JPH01104704A - Production of super quenched metal alloy powder - Google Patents

Production of super quenched metal alloy powder

Info

Publication number
JPH01104704A
JPH01104704A JP25979287A JP25979287A JPH01104704A JP H01104704 A JPH01104704 A JP H01104704A JP 25979287 A JP25979287 A JP 25979287A JP 25979287 A JP25979287 A JP 25979287A JP H01104704 A JPH01104704 A JP H01104704A
Authority
JP
Japan
Prior art keywords
molten
grains
molten metal
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25979287A
Other languages
Japanese (ja)
Inventor
Yasunori Tanji
丹治 雍典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP25979287A priority Critical patent/JPH01104704A/en
Publication of JPH01104704A publication Critical patent/JPH01104704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce fine spherical powder of a super quenched metal alloy having good quality by bringing the splashing molten grains formed by ejecting a molten metal onto a rotary disk into collision against a plate member to additionally pulverize the grains, then quenching the powder in an ejection layer of an inert gas. CONSTITUTION:The molten alloy is ejected under pressurization from a tip 4 of the ejection port of a molten metal supplying pipe. The ejected flow 16 of the molten metal is brought into collision against the top of the rotary disk 2. The molten metal is immediately made by the centrifugal force of the disk 2 to the splashing molten grains having about 50-20mum grain size. A molten grain grinding plate 13 consisting of a plate member is disposed in the position where the splashing molten grains splash. The splashing molten grains collide against the plate 13 and are further finely ground; thereafter, the grains plunge into the cooling inert gaseous layer 15 ejected under a high pressure, by which the molten grains are quenched and solidified. The super quenched metal alloy powder which has about 10mum average grain size or below and is free from the holes by intrusion of the gas is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶湯供給管付き噴出口部により、溶湯を回転デ
ィスク上に噴出させ、上記回転ディスク上より、高圧噴
出不活性ガス(He、Ar+N2など)の噴出層中に飛
散させ急冷凝固させて金属合金粉末を製造する方法に関
するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention jets molten metal onto a rotating disk through a spout section with a molten metal supply pipe, and from above the rotating disk, high-pressure jetted inert gas (He, Ar + N2 The present invention relates to a method for producing metal alloy powder by scattering it in an ejected layer and rapidly solidifying it.

〔従来の技術〕[Conventional technology]

金属合金粉末応用製品の中、熱間静水圧圧縮による機械
部品成形、射出成形による複雑形状部品成形などに使用
する合金粉末として粒径が小さく。
Among metal alloy powder application products, this alloy powder has a small particle size and is used for machine parts molding by hot isostatic pressing and complex-shaped parts by injection molding.

形状が球形となるものが最近要求される様になってきた
。金属粉末の製造方法として従来、酸化物還元法、電解
法、カー&ニル法、アトマイズ法。
Recently, there has been a demand for something with a spherical shape. Conventional methods for producing metal powder include oxide reduction method, electrolytic method, Carr & Nil method, and atomization method.

上記回転ディスク法等数多くの方法が開発されている。A number of methods have been developed, including the rotating disk method described above.

この中上記の要求条件を満足させ得る可能性のある方法
としてガスアトマイズ法と回転ディスク法が考えられ得
る。
Among these methods, the gas atomization method and the rotating disk method can be considered as methods that have the possibility of satisfying the above-mentioned requirements.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来のガスアトマイズ法による場合。 However, when using the conventional gas atomization method.

噴出口部よシ噴出される噴出流がアトマイズガスの環帯
を開口する様に該ガス層に突入し粉砕され、噴霧金属合
金として急冷される事を原理とする。この場合噴出溶湯
流を噴出高圧ガス層へ突入させるため。
The principle is that the jet stream ejected from the jet port opens the annular zone of the atomized gas, enters the gas layer, is pulverized, and is rapidly cooled as an atomized metal alloy. In this case, to cause the jetted molten metal flow to rush into the jetted high-pressure gas layer.

高圧ガスでアトマイズされた噴霧金属合金の粉体の中に
はガスが巻き込まれた状態、換言すれば空孔をもつ状態
で凝固されるものもある。この方法で作製された粉体の
平均粒径は20〜50μmと大きく10μm以下のもの
は未だ作シ出されていない。
Some atomized metal alloy powders that are atomized with high-pressure gas are solidified in a state in which gas is involved, in other words, in a state in which they have pores. The average particle size of the powder produced by this method is as large as 20 to 50 μm, and powders of 10 μm or less have not yet been produced.

