WO2010010627A1 - Device and method for manufacturing fine powder by using rotary crucible - Google Patents

Device and method for manufacturing fine powder by using rotary crucible Download PDF

Info

Publication number
WO2010010627A1
WO2010010627A1 PCT/JP2008/063371 JP2008063371W WO2010010627A1 WO 2010010627 A1 WO2010010627 A1 WO 2010010627A1 JP 2008063371 W JP2008063371 W JP 2008063371W WO 2010010627 A1 WO2010010627 A1 WO 2010010627A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
fine powder
rotating
powder molding
molding method
Prior art date
Application number
PCT/JP2008/063371
Other languages
French (fr)
Japanese (ja)
Inventor
浩章 岡
斉彰 岡
Original Assignee
産機電業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 産機電業株式会社 filed Critical 産機電業株式会社
Priority to PCT/JP2008/063371 priority Critical patent/WO2010010627A1/en
Publication of WO2010010627A1 publication Critical patent/WO2010010627A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases

Definitions

  • the present invention relates to a metal powder, metal powder, metal powder for thermal metallurgy, magnetic material, spherical metal powder for thermal spraying, metal powder for conductive paste, solder ball, and regenerator material for magnetic refrigerator, etc.
  • the present invention relates to a method for producing spherical fine particles applicable to a wide range of inorganic and organic substances used in foods, pharmaceuticals, chemical industries, and the like, and a centrifugal spray device thereof.
  • centrifugal spraying methods As a method for forming a metal or alloy into a spherical powder, various centrifugal spraying methods are known in addition to a rotating consumable electrode method, a droplet dropping spraying method, a gas atomizing method, a water atomizing method, and the like.
  • the powder particle size in these methods is generally widely distributed over several ⁇ m to several 100 ⁇ m, and there are restrictions on the control of the particle size produced, and there are problems in productivity, There are many challenges.
  • the centrifugal spray method of the present invention can obtain spherical fine powder having a particle size of 50 ⁇ m or less and a narrow distribution width in addition to good controllability of operation parameters.
  • the centrifugal spraying method in the prior art is, for example, a disk with a flat surface as a rotating body, a disk with irregularities (Patent Documents 1 and 2), or a dish with a dent in the upper part of a disk ( Patent Document 4), on the other hand, has been proposed in which various processes are added in consideration of pouring and scattering of the target raw material, using a circular plate as a basic shape, such as an umbrella having an upper slope.
  • JP 2006-2176 A JP 2002-317212 A Japanese Patent No. 3511082 Japanese Patent Laid-Open No. 10-85583 Japanese Patent No. 3270713 Japanese Patent Laid-Open No. 05-171228
  • the present invention has been made in view of the above-described circumstances, and a method for producing a powder capable of producing a powder composed of fine particles having a narrow particle size distribution and a uniform particle size with good mass productivity. And it aims at providing the device.
  • the raw material molten metal is supplied to the bottom surface in the vicinity of the center axis center of the rotating container having a heated cylindrical crucible shape housed in the chamber, the centrifugal force is sufficiently applied to the molten metal, and the molten metal is pressed against the inner wall surface of the crucible, It is spattered from the crucible opening by centrifugal force so as to balance the amount of molten metal that is continuously supplied, and is sprayed and sprayed into an atmospheric gas such as argon, helium, nitrogen, air in the chamber, and so on. Produce powder.
  • an atmospheric gas such as argon, helium, nitrogen, air in the chamber, and so on.
  • the present invention also provides a melting device for melting a target material in a chamber, a crucible for receiving the molten material from the melting device, a driving device for rotating the crucible at a high speed along a rotation center axis, and the melting
  • a powder production apparatus comprising a pouring nozzle for pouring molten material from the apparatus onto the bottom surface of the crucible, and a rotation equipped with the chamber containing fine powder obtained by centrifugally spraying the molten material from the open end of the crucible. This is a fine powder molding apparatus using a crucible.
  • the molten metal droplets scattered from the opening end of the upper end surface of the crucible have a uniform velocity distribution, it is possible to produce a powder composed of fine particles having a narrow particle size distribution width and uniform particle size. It is.
  • the molten metal is temporarily stored in a tundish and then sprayed while the molten metal flow rate from the nozzle is controlled at a constant level. Therefore, the molten material is added in the melting furnace while checking the amount of molten tundish. Since it can be dissolved, powder can be produced continuously, and high productivity is ensured.
  • the produced fine powder is spherical and has a uniform diameter, and has a wide range of uses as a solder ball, a thermal spray material, or a metal injection-generating material.
  • FIG. 1 is an overall view of a powder production apparatus as an embodiment of the present invention. It is the figure which showed the behavior of the structure around a rotation crucible, and the molten metal poured. It is a figure which shows the crucible periphery provided with the heating body which heats the inner wall of a rotation crucible in detail. It is a figure which shows the heating body which heats a rotation crucible.
  • FIG. 1 is an overall view of the apparatus
  • FIG. 2 shows the structure around the rotating crucible and the behavior of the molten metal to be poured.
  • FIG. 3 is a view showing in detail the periphery of the crucible provided with a heating body for heating the inner wall of the rotating crucible
  • FIG. 4 is a view showing a heating body for heating the rotating crucible.
  • the centrifugal spraying apparatus includes a melting furnace 2 inside the chamber 1, loads a raw material to be melted from the raw material additional apparatus 3 into the melting furnace 2, and heats to form a molten metal A.
  • the formed molten metal A is transferred to a holding furnace (tundish) 4 and poured from the nozzle 5 onto the bottom surface of the cylindrical crucible 10.
  • the crucible 10 is preferably provided with a heat insulating material 12 around it, and more preferably housed in a heat-resistant metal crucible receiver 13 and can be rotated at high speed by a rotating shaft from the outside of the container.
  • the heat-resistant metal crucible receiver 13 is preferably provided with fins 14 for cooling.
  • the holding furnace (tundish) 4 and the nozzle 5 are provided with high-frequency induction heating coils 15 and 16 for keeping the molten metal warm. In addition, you may use the electric heating body 8.
