである。
(Means for Solving the Problems) The present invention provides for coating the surface of a rotary cooling body with ceramics, at least one metal (a metal with a high melting point of 100° C. or higher, or a composite thereof) to form flaky metal powder with a small particle size. can be easily manufactured in large quantities.

ここで、セラミックスとしては、金属の窒化物、酸化物
、炭化物などを使用する。例えば、窒化物の場合、Ti
5Zr、 I汀、v1旧]、Ta、 CrなとのNN型
窒化物、No、 HlFeなとのN2N型窒化物、Co
、旧などのM3N2型窒化物、BN、 5isN、など
の半金属窒化物を、また、酸化物としては、^1□03
.5i02、ZrO2などを、さらに、炭化物としては
、SiC,TiC5ZrCなどを使用すればよい。
Here, as the ceramics, metal nitrides, oxides, carbides, etc. are used. For example, in the case of nitrides, Ti
5Zr, I, v1 old], NN type nitride with Ta, Cr, No, N2N type nitride with HlFe, Co
, M3N2 type nitrides such as old, semimetal nitrides such as BN, 5isN, etc., and oxides such as ^1□03
.. 5i02, ZrO2, etc., and as the carbide, SiC, TiC5ZrC, etc. may be used.

また、約1000℃より高融点金属としては、例えば、
C「、旧、Ti、 Ta、 Ptなどの純金属、Cr−
旧、Fe−Cr−旧、5tellite(Co−Cr−
W)、N i −No−1’lなとの合金を使用すれば
よい。
In addition, examples of metals with a melting point higher than about 1000°C include:
C", old, pure metals such as Ti, Ta, Pt, Cr-
Old, Fe-Cr- Old, 5tellite (Co-Cr-
W), N i -No-1'l may be used.

さらに、上記金属とセラミックスとの複合材料としては
、例えば、窒化物、酸化物、炭化物を分散させた鉄合金
などを使用すればよい。
Further, as the composite material of metal and ceramics, for example, an iron alloy in which nitrides, oxides, and carbides are dispersed may be used.

以上の被覆材料の中で、セラミックスの場合は窒化チタ
ンを、また、高融点金属の場合はクロム(特に硬質クロ
ムめっき)を用いると、フレーク状金属粉末の製造に好
ましい結果を与える。
Among the above-mentioned coating materials, use of titanium nitride in the case of ceramics and chromium (particularly hard chromium plating) in the case of high-melting point metals gives preferable results in the production of flaky metal powder.

回転冷却体は、基材として、銅合金、鉄合金が好ましい
。また、セラミックス、金属、合金などでの被覆は、I
’VD、 CVDなとの蒸着法、電気めっき法などによ
り行えば十分である。
The base material of the rotary cooling body is preferably a copper alloy or an iron alloy. In addition, coating with ceramics, metals, alloys, etc.
It is sufficient to use a vapor deposition method such as VD or CVD, or an electroplating method.

(作用) 以上のように、回転冷却体の表面をセラミックスや約1
000℃より高融点金属またはこれらの複合体で被覆す
ると、液滴が衝突しても反応しないため、銅の冷却体の
場合より冷却体との濡れ性は悪くなり、液滴の融着が防
止される。また、冷却体の耐熱性も向上するため、水冷
する必要もない利点がある。
(Function) As mentioned above, the surface of the rotary cooling body is made of ceramic or
When coated with a metal with a melting point higher than 000°C or a composite thereof, there is no reaction even when droplets collide, so wettability with the cooling body is worse than in the case of a copper cooling body, preventing droplet fusion. be done. Furthermore, since the heat resistance of the cooling body is improved, there is an advantage that there is no need for water cooling.

(実施例) 実施例1 第3図に示すフレーク状金属粉末製造方法において、回
転ロール6として、銅製ロール、セラミックス被覆ロー
ル、高融点金属被覆ロール(被覆厚はいずれも0.3〜
3μl11)を使用してフレーク状金属粉末を製造した
(Example) Example 1 In the flaky metal powder manufacturing method shown in FIG.
3 μl (11) was used to produce flaky metal powder.