他方回転ディスク法に於いては上記の様なガス巻き込み
による空孔は生じない。更に粉体形状は球形となる。し
かし該方法に於いてはその平均粒径は50〜100μm
と大きくなる事が広く知られている。上記の様な粒体の
場合、射出成形→脱パインディング→焼結の工程後得ら
れた成形体の相対密度を95チ以上にする事はむづかし
い。これは機械的強度、磁気的性質を劣化させる原因の
1つとなる。
On the other hand, in the rotating disk method, voids due to gas entrainment as described above do not occur. Furthermore, the powder shape becomes spherical. However, in this method, the average particle size is 50 to 100 μm.
It is widely known that it grows larger. In the case of the above-mentioned granules, it is difficult to achieve a relative density of 95 inches or more in the molded body obtained after the steps of injection molding, de-pinding, and sintering. This is one of the causes of deterioration of mechanical strength and magnetic properties.

そこで1本発明の目的は、従来の高圧不活性ガス噴出ア
トマイズ法および回転ディスク法等による超急冷金属合
金粉末の製造方法の欠点を除去し。
Accordingly, one object of the present invention is to eliminate the drawbacks of conventional methods for producing ultra-quenched metal alloy powder using the high-pressure inert gas jet atomization method, the rotating disk method, and the like.

よシ品質のよい金属粉末の製造技術を確立する事にある
。即ち、粉体形状は球形、平均粒径10μm以下そして
ガス巻き込みによる空孔が各粉体にない事を目標とする
The objective is to establish a manufacturing technology for high-quality metal powder. That is, the aim is for each powder to have a spherical shape, an average particle size of 10 μm or less, and no pores due to gas entrainment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、溶湯供給管付噴出口部より、溶湯を回
転ディスク上に噴出させてなる飛しょう湯粒を、更に回
転ディスク上より、高圧不活性ガスの噴出層中に飛散さ
せ急冷させて金属合金の粉末を製造する方法に於いて、
板部材を、前記飛しょう湯粒の飛しょう位置に設けるこ
とにより、前記飛しょう湯粒を更に微粉化することを特
徴とする超急冷合金粉末の製造方法が得られる。換言す
ればガス巻き込みによる空孔をもたない球状粉末を作製
するためには上記回転ディスク法を基本とし平均粒径を
10μm以下とするために以下のようにする。
According to the present invention, the molten metal is spouted onto the rotating disk from the spout portion with the molten metal supply pipe, and the droplets are further scattered from above the rotating disk into the jetting layer of high-pressure inert gas to be rapidly cooled. In a method for producing metal alloy powder,
By providing a plate member at a position where the flying hot water particles fly, a method for producing an ultra-quenched alloy powder is obtained, which is characterized in that the flying hot water particles are further pulverized. In other words, in order to produce a spherical powder without pores due to gas entrainment, the above-mentioned rotating disk method is used as a basis, and in order to make the average particle size 10 μm or less, the following procedure is performed.

溶湯噴出口部先端は回転ディスク直上10〜1間・の位
置に固定される。溶湯は噴出口部より約0.5〜1 k
y/m2の圧力で回転ディスク上に噴出される。
The tip of the molten metal spout is fixed at a position between 10 and 1.5 mm directly above the rotating disk. The molten metal is approximately 0.5 to 1 kg from the spout part.
It is ejected onto a rotating disk at a pressure of y/m2.