  • FIG. When operating for a long time, it is desirable to cool the chamber with water. The chamber is filled with a gas flow, and the generated particles are cooled. In order to enhance the cooling effect, the pressure can usually be increased to 10 atmospheres.
  • An induction coil 16 is arranged on the outer surface of the pouring nozzle 5, and a heat generating sleeve 17 is installed on the inner and outer surfaces of the induction coil and on the lower part of the nozzle, and the inner surface and the bottom surface of the pouring nozzle and the crucible are irradiated by radiation from the sleeve.
  • the exothermic sleeve is, for example, a refractory cylinder covered with a graphite cylinder, and this graphite portion is an induced current or resistance overheated.
  • the molten metal A is poured into the vicinity of the center of the crucible 10 that rotates at high speed, and the molten metal A is pressed against the inner wall of the crucible by centrifugal force, and the liquid film state is ensured to be scattered at a high speed from the crucible opening to constitute the atmosphere.
  • the powder B is produced by atomization by rapid collision with a gas such as He gas, Ar gas, or N 2 gas, and rapidly solidifying.
  • the produced coagulated powder B is continuously collected in a product container 6 provided at the lower part of the container 1.
  • it is desirable that the crucible opening is arranged at right angles to the vertical line in order to scatter the molten metal from the crucible opening.
  • the crucible has a saddle-shaped or cylindrical side wall, and the side wall may be wide or wide within ⁇ 10 degrees with respect to the vertical.
  • the crucible can be made of heat-resistant calcium, zirconia, high melting point molybdenum, or the like.
  • the greatest merit of the powder production according to the present invention is that the molten metal A is formed in a liquid film shape on the inner wall of the crucible 10 by centrifugal force, and the rotating disk which is the greatest point in the prior art is not used. It is not necessary to consider the disc material. That is, in the prior art, securing the wettability with the target metal was a big problem in selecting the disk material, whereas in the present invention, the crucible material in a molten state with the target metal is simply used for the above reason. Only the viewpoints of heat resistance and reactivity need be considered.
  • the rotating crucible 10 is disposed on the outside thereof. It is possible to make the crucible receiver 13 made of heat-resistant metal bear mechanical strength, and the characteristics required for the crucible 10 are greatly relieved from this viewpoint.
  • the upper opening diameter (D) and its depth (H) are more preferably 10 to 0.5 and 5 to 0.5 in terms of D / H. This is because uniform spraying cannot be obtained outside this range.
  • the melt raw material melted and adjusted in the high frequency induction furnace 2 or the like is set at the bottom of the tundish through a holding furnace held at a high temperature using means such as high frequency induction or the tundish (intermediate vessel) 4.
  • hot water is poured onto the bottom surface at the center of the crucible 10 rotating at a high speed at a predetermined hot water supply speed.
  • the pouring position may be gradually changed / moved from the center of the crucible toward the radial direction at a predetermined speed in order to prevent the pouring part from being locally melted.
  • the distance that can be moved is within about 1/2 of the crucible radius. It is preferable to fit in.
  • the molten metal poured on the bottom of the crucible moves to the crucible side wall surface by centrifugal force, and then the molten metal in the centrifugal casting gradually increases the melt thickness at the crucible side wall surface by the molten metal poured continuously. Similar to the above, the crucible side wall surface rises in a liquid film state while receiving a strong centrifugal force. As soon as the melt in the liquid film state reaches the upper end of the opening of the crucible 10, it is scattered at high speed in the atmosphere by the energy accumulated by being released from the centrifugal force, and is atomized along with the sudden frictional collision with the atmospheric gas. To do.
  • the centrifugal force is sufficiently applied to the melt liquid film existing on the side wall surface of the crucible, and the slip between the disk and the liquid film as in the conventional centrifugal spraying by the disk rotation may exist.
  • it is not affected by the material and shape of the rotating disk, which is a problem from the viewpoint of wettability with the liquid film in the prior art.
  • the scattering velocity distribution at the time of scattering from the crucible opening end is a velocity distribution in a very narrow range, and as a result
  • the powder produced by the method and apparatus of the present invention has a very uniform size distribution, and the shape of the powder is scattered in the form of droplets, and solidification is completed, so that the degree of circularity is extremely high. Is obtained.
  • Q / r 2 n is defined from (/ min), crucible radius r (cm), and rotational speed n (min ⁇ 1 ).
  • the operating parameters can be changed from 2000 rpm to 50000 rpm in accordance with the optimization of the crucible diameter while corresponding to the desired powder size and production speed. For example, if a crucible with a radius of 2.5 cm is used for pure copper and molten metal is poured at a rate of 10 kg per minute while giving 2000 revolutions per minute, the density of molten pure copper is 7.8 g / cm 3 , Q / The value of r 2 n is 0.10 (cm).
  • the value of Q / r 2 n is 1.0 In the case of ⁇ 10 ⁇ 6 (cm), and the same hot water supply speed of 0.1 kg / min and a crucible with a radius of 16 cm and a rotational speed of 50000 min- 1 , the value of Q / r 2 n is 1.0 ⁇ 10 ⁇ 6 ( cm).
  • the relationship between the hot water supply speed Q (cc / min) for producing fine metal powder while controlling the liquid film thickness, the crucible radius r (cm), and the crucible rotation speed n (min- 1 ) is Experience has shown that in order to generate particles having a diameter of 50 ⁇ m or less, it is sufficient to control to the range of the following formula.
  • the method for heating the crucible is not limited to high frequency induction heating. That is, when heating at a relatively low temperature is sufficient, radiation heating with an infrared lamp is possible.
  • a rotating shaft is placed on the outer periphery of the crucible or at the bottom of the crucible bottom.
  • a permanent magnet separated and fixed can be arranged, and heating by an eddy current generated along with the rotation of the crucible can be performed by electromagnetic induction with the permanent magnet.
  • FIG. 3 shows an example of a graphite heating body.