金属溶湯としては、Cot2.sSi+□、sB+s(
原子%)の合金を用い、これをノズルより流出させて、
100 Kg/c+n2のガス噴射に上り液滴にし、回
転数5000 rpIflの回転ロールに衝突させた。
As the molten metal, Cot2. sSi+□, sB+s(
atomic%) and let it flow out from the nozzle,
The liquid was formed into droplets by a gas jet of 100 Kg/c+n2, and was made to collide with a rotating roll having a rotational speed of 5000 rpm.

第1表にサイクロンで回収した金属粉末の粒径、回転ロ
ルへの液滴融着有無および結晶構造を示す。また、得ら
れた金属粉末を第1図に示す。
Table 1 shows the particle size, presence or absence of droplet fusion on the rotating roll, and crystal structure of the metal powder collected by the cyclone. Moreover, the obtained metal powder is shown in FIG.

=7 =8− 第1表 実施例2 第4図に示すフレーク状金属粉末の製造方法において、
円錐型回転冷却体8に実施例1と同様のものを用いてフ
レーク状金属粉末を製造した。金属溶湯としては、実施
例1と同一のものを用い、同一ガス圧で液滴にした。ま
た、冷却体の回転数は7000 rpmとした。第2表
にこの結果を示す。
=7 =8- Table 1 Example 2 In the method for producing flaky metal powder shown in FIG.
A flaky metal powder was manufactured using the same conical rotary cooling body 8 as in Example 1. The same molten metal as in Example 1 was used, and it was made into droplets at the same gas pressure. Moreover, the rotation speed of the cooling body was 7000 rpm. Table 2 shows the results.

また、得られた金属粉末を第2図に示す。Moreover, the obtained metal powder is shown in FIG.

(発明の効果) 以上のように、溶湯の液滴を衝突させる回転冷却体をセ
ラミ/クスまたは銅より高融着金属で被覆すると、粒子
の回転冷却体への付着や粒子同志の結合が防止でき、結
果として、フレーク状金属粉末の粒径を小さくする効果
と粉末の収率を者しく向」ニさせる効果がある。
(Effects of the invention) As described above, if the rotating cooling body that causes droplets of molten metal to collide with each other is coated with ceramic/gloss or a metal with a higher fusion bond than copper, adhesion of particles to the rotating cooling body and bonding of particles to each other can be prevented. As a result, it has the effect of reducing the particle size of the flaky metal powder and the effect of significantly improving the powder yield.

【図面の簡単な説明】[Brief explanation of the drawing]

#S1図および第2図は、それぞれ実施例1および2で
製造したフレーク状金属粉末の形状を示す電子顕微鏡写
真である。 第3図および第4図は、従来のフレーク状金属粉末の製
造方法を示すものである。 1・・・ルツボ、2・・・金属溶湯、3・・・流出ノズ
ル、4・・・超音波〃スアトマイズ装置、5・・吹き造
管、6・・・回転ロール、7・・・ガス噴射ノズル、8
・・・円鍾型回転冷却体、
#S1 and 2 are electron micrographs showing the shapes of the flaky metal powders produced in Examples 1 and 2, respectively. FIGS. 3 and 4 show a conventional method for producing flaky metal powder. DESCRIPTION OF SYMBOLS 1... Crucible, 2... Molten metal, 3... Outflow nozzle, 4... Ultrasonic atomizing device, 5... Blowing pipe, 6... Rotating roll, 7... Gas Spray nozzle, 8
・・・Rotary rotary cooling body,

Claims (3)

【特許請求の範囲】[Claims] (1)ノズルより流出させた金属溶湯にガスを噴射して
液滴にした後、液滴を回転冷却体に衝突させてフレーク
状にする金属粉末の製造法において、前記回転冷却体の
表面をセラミックス、少なくとも1000℃以上の高融
点金属またはこれらの複合体で被覆したことを特徴とす
るフレーク状急冷凝固金属粉末の製造法。
(1) In a method for producing metal powder in which gas is injected into molten metal flowing out of a nozzle to form droplets, and the droplets are made to collide with a rotary cooling body to form flakes, the surface of the rotary cooling body is A method for producing flaky rapidly solidified metal powder, characterized in that it is coated with ceramics, a metal with a high melting point of at least 1000° C., or a composite thereof.
(2)セラミックスとして、窒化チタンで被覆すること
を特徴とする特許請求の範囲第1項に記載のフレーク状
急冷凝固金属粉末の製造法。
(2) A method for producing flaky rapidly solidified metal powder according to claim 1, characterized in that the ceramic is coated with titanium nitride.
(3)高融点金属として、クロムで被覆することを特徴
とする特許請求の範囲第1項に記載のフレーク状急冷凝
固金属粉末の製造法。
(3) The method for producing flaky rapidly solidified metal powder according to claim 1, wherein the metal powder is coated with chromium as the high melting point metal.
JP15387688A 1988-06-22 1988-06-22 Manufacture of flaky rapidly cooling solidified metal powder Pending JPH024906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15387688A JPH024906A (en) 1988-06-22 1988-06-22 Manufacture of flaky rapidly cooling solidified metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15387688A JPH024906A (en) 1988-06-22 1988-06-22 Manufacture of flaky rapidly cooling solidified metal powder