回転ディスクは104〜10” r、p、m、の回転数
をもって回転させる。ここに於いて特に回転ディスクお
よび湯粒粉砕板には金属溶湯とのぬれ性のよくないセラ
ミック(例えばS i 3N4+ S tC+ At2
03など)又は黒鉛材などが選らばれねばならない。回
転ディスク上に噴出された溶湯はディスク表面上で凝固
される事なく、シかも2.直ちに50〜200μmの粒
径をもつ飛しょう湯粒となシ2回回転ディスク面よシ遠
心力によシ飛散される。尚、必らずしもディスクの先端
から飛散するとは限らない。その後、この飛散湯粒は板
部材たる湯粒粉砕板に打ち当たる事によって更に細かく
粉砕される。
The rotating disk is rotated at a rotational speed of 104 to 10" r, p, m. In particular, the rotating disk and the hot water pulverizing plate are made of ceramic (for example, Si 3N4+ S) which has poor wettability with molten metal. tC+ At2
03) or graphite material, etc. must be selected. 2. The molten metal spouted onto the rotating disk may not solidify on the surface of the disk. Immediately, hot water droplets with a particle size of 50 to 200 μm are scattered by centrifugal force across the surface of the twice-rotated disk. Note that the particles do not necessarily scatter from the tip of the disk. Thereafter, the scattered hot water droplets are further crushed into fine particles by hitting a hot water droplet crushing plate, which is a plate member.

このとき回転ディスクおよび湯粒粉砕板に、溶湯は出来
るだけ熱を奪われない事が重要である。
At this time, it is important that the molten metal does not lose as much heat as possible to the rotating disk and the molten metal crushing plate.

上記溶湯は湯粒粉砕板から飛散した後その外周辺に噴出
される高圧不活性ガス環帯層中に突入し。
After the molten metal scatters from the molten metal crushing plate, it rushes into the high-pressure inert gas annular layer spouted around the outside.

これによって始めて急冷凝固される。This is the first time that it is rapidly solidified.

〔実施例〕〔Example〕

以下2本発明の実施例を図面を参照して説明する。 Hereinafter, two embodiments of the present invention will be described with reference to the drawings.

第1図及び第2図には本発明に関係する噴出口部周辺概
略を示す直径6cmφのセラミックス製回転ディスク2
を約2.5 X 10’rpmの回転数をもって回転さ
せる。冷却用高圧Arがスが噴出される。
FIG. 1 and FIG. 2 show a ceramic rotating disk 2 with a diameter of 6 cmφ, which schematically shows the vicinity of the jet nozzle related to the present invention.
is rotated at a rotation speed of approximately 2.5 x 10' rpm. High-pressure Ar gas for cooling is ejected.

次に溶湯供給管6内で溶解された78.5%Ni−Fe
合金溶湯を噴出させるために溶湯供給管6内をArガス
でもって加圧する。最後に、噴出溶湯制御板7(カーボ
ン・ストツノや−)を打ち抜き、溶湯噴出口先端部4よ
シ溶湯を高速回転中のディスク2に向けて噴出させる。
Next, 78.5% Ni-Fe was melted in the molten metal supply pipe 6.
In order to jet out the molten alloy, the inside of the molten metal supply pipe 6 is pressurized with Ar gas. Finally, the spouting molten metal control plate 7 (carbon stock) is punched out, and the molten metal is spouted from the molten metal spout tip 4 toward the disk 2 which is rotating at high speed.

該溶湯は上記ディスク2に到達すると、遠心力によって
ディスク2の中心近傍から1円周方向へ移動し始める。
When the molten metal reaches the disk 2, it begins to move in one circumferential direction from near the center of the disk 2 due to centrifugal force.

しかしセラミックス(Si5N4)型回転ディスクを用
いるとこれは溶湯との間に、なじみが悪く円板上で湯膜
をつくらす湯粒となって、比較的短い時間内にディスク
2を離れ飛散する。この湯粒はその上部に配設されてい
る板部材たる湯粒粉砕板13に打ち尚シ、更に細かく粉
砕され、下方向に向きを変えて飛散する。
However, when a ceramic (Si5N4) type rotating disk is used, the particles do not fit well with the molten metal and form hot water droplets that form a film on the disk, leaving the disk 2 within a relatively short time and scattering. The hot water droplets are crushed into a hot water droplet crushing plate 13, which is a plate member disposed above the hot water droplets, to be further finely crushed, and then turned downward and scattered.

該飛散湯粒は冷却用高圧Arがス噴出層中に突入し急冷
凝固される。
The scattered hot water droplets are rapidly solidified by high-pressure Ar for cooling into the soot ejection layer.

以上の工程を経て78.5 % NiFe合金粉体は製
造された。製造条件は次の通シ゛である。
Through the above steps, 78.5% NiFe alloy powder was manufactured. The manufacturing conditions are as follows.