  • Example 1 In the argon gas atmosphere container of about 1 atm, the following rotating body was installed for the purpose of rotating spray. First, a carbon crucible having an inner diameter of 85 mm and a depth of 65 mm was used as a rotating crucible. On the outer periphery of the crucible, a heat insulating structure was formed with porous ceramics mainly composed of zirconia having a thickness of 8 mm. These rotating bodies are housed inside a crucible receiver formed of Inconel 600.
  • fins having a blade thickness of 1.5 mm and a depth of 6 mm are provided at a pitch of 8 mm in the crucible height direction for the purpose of cooling.
  • the thickness of the fin becomes thinner as it goes away from the outer cylinder surface of the crucible for weight reduction.
  • Example 2 For pure copper, we attempted further refinement at a casting rate of 1.0 kg / min for a nozzle diameter of 1.0 mm ⁇ for a diameter of 200 mm ⁇ crucible and a crucible rotation speed of 35000 min- 1 . Compared with Example 1, since the crucible diameter is large, the centrifugal force received by the liquid film is also large, and the obtained particle size distribution has an average particle size less than half that of Example 1.
  • Example 3 Using an alumina crucible, a powder production test was conducted on 95.75% Sn, 3.5% Ag, and 0.75% Cu alloy, which are lead-free solders. As a result of testing under the test conditions as shown in Table 1, a powder having an average diameter of 10 ⁇ m could be produced.
  • Example 4 Using an alumina crucible, a powder production test was conducted on 30% Ag, 38% Cu, and 32% Zn alloy used for silver brazing. As a result of testing under the test conditions shown in Table 1, powder having an average diameter of 32 ⁇ m could be produced.
  • Example 5 Using stainless steel (SUS316L), a large diameter crucible was used for the purpose of producing fine powder with high productivity.
  • the pouring nozzle diameter used was 1.5 mm ⁇ , and the nozzle heating, crucible heating, and the structure around the crucible were similar to the series of examples corresponding to the crucible size.
  • the average particle size was 5.2 ⁇ m
  • the cumulative 10% was 2.1 ⁇ m or less
  • the cumulative 50% was 4.2 ⁇ m or less
  • the cumulative 90% was 7.8 ⁇ m or less.
  • Comparative Example 1 A spray test was conducted on Sn-Ag-Cu solder using a flat disk disc (diameter 120 mm ⁇ manufactured by SUS304, thickness 23 mm) as found in the prior art instead of the crucible. Note that all the structures around the rotating crucible used in Examples 1 to 5 were removed, and in order to avoid the solidification of the molten metal on the disk surface, a magnetic pole in the circumferential direction with the same diameter as the disk was placed on the back surface side of the disk. A 6-pole permanent magnet with alternating changes was placed, and the disk surface was heated to 430 ° C. while adjusting the distance from the disk. The permanent magnet is covered with a thin heat insulating sheet and is fixed separately from the rotating shaft. The test conditions are shown in Table 1. Although the produced powder had an average particle size of 85 ⁇ m, it had a very wide particle size distribution from a size of several microns to a maximum of 320 microns.
  • Comparative Example 2 For the disk used in Comparative Example 1, the surface is processed into a spherical shape with a radius of 600 mm and a constant radius, and the outermost peripheral part is raised by about 3 mm with respect to the center of the flat plate. A device that can be applied to the film was made. The test conditions were exactly the same as in Comparative Example 1, but the average particle size was 56 ⁇ m, and there were no giant particles as seen in Comparative Example 1, and a powder with a relatively narrow particle size distribution was obtained. This seems to be a result of comparatively sufficient application of centrifugal force to the molten metal relative to Comparative Example 1.
  • the average particle size is 74 ⁇ m
  • the cumulative 10% weight is 8 ⁇ m or less
  • the cumulative 50% weight is 68 ⁇ m or less
  • the cumulative 90% weight is 145 ⁇ m or less.
  • Table 1 The results of the above examples are shown in Table 1.
  • the heating means can be energized resistance heating in addition to high-frequency induction heating. Furthermore, in general, there is a concern about melting and wear of the crucible due to molten metal in the pouring part, so that the pouring position is gradually moved in the radial direction of the crucible when there is a margin in the crucible size.
  • a mechanism may be provided.
  • the electromagnetic flow control method is incorporated in the pouring flow control, but a stopper method immersed in a holding furnace (tundish) may be adopted.
  • Solder balls Ultra-compact LSI parts such as BGA (Ball Grid Array) and CSP (Chip Size Package) use solder balls as contact materials in mobile phones, digital home appliances, etc., but the current ball size is 50-100 ⁇ m. The diameter is expected to be reduced to 5 to 10 ⁇ m in the future in response to LSI miniaturization.
  • the fine particles obtained by the method of the present invention have high size uniformity and roundness, and these problems can be solved at once. Sn-Ag, Sn-Ag-Cu, Sn-Ag-Cu-Bi , Sn-Bi series, Sn-Cu series, Sn-Zn series, etc. can be manufactured.
  • MIM metal injection molding material
  • metal powder injection molding instead of conventional press-molding powder metallurgy
  • injection molding is a metal powder injection molding (injection molding) in a state of being wrapped in a binder.
  • Sintered bodies manufactured by Metal Injection Molding hereinafter referred to as MIM
  • MIM Metal Injection Molding
  • MIM is preferably spherical and dense fine powder with high packing density, and spherical fine powder is more likely to flow. From the viewpoint of reducing product defects, Fine powder is indispensable.
  • the production of the powder according to the present invention can provide a powder suitable for such use.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

It is possible to provide a method and device for manufacturing powder of fine particles having a small particle diameter distribution width, i.e., similar particle diameters, with a high productivity. A molten raw material A is introduced to a bottom surface in the vicinity of the rotation axis center of a rotary vessel having a heated cylindrical crucible (10) arranged in a chamber. The molten raw material is subjected to a centrifugal force so as to be pushed against the inner wall of the crucible and injected to fly into the chamber containing an atmospheric gas such as argon, helium, nitrogen, and air by a centrifugal force from an opening of the crucible, so as to manufacture an ultra-fine powder B having similar particle sizes.