Publications (1)

Publication Number Publication Date
JPH024906A true JPH024906A (en) 1990-01-09

Family

ID=15572044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15387688A Pending JPH024906A (en) 1988-06-22 1988-06-22 Manufacture of flaky rapidly cooling solidified metal powder

Country Status (1)

Country Link
JP (1) JPH024906A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224770A (en) * 1990-12-08 1993-07-06 Minnesota Mining And Manufacturing Company Light box
JP2009504909A (en) * 2005-08-12 2009-02-05 ダンウィルコ(1198)リミテッド Metal flake manufacturing method
JP2009062573A (en) * 2007-09-05 2009-03-26 National Institute For Materials Science Rotary disk used for centrifugal atomization method, and centrifugal atomization method using the same
CN103934462A (en) * 2014-05-22 2014-07-23 云南锡业股份有限公司 Method for preparing special tin raw material for methyl tin mercaptide
JP2014205893A (en) * 2013-04-15 2014-10-30 株式会社日向製錬所 Manufacturing method of flaky ferronickel and manufacturing facility

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224770A (en) * 1990-12-08 1993-07-06 Minnesota Mining And Manufacturing Company Light box
JP2009504909A (en) * 2005-08-12 2009-02-05 ダンウィルコ(1198)リミテッド Metal flake manufacturing method
JP2009062573A (en) * 2007-09-05 2009-03-26 National Institute For Materials Science Rotary disk used for centrifugal atomization method, and centrifugal atomization method using the same
JP2014205893A (en) * 2013-04-15 2014-10-30 株式会社日向製錬所 Manufacturing method of flaky ferronickel and manufacturing facility
CN103934462A (en) * 2014-05-22 2014-07-23 云南锡业股份有限公司 Method for preparing special tin raw material for methyl tin mercaptide

Similar Documents

Publication Publication Date Title
US4592781A (en) Method for making ultrafine metal powder
US4386896A (en) Apparatus for making metallic glass powder
US4687511A (en) Metal matrix composite powders and process for producing same
US4221587A (en) Method for making metallic glass powder
KR101426008B1 (en) Multiplex atomization nozzle and manufacturing apparatus of powder for the same
JPH03505896A (en) Atomization equipment and manufacturing method
JPH06102824B2 (en) Method and apparatus for producing coagulated sprayed product
JPH0819446B2 (en) Device and method for atomizing an unstable melt stream
JPS63243212A (en) Wet metallurgical method for producing finely divided globular high melting point metal base powder
CN106001588A (en) Ultrafine aluminum alloy powder and production method thereof
US5954112A (en) Manufacturing of large diameter spray formed components using supplemental heating
US4523621A (en) Method for making metallic glass powder
US4485834A (en) Atomization die and method for atomizing molten material
CN110000376A (en) A kind of nickel molybdenum chromium-diamond alloy composite powder and its preparation method and application
EP0017723B1 (en) Method and apparatus for making metallic glass powder
JPH024906A (en) Manufacture of flaky rapidly cooling solidified metal powder
JPH0819445B2 (en) Atomizing nozzle with boron nitride surface
JP3270713B2 (en) Method and apparatus for producing metal powder
JPH0754019A (en) Production of powder by multistage fissure and quenching
JPH02153031A (en) Making of composite compound material
US4326841A (en) Apparatus for making metallic glass powder
JPH11323411A (en) Low melting point metal powder and its production
CN114990541A (en) High-hardness material coating structure and preparation method thereof
JPS5913610A (en) Spherical granule of nitride ceramics and its manufacture
JPH08209207A (en) Production of metal powder