ディスク回転数2.5 X 10’ rpm、冷却用高
圧Ar噴出ガス圧100 kg7cm2.溶湯噴出圧0
.4 kg/an2゜溶湯温度1600℃、溶湯先端噴
出温度1580℃、溶湯噴出部口径0.5φ泪2溶解量
1 kg/ch回収された78,5%Ni−Fe合金粉
末の平均粒径は約7μm、形状は球形のものが得られた
。また電顕観察の結果、ガス巻き込みによる空孔は認め
られなかった。
Disc rotation speed 2.5 x 10' rpm, high pressure Ar jet gas pressure for cooling 100 kg7cm2. Molten metal ejection pressure 0
.. 4 kg/an2゜ Molten metal temperature 1600℃, molten metal tip spout temperature 1580℃, molten metal spout diameter 0.5φ2 dissolution amount 1 kg/ch The average particle size of the recovered 78.5% Ni-Fe alloy powder is approximately A sample with a diameter of 7 μm and a spherical shape was obtained. Further, as a result of electron microscopic observation, no pores due to gas entrainment were observed.

〔発明の効果〕〔Effect of the invention〕

回転ディスク法による従来の合金粉末の平均粒径は50
〜200μmと非常に大きかった。本発明によって平均
粒径10μm以下の、しかも巻き込みガスによる空孔を
もたない品質の高い超急冷金属合金の球状微粉末をつく
る新しい技術が開発された。
The average particle size of conventional alloy powder produced by the rotating disk method is 50
It was very large, ~200 μm. According to the present invention, a new technique has been developed for producing high-quality spherical fine powder of ultra-quenched metal alloy with an average particle size of 10 μm or less and without pores caused by entrained gas.

この技術をもって射出成形による複雑形状部品。Complex-shaped parts are made by injection molding using this technology.

および熱間静水圧成形による機械部品等のプリホーム、
超電導材、半導体材等の新素材開発を可能ならしめる事
が出来る。
and preforming of mechanical parts etc. by hot isostatic pressing,
This will enable the development of new materials such as superconducting materials and semiconductor materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実験に用いられた本発明に係る合金粉末製造
装置の概念図、第2図は第1図に係る製造装置の噴出口
部周辺の原理模式図を示す。 1・・・ディスク駆動用モータ、2・・・回転ディスク
。 3・・・噴出口部本体支持台、4・・・噴出口先端部、
5・・・誘導加熱用黒鉛筒、6・・・溶湯供給管(ルッ
が部)。 7・・・噴出溶湯制御板、8・・・溶湯噴出用ガス供給
口。 9・・・噴出溶湯制御板支持台、10・・・誘導加熱板
。 11・・・高圧冷却ガス供給口、12・・・高圧冷却ガ
ス噴出口、13・・・溶湯粒粉枠板、14・・・合金粉
末。 15・・・高圧冷却噴出ガス、16・・・噴出溶湯流。
FIG. 1 is a conceptual diagram of an alloy powder manufacturing apparatus according to the present invention used in the experiment, and FIG. 2 is a schematic diagram of the principle around the ejection port of the manufacturing apparatus according to FIG. 1. 1... Disk drive motor, 2... Rotating disk. 3... Spout body support base, 4... Spout tip,
5... Graphite tube for induction heating, 6... Molten metal supply pipe (luggage part). 7...Gushing molten metal control board, 8...Mold metal spouting gas supply port. 9...Gushing molten metal control plate support stand, 10...Induction heating plate. 11... High pressure cooling gas supply port, 12... High pressure cooling gas outlet, 13... Molten metal powder frame plate, 14... Alloy powder. 15... High-pressure cooling jetting gas, 16... Spouting molten metal flow.