Description

回転ルツボを使用した微粉末製造方法及びその装置Method and apparatus for producing fine powder using rotating crucible
 本発明は、粉末冶金用球状粉末、磁性材料、溶射用球状金属粉末、導電ペースト用金属粉末、ハンダボール、および磁気冷凍機用蓄冷材等に使用される金属、合金および金属酸化物、さらには食品、医薬品や化学工業等に使用される広範囲の無機、有機物質等にも適用可能な球状微粒子の製造方法、および、その遠心噴霧装置に関するものである。 The present invention relates to a metal powder, metal powder, metal powder for thermal metallurgy, magnetic material, spherical metal powder for thermal spraying, metal powder for conductive paste, solder ball, and regenerator material for magnetic refrigerator, etc. The present invention relates to a method for producing spherical fine particles applicable to a wide range of inorganic and organic substances used in foods, pharmaceuticals, chemical industries, and the like, and a centrifugal spray device thereof.
 金属、または合金を球状粉末化する方法として、回転消耗電極法、液滴落下噴霧法、ガスアトマイズ法、水アトマイズ法の他、種々の遠心噴霧法等が知られている。しかし、これらの方法における粉体粒径は数μmから数100μmにわたって広く分布するのが一般的であり、また製造される粒径制御に制約があったり、生産性に問題があったりして、多くの課題を抱えている。
本願発明の遠心噴霧法は、運転パラメータの制御性が良好なことに加え、粒径が50μm以下で、その分布幅が狭い球状微粉末を得ることが可能である。
As a method for forming a metal or alloy into a spherical powder, various centrifugal spraying methods are known in addition to a rotating consumable electrode method, a droplet dropping spraying method, a gas atomizing method, a water atomizing method, and the like. However, the powder particle size in these methods is generally widely distributed over several μm to several 100 μm, and there are restrictions on the control of the particle size produced, and there are problems in productivity, There are many challenges.
The centrifugal spray method of the present invention can obtain spherical fine powder having a particle size of 50 μm or less and a narrow distribution width in addition to good controllability of operation parameters.
 従来技術における遠心噴霧方法は、たとえば、回転体として表面は平坦な円板や、円板に凹凸を加えたもの(特許文献1、2)、皿状に円板上部にへこみを加工したもの(特許文献4)、逆に傘状に上部に傾斜を付けたもの等、円板を基本形として、対象原料の注湯と飛散を考慮して種々の加工が加えられたものが提案されている。 The centrifugal spraying method in the prior art is, for example, a disk with a flat surface as a rotating body, a disk with irregularities (Patent Documents 1 and 2), or a dish with a dent in the upper part of a disk ( Patent Document 4), on the other hand, has been proposed in which various processes are added in consideration of pouring and scattering of the target raw material, using a circular plate as a basic shape, such as an umbrella having an upper slope.
 しかしながら、これらの方法では、溶湯と回転体との濡れ性や、注湯位置によっては、急激な速度差に起因して溶湯と回転体との間にスリップが発生する。その結果、高速回転によって生み出される遠心力が十分に溶湯に作用出来ないまま溶湯が回転体外周部に到達して雰囲気中に飛散するため、十分な噴霧細粒化が実現出来ないのが現状である。その解決策として遠心噴霧とガス噴霧を併用したもの(特許文献4)があるが、この技術では従来のガス噴霧の欠点を大きく補うことが不可能であり、製造される粉体の粒径分布の広がりを低減することが出来ない。さらに、噴霧用のガスが大量に必要であり、経済的に得策ではない。
特開2006-2176号公報 特開2002-317212号公報 特許第3511082号公報 特開平10-85583号公報 特許第3270713号公報 特開平05-171228号公報
However, in these methods, depending on the wettability between the molten metal and the rotating body and the pouring position, a slip occurs between the molten metal and the rotating body due to an abrupt speed difference. As a result, since the centrifugal force generated by high-speed rotation cannot sufficiently act on the molten metal, the molten metal reaches the outer periphery of the rotating body and scatters in the atmosphere, so that it is not possible to realize sufficient spray atomization. is there. As a solution to this problem, there is a combination of centrifugal spraying and gas spraying (Patent Document 4). However, this technique cannot greatly compensate for the disadvantages of conventional gas spraying, and the particle size distribution of the produced powder. Can not reduce the spread of. In addition, a large amount of atomizing gas is required, which is not economically advantageous.
JP 2006-2176 A JP 2002-317212 A Japanese Patent No. 3511082 Japanese Patent Laid-Open No. 10-85583 Japanese Patent No. 3270713 Japanese Patent Laid-Open No. 05-171228
 従来法の遠心噴霧方法は,製造される粉体粒子の粒径分布のコントロールが難しく、粉体粒子の粒径分布は,目標とする所定の粒径よりも広範囲に分布するのが一般的である。このため、所要の粒径分布を得るため、製造した幅広い粒径分布に対して分球処理しているが、非常に歩留まりが悪いのが現状である。従って、これらの状況は,生産性の悪さ、ひいては金属等の粉末の製造コスト等にも影響し、粉末製造の最大のネックとなっている。
 本発明は、上述した事情に鑑みてなされたもので、粒径分布の幅が狭く、粒径が揃った、微細な粒子からなる粉末を良好な量産性で製造することができる粉末の製造方法および,その装置を提供することを目的とする。
In the conventional centrifugal spraying method, it is difficult to control the particle size distribution of the produced powder particles, and the particle size distribution of the powder particles is generally distributed over a wider range than the target predetermined particle size. is there. For this reason, in order to obtain a required particle size distribution, the spheroidizing treatment is applied to the manufactured wide particle size distribution, but the current yield is very low. Therefore, these conditions have an adverse effect on productivity and, in turn, the production cost of powders of metals and the like, and are the biggest bottleneck in powder production.
The present invention has been made in view of the above-described circumstances, and a method for producing a powder capable of producing a powder composed of fine particles having a narrow particle size distribution and a uniform particle size with good mass productivity. And it aims at providing the device.
 チャンバー内に収容した加熱されている円筒状ルツボ形状を有する回転容器の中心軸中心近傍の底面に原料溶湯を給湯し、遠心力を十分溶湯に作用させて当該ルツボ内壁面に当該溶湯を押しつけ、連続供給される溶湯量とバランスするようにルツボ開口部から遠心力によって飛散させ、チャンバー内のアルゴン、ヘリウム、窒素、空気などの雰囲気ガス中に飛散噴霧させて粉体サイズの揃った超微細な粉体を製造する。
 また、本発明は、チャンバー内に、対象とする材料を溶解する溶融装置と、前記溶融装置から溶融材料を受けるルツボと、前記ルツボを回転中心軸に沿って高速回転させる駆動装置と、前記溶融装置からの溶融材料を前記ルツボの底面に注湯する注湯ノズルとを備えた粉末製造装置で、前記溶融材料を当該ルツボの開口端から遠心噴霧した微粉末を収容する前記チャンバーを備えた回転ルツボを使用した微粉末成形装置である。
The raw material molten metal is supplied to the bottom surface in the vicinity of the center axis center of the rotating container having a heated cylindrical crucible shape housed in the chamber, the centrifugal force is sufficiently applied to the molten metal, and the molten metal is pressed against the inner wall surface of the crucible, It is spattered from the crucible opening by centrifugal force so as to balance the amount of molten metal that is continuously supplied, and is sprayed and sprayed into an atmospheric gas such as argon, helium, nitrogen, air in the chamber, and so on. Produce powder.
The present invention also provides a melting device for melting a target material in a chamber, a crucible for receiving the molten material from the melting device, a driving device for rotating the crucible at a high speed along a rotation center axis, and the melting A powder production apparatus comprising a pouring nozzle for pouring molten material from the apparatus onto the bottom surface of the crucible, and a rotation equipped with the chamber containing fine powder obtained by centrifugally spraying the molten material from the open end of the crucible. This is a fine powder molding apparatus using a crucible.
 上記本発明によれば、ルツボ上端面の開口端から飛散する溶湯液滴は均一な速度分布を有するため、粒径分布の幅が狭く、粒径が揃った微細な粒子からなる粉末の製造可能である。さらに,溶解された溶湯は,タンディッシュで一旦溜め置かれた後,ノズルからの注湯流速度を一定に制御しつつ噴霧するため、タンディシュの溶湯量を確認しながら,溶解炉で原料溶湯追加溶解することが可能なため,連続的に粉末を製造することができ、高い生産性が確保される。製造された微粉末は球状で、均一な直径を有する微粉末で、ハンダボール、溶射材、又は金属射出生成形素材として広範な用途がある。 According to the present invention, since the molten metal droplets scattered from the opening end of the upper end surface of the crucible have a uniform velocity distribution, it is possible to produce a powder composed of fine particles having a narrow particle size distribution width and uniform particle size. It is. In addition, the molten metal is temporarily stored in a tundish and then sprayed while the molten metal flow rate from the nozzle is controlled at a constant level. Therefore, the molten material is added in the melting furnace while checking the amount of molten tundish. Since it can be dissolved, powder can be produced continuously, and high productivity is ensured. The produced fine powder is spherical and has a uniform diameter, and has a wide range of uses as a solder ball, a thermal spray material, or a metal injection-generating material.
本発明における一実施形態としての粉末製造装置の全体図である。1 is an overall view of a powder production apparatus as an embodiment of the present invention. 回転ルツボ周辺の構造と注湯される溶湯の挙動を示した図である。It is the figure which showed the behavior of the structure around a rotation crucible, and the molten metal poured. 回転ルツボの内壁を過熱する加熱体を備えたルツボ周辺を詳細に示す図である。It is a figure which shows the crucible periphery provided with the heating body which heats the inner wall of a rotation crucible in detail. 回転ルツボを加熱する加熱体を示す図である。It is a figure which shows the heating body which heats a rotation crucible.
符号の説明Explanation of symbols
1 チャンバー(容器)
2 溶融炉
A 溶融体
3 原料追装装置
4 保持炉(タンディッシュ)
5 注湯ノズル
5R 電磁バルブ
6 製品コンテナ
8 電気加熱体
9 回転軸
10 底付き円筒状ルツボ
B 飛散粉末
12 断熱材
13 耐熱金属製のルツボ受け
14 冷却用フィン
15,16 高周波誘導加熱コイル
17 発熱スリーブ
23 注湯液流
1 chamber
2 Melting furnace A Melt 3 Raw material replenishment device 4 Holding furnace (tundish)
5 Pouring nozzle 5R Solenoid valve 6 Product container 8 Electric heating body 9 Rotating shaft 10 Cylindrical crucible B with bottom 12 Spattered powder 12 Heat insulation material 13 Heat-resistant metal crucible receiver 14 Cooling fins 15 and 16 High-frequency induction heating coil 17 Heating sleeve 23 Pouring liquid flow
 以下、本発明の実施形態について、添付図面を参照して説明する。遠心噴霧装置の概略と高速回転ルツボ構造を図1と図2に示す。図1は装置全体図であり、図2は、回転ルツボ周辺の構造と注湯される溶湯の挙動を示したものである。図3は回転ルツボの内壁を加熱する加熱体を備えたルツボ周辺を詳細に示す図であり、図4は回転ルツボを加熱する加熱体を示す図である。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. An outline of the centrifugal spray device and a high-speed rotating crucible structure are shown in FIGS. FIG. 1 is an overall view of the apparatus, and FIG. 2 shows the structure around the rotating crucible and the behavior of the molten metal to be poured. FIG. 3 is a view showing in detail the periphery of the crucible provided with a heating body for heating the inner wall of the rotating crucible, and FIG. 4 is a view showing a heating body for heating the rotating crucible.
 遠心噴霧装置は、チャンバー1の内部に溶融炉2を備え、原料追装装置3から溶融対象の原料を溶融炉2に装填し、加熱して溶湯Aを形成する。形成された溶湯Aを保持炉(タンディッシュ)4に移し、ノズル5より円筒状ルツボ10の底面に注湯する。ルツボ10は、その周囲に望ましくは断熱材12が配置され、さらに望ましくは耐熱金属製のルツボ受け13に収容されており、容器外部からの回転軸により高速回転が可能となっている。耐熱金属製のルツボ受け13には冷却のため、望ましくは、フィン14が設けられている。保持炉(タンディッシュ)4およびノズル5には溶湯を保温するための高周波誘導加熱コイル15,16が設けられている。なお、電気加熱体8を用いてもよい。長時間運転する場合にはチャンバーを水冷することが望ましい。チャンバー内には通ガスを充填し、生成した粒子を冷却する。冷却効果を高めるために通常10気圧まで圧力を高めることが出来る。 The centrifugal spraying apparatus includes a melting furnace 2 inside the chamber 1, loads a raw material to be melted from the raw material additional apparatus 3 into the melting furnace 2, and heats to form a molten metal A. The formed molten metal A is transferred to a holding furnace (tundish) 4 and poured from the nozzle 5 onto the bottom surface of the cylindrical crucible 10. The crucible 10 is preferably provided with a heat insulating material 12 around it, and more preferably housed in a heat-resistant metal crucible receiver 13 and can be rotated at high speed by a rotating shaft from the outside of the container. The heat-resistant metal crucible receiver 13 is preferably provided with fins 14 for cooling. The holding furnace (tundish) 4 and the nozzle 5 are provided with high-frequency induction heating coils 15 and 16 for keeping the molten metal warm. In addition, you may use the electric heating body 8. FIG. When operating for a long time, it is desirable to cool the chamber with water. The chamber is filled with a gas flow, and the generated particles are cooled. In order to enhance the cooling effect, the pressure can usually be increased to 10 atmospheres.
 注湯ノズル5の外面に誘導コイル16を配置し、当該誘導コイルの内外面とノズル下部に発熱用スリーブ17を設置して、注湯ノズルとルツボの内側面、および底面をスリーブからの輻射によって加熱する。発熱用スリーブは、例えば、耐火物円筒を黒鉛円筒でカバーし、この黒鉛部分を誘導電流、または抵抗過熱したものである。
 本発明は高速で回転するルツボ10の中心近傍へ溶湯Aを注ぎ、遠心力によって溶湯Aをルツボ内側壁に押しつけ液膜状態を確保しながら、ルツボ開口部から高速飛散させて、雰囲気を構成しているHeガス、Arガス、もしくは、Nガスなどとの衝突によって噴霧化して急速冷凝固して粉末Bを製造するものである。なお、製造された凝固粉Bは容器1の下部に設けた製品コンテナ6に連続的に回収される。
 上記の通りルツボ開口部から溶湯を飛散させるためにルツボ開口部は鉛直線に対して直角に配置されていることが望ましい。また、ルツボは椀型又は円筒形の側壁を有し、この側壁は垂直に対して±10度以内の上広または下広であってもよい。ルツボの材質は耐熱性があるカルシヤ、ジルコニヤ、高融点のモリブデン製等が使用できる。
An induction coil 16 is arranged on the outer surface of the pouring nozzle 5, and a heat generating sleeve 17 is installed on the inner and outer surfaces of the induction coil and on the lower part of the nozzle, and the inner surface and the bottom surface of the pouring nozzle and the crucible are irradiated by radiation from the sleeve. Heat. The exothermic sleeve is, for example, a refractory cylinder covered with a graphite cylinder, and this graphite portion is an induced current or resistance overheated.
In the present invention, the molten metal A is poured into the vicinity of the center of the crucible 10 that rotates at high speed, and the molten metal A is pressed against the inner wall of the crucible by centrifugal force, and the liquid film state is ensured to be scattered at a high speed from the crucible opening to constitute the atmosphere. The powder B is produced by atomization by rapid collision with a gas such as He gas, Ar gas, or N 2 gas, and rapidly solidifying. The produced coagulated powder B is continuously collected in a product container 6 provided at the lower part of the container 1.
As described above, it is desirable that the crucible opening is arranged at right angles to the vertical line in order to scatter the molten metal from the crucible opening. Further, the crucible has a saddle-shaped or cylindrical side wall, and the side wall may be wide or wide within ± 10 degrees with respect to the vertical. The crucible can be made of heat-resistant calcium, zirconia, high melting point molybdenum, or the like.
 本発明による粉末製造の最大のメリットは、遠心力で当該ルツボ10の内側壁に溶湯金属Aを液膜状に形成することであり、従来技術で最大のポイントであった回転ディスクを使用しないので、ディスク材質を考慮することが必要ない。すなわち、従来技術では対象とする金属との濡れ性確保がディスク材料選定の大きな問題であったのに対して、本発明では、上述の理由から、単に対象金属との溶融状態でのルツボ材の耐熱性と反応性の観点のみを考慮すれば良い。 The greatest merit of the powder production according to the present invention is that the molten metal A is formed in a liquid film shape on the inner wall of the crucible 10 by centrifugal force, and the rotating disk which is the greatest point in the prior art is not used. It is not necessary to consider the disc material. That is, in the prior art, securing the wettability with the target metal was a big problem in selecting the disk material, whereas in the present invention, the crucible material in a molten state with the target metal is simply used for the above reason. Only the viewpoints of heat resistance and reactivity need be considered.
 更に、高速回転させる円盤の場合、材質的に具備すべき条件としては、遠心力に耐え得る機械的強度の確保が不可欠であるが、本方法においては、回転ルツボ10は、その外側に配置されている耐熱金属製のルツボ受け13に機械的強度を担わせることが可能であり、この観点からもルツボ10に要求される特性は大きく緩和される。 Furthermore, in the case of a disk rotated at a high speed, as a condition to be provided as a material, it is indispensable to ensure mechanical strength that can withstand centrifugal force. However, in this method, the rotating crucible 10 is disposed on the outside thereof. It is possible to make the crucible receiver 13 made of heat-resistant metal bear mechanical strength, and the characteristics required for the crucible 10 are greatly relieved from this viewpoint.
 また、ノズル上端部に設置されている流量制御装置、例えば電磁バルブ5Rによって所定の給湯速度になるように制御されながらルツボ底中心近傍に注湯された溶融金属Aは、瞬時に薄い液膜となってルツボ底をルツボ側壁面に向かって流動し、供給量に対して遠心力でバランスしながらルツボ側壁面に沿って上昇して開口部からガス雰囲気中に飛散する。そのため、ルツボ内部に加熱機構を有する注湯ノズルを装入することが可能であり、その加熱装置は、ノズルのみならず、ルツボの加熱も併用することが可能となる。ルツボの形状は上部開口直径(D)とその深さ(H)とは、D/Hで10~0.5、5~0.5でがより望ましい。この範囲を外れると均一な噴霧が得られないからである。 The molten metal A poured near the bottom center of the crucible while being controlled by a flow rate control device installed at the upper end of the nozzle, for example, the electromagnetic valve 5R to have a predetermined hot water supply speed, Then, the crucible bottom flows toward the crucible side wall surface, rises along the crucible side wall surface while being balanced by the centrifugal force with respect to the supply amount, and is scattered from the opening into the gas atmosphere. Therefore, it is possible to insert a pouring nozzle having a heating mechanism inside the crucible, and the heating device can be used not only for the nozzle but also for heating the crucible. As for the shape of the crucible, the upper opening diameter (D) and its depth (H) are more preferably 10 to 0.5 and 5 to 0.5 in terms of D / H. This is because uniform spraying cannot be obtained outside this range.
 高周波誘導炉2などで溶解、成分調整された溶湯原料は、高周波誘導などの手段を用いて高温保持されている保持炉、もしくは、タンディッシュ(中間容器)4を経てタンディッシュ底部に設定されている注湯ノズル5から、高速回転しているルツボ10のほぼ中心の底面に所定給湯速度で注湯される。注湯位置は、注湯部が局部的に溶損するのを防止する目的で所定の速度でルツボ中心から半径方向に向かって徐々に変更/移動させてもよい。ただし、注湯される溶湯はルツボ中心から遠ざかるにつれて、高速回転しているルツボ底面に落下した時の急激な回転速度差を避けるために、移動させ得る距離は、ルツボ半径の1/2程度以内に収めるのが好ましい。 The melt raw material melted and adjusted in the high frequency induction furnace 2 or the like is set at the bottom of the tundish through a holding furnace held at a high temperature using means such as high frequency induction or the tundish (intermediate vessel) 4. From the hot water pouring nozzle 5, hot water is poured onto the bottom surface at the center of the crucible 10 rotating at a high speed at a predetermined hot water supply speed. The pouring position may be gradually changed / moved from the center of the crucible toward the radial direction at a predetermined speed in order to prevent the pouring part from being locally melted. However, in order to avoid a sudden difference in rotational speed when the molten metal poured from the crucible center falls away from the crucible bottom surface, the distance that can be moved is within about 1/2 of the crucible radius. It is preferable to fit in.
ルツボ底面に注湯された溶湯は、遠心力によってルツボ側壁面まで移動したあと、連続的に注湯される溶湯によって徐々にルツボ側壁面での溶融厚みを増大させながら遠心鋳造での溶湯の挙動に類似して強い遠心力を受けながらルツボ側壁面を液膜状態で上昇する。この液膜状態の溶湯はルツボ10の開口上端に達した瞬間、遠心力から開放されて蓄積されているエネルギーによって雰囲気中に高速飛散し、雰囲気ガスとの急激な摩擦衝突に伴って微細噴霧化する。このように、本発明では、ルツボ側壁面に存在する溶湯液膜には遠心力が十分作用しており、従来技術のディスク回転による遠心噴霧におけるようなディスクと液膜とのスリップは存在し得ず、また従来技術で液膜との濡れ性の観点から問題であった回転ディスクの材質と形状などに左右されることはない。 The molten metal poured on the bottom of the crucible moves to the crucible side wall surface by centrifugal force, and then the molten metal in the centrifugal casting gradually increases the melt thickness at the crucible side wall surface by the molten metal poured continuously. Similar to the above, the crucible side wall surface rises in a liquid film state while receiving a strong centrifugal force. As soon as the melt in the liquid film state reaches the upper end of the opening of the crucible 10, it is scattered at high speed in the atmosphere by the energy accumulated by being released from the centrifugal force, and is atomized along with the sudden frictional collision with the atmospheric gas. To do. As described above, in the present invention, the centrifugal force is sufficiently applied to the melt liquid film existing on the side wall surface of the crucible, and the slip between the disk and the liquid film as in the conventional centrifugal spraying by the disk rotation may exist. In addition, it is not affected by the material and shape of the rotating disk, which is a problem from the viewpoint of wettability with the liquid film in the prior art.
 上述のように、ルツボ開口部では、遠心力として蓄積された運動エネルギーが一気に開放されるため、ルツボ開口端からの飛散時の飛散速度分布は、きわめて狭い範囲での速度分布であり、その結果、本発明の方法と装置で製造された粉体は原理的に非常に揃ったサイズ分布が、また、粉体の形状は、粒滴状態で飛散し、凝固が完了するため極めて高い心円度が得られる。
 一般的な遠心噴霧においては、通常、噴霧直前の液膜の状態が噴霧粒子サイズを決定するため、本発明では回転ルツボから離脱する直前の液膜厚みを支配する因子である給湯速度Q(cc/min)とルツボ半径r(cm)、回転速度n(min-1)からQ/r2nを規定する。
As described above, since the kinetic energy accumulated as centrifugal force is released at a stretch in the crucible opening, the scattering velocity distribution at the time of scattering from the crucible opening end is a velocity distribution in a very narrow range, and as a result In principle, the powder produced by the method and apparatus of the present invention has a very uniform size distribution, and the shape of the powder is scattered in the form of droplets, and solidification is completed, so that the degree of circularity is extremely high. Is obtained.
In general centrifugal spraying, since the state of the liquid film immediately before spraying determines the spray particle size, in the present invention, the hot water supply speed Q (cc, which is a factor governing the liquid film thickness immediately before leaving the rotating crucible. Q / r 2 n is defined from (/ min), crucible radius r (cm), and rotational speed n (min −1 ).
 操業パラメータは、希望する粉体サイズや生産速度に対応させながら、ルツボ直径の最適化に合せて、その回転数を毎分2000回転から毎分50000回転まで変更させることが可能である。
 例えば、純銅に対して、半径2.5cmのルツボを使用して毎分2000回転を与えながら毎分10kgの割合で注湯した場合、溶融純銅の密度を7.8g/cm3とすれば、Q/r2nの値は、0.10(cm)であり、同様に毎分0.1kgの給湯速度に対して半径25cmのルツボで20000min-1の回転数の場合、Q/r2nの値は、1.0×10-6(cm)、また、同じ毎分0.1kgの給湯速度に対して半径16cmのルツボで50000min-1の回転数の場合、Q/r2nの値は、1.0×10-6(cm)となる。
The operating parameters can be changed from 2000 rpm to 50000 rpm in accordance with the optimization of the crucible diameter while corresponding to the desired powder size and production speed.
For example, if a crucible with a radius of 2.5 cm is used for pure copper and molten metal is poured at a rate of 10 kg per minute while giving 2000 revolutions per minute, the density of molten pure copper is 7.8 g / cm 3 , Q / The value of r 2 n is 0.10 (cm). Similarly, when the rotational speed is 20000 min- 1 with a crucible with a radius of 25 cm for a hot water supply speed of 0.1 kg per minute, the value of Q / r 2 n is 1.0 In the case of × 10 −6 (cm), and the same hot water supply speed of 0.1 kg / min and a crucible with a radius of 16 cm and a rotational speed of 50000 min- 1 , the value of Q / r 2 n is 1.0 × 10 −6 ( cm).
これらから、液膜厚みを制御しながら微細金属粉体を製造するための給湯速度Q(cc/min)と、ルツボ半径r(cm)、ルツボ回転速度n(min-1)との関係は、直径50μm以下粒子を発生させるためには、次式の範囲に制御すれば十分であることが経験上判明した。
           Q/r2n ≦1.0×10-1
 なお、ルツボの加熱方法は、高周波誘導加熱に限定されるものではない。すなわち、比較的低温加熱で十分な場合は、赤外線ランプでの輻射加熱が可能であり、また、同様にルツボ材質として導電性材料が可能な場合は、ルツボ外周やルツボ底の下部に、回転軸とは分離固定された永久磁石を配置し、永久磁石との電磁誘導により、ルツボ回転に伴って発生する渦電流による加熱も可能である。
From these, the relationship between the hot water supply speed Q (cc / min) for producing fine metal powder while controlling the liquid film thickness, the crucible radius r (cm), and the crucible rotation speed n (min- 1 ) is Experience has shown that in order to generate particles having a diameter of 50 μm or less, it is sufficient to control to the range of the following formula.
  Q / r 2 n ≦ 1.0 × 10 -1
The method for heating the crucible is not limited to high frequency induction heating. That is, when heating at a relatively low temperature is sufficient, radiation heating with an infrared lamp is possible. Similarly, when a conductive material is possible as a crucible material, a rotating shaft is placed on the outer periphery of the crucible or at the bottom of the crucible bottom. In addition, a permanent magnet separated and fixed can be arranged, and heating by an eddy current generated along with the rotation of the crucible can be performed by electromagnetic induction with the permanent magnet.
 その他、図3に示すように、黒鉛コイル、ニクロム線のコイルなどの電気加熱体をルツボの内側に装入し、ルツボを内側から加熱することが望ましく、ルツボ内壁は溶融材の融点から100から300度高いことが、均一な噴霧のために望ましい
。図4には黒鉛加熱体の1例を示す。
In addition, as shown in FIG. 3, it is desirable to insert an electric heating element such as a graphite coil or a nichrome wire coil inside the crucible, and to heat the crucible from the inside. 300 degrees higher is desirable for uniform spraying. FIG. 4 shows an example of a graphite heating body.
 次に、数例の実施例と比較例について説明する。
実施例1:
 約1気圧のアルゴンガス雰囲気容器内に、回転飛散噴霧を目的に、次のような回転体を設置した。まず、内径85mm、深さ65mmのカーボン製ルツボを回転体ルツボとして使用した。ルツボの外周には、肉厚8mmのジルコニアを主成分とする多孔質セラミックスで断熱構造とした。これらの回転体は、インコネル600で成形したルツボ受けの内部に格納してある。また、ルツボ受けの外周には、冷却を目的としてルツボ高さ方向に8mmピッチで翼厚み1.5mm、深さ6mmのフィンが設けられている。フィンの厚みは、軽量化のため、ルツボ外筒面から遠ざかるにつれて薄くなっている。
Next, several examples and comparative examples will be described.
Example 1:
In the argon gas atmosphere container of about 1 atm, the following rotating body was installed for the purpose of rotating spray. First, a carbon crucible having an inner diameter of 85 mm and a depth of 65 mm was used as a rotating crucible. On the outer periphery of the crucible, a heat insulating structure was formed with porous ceramics mainly composed of zirconia having a thickness of 8 mm. These rotating bodies are housed inside a crucible receiver formed of Inconel 600. Further, on the outer periphery of the crucible receiver, fins having a blade thickness of 1.5 mm and a depth of 6 mm are provided at a pitch of 8 mm in the crucible height direction for the purpose of cooling. The thickness of the fin becomes thinner as it goes away from the outer cylinder surface of the crucible for weight reduction.
 このように配置されているルツボ内面に10kgの純銅を高周波誘導炉で溶解後、保持炉(タンディシュ)底部に設定されている直径1.0mmの開口部を有する注湯ノズルから