Claims (1)

【特許請求の範囲】[Claims] (1)溶湯供給管付噴出口部より、溶湯を回転ディスク
上に噴出させてなる飛しょう湯粒を、更に回転ディスク
上より、高圧不活性ガスの噴出層中に飛散させ急冷させ
て、金属合金の粉末を製造する方法に於いて、板部材を
、前記飛しょう湯粒の飛しょう位置に設けることにより
、前記ひしょう湯粒を更に微粉化することを特徴とする
超急冷金属合金粉末の製造方法。
(1) The molten metal is spouted onto a rotating disk from a spout with a molten metal supply pipe, and the droplets are further scattered from above the rotating disk into a jet layer of high-pressure inert gas to rapidly cool the metal. In the method for producing alloy powder, the production of ultra-quenched metal alloy powder is characterized in that the plate member is provided at the flying position of the cast iron particles to further pulverize the cast iron particles. Method.
JP25979287A 1987-10-16 1987-10-16 Production of super quenched metal alloy powder Pending JPH01104704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25979287A JPH01104704A (en) 1987-10-16 1987-10-16 Production of super quenched metal alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25979287A JPH01104704A (en) 1987-10-16 1987-10-16 Production of super quenched metal alloy powder

Publications (1)

Publication Number Publication Date
JPH01104704A true JPH01104704A (en) 1989-04-21

Family

ID=17339054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25979287A Pending JPH01104704A (en) 1987-10-16 1987-10-16 Production of super quenched metal alloy powder

Country Status (1)

Country Link
JP (1) JPH01104704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370863B1 (en) * 2000-07-26 2003-02-05 에드호텍(주) method and apparatus for producing fine powder from molten liquid by high-pressure spray

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438259A (en) * 1977-08-31 1979-03-22 Nippon Steel Corp Preparation of long flat iron powder from molten steel utilizing cetrifugal force
JPS5785906A (en) * 1980-09-19 1982-05-28 United Technologies Corp Metal powder producing device
JPS60114507A (en) * 1981-11-04 1985-06-21 ヨセフ エム ウエンツエル Manufacture of metal fine powder
JPS60190503A (en) * 1984-03-13 1985-09-28 Daido Steel Co Ltd Production of metallic powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438259A (en) * 1977-08-31 1979-03-22 Nippon Steel Corp Preparation of long flat iron powder from molten steel utilizing cetrifugal force
JPS5785906A (en) * 1980-09-19 1982-05-28 United Technologies Corp Metal powder producing device
JPS60114507A (en) * 1981-11-04 1985-06-21 ヨセフ エム ウエンツエル Manufacture of metal fine powder
JPS60190503A (en) * 1984-03-13 1985-09-28 Daido Steel Co Ltd Production of metallic powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370863B1 (en) * 2000-07-26 2003-02-05 에드호텍(주) method and apparatus for producing fine powder from molten liquid by high-pressure spray

Similar Documents

Publication Publication Date Title
US7144441B2 (en) Process for producing materials reinforced with nanoparticles and articles formed thereby
JPS6016482B2 (en) Method and apparatus for producing flake particles from molten material
JPS62502478A (en) Metal powder manufacturing method
JPH06102824B2 (en) Method and apparatus for producing coagulated sprayed product
CN107716934A (en) A kind of preparation method of Inconel718 alloy powders for 3D printing technique
KR20180025260A (en) Apparatus and Method for Producing Alloy Powder by the Gas and Water Hybrid Process
CN114433855A (en) Equipment and method for preparing metal powder
JPH01104704A (en) Production of super quenched metal alloy powder
JPH02153031A (en) Making of composite compound material
JPH10503806A (en) Method for atomizing dispersible liquid material
JP3511082B2 (en) Manufacturing method of metal fine powder
JPS60190503A (en) Production of metallic powder
CN114082969A (en) Plasma remelting system and process for thermal spraying of ultrafine powder
JPH02290245A (en) Manufacture of powder material
JPH08209207A (en) Production of metal powder
CN111375776A (en) Swirl atomizing nozzle for crushing high-temperature molten metal
JPH024906A (en) Manufacture of flaky rapidly cooling solidified metal powder
US5840095A (en) Method and apparatus for producing flat metal powder directly from melt
JPS5913610A (en) Spherical granule of nitride ceramics and its manufacture
JPH01149906A (en) Apparatus for manufacturing super rapidly cooled alloy metal powder
JP2672036B2 (en) Method and apparatus for producing metal powder
JP2905402B2 (en) Method for producing composite powder
JP3403360B2 (en) High density dispersed nuclear fuel using uranium alloy spherical powder rapidly solidified by spraying as a dispersant and its production method
JPS6024302A (en) Production of amorphous alloy powder
JPH08104907A (en) Production of composite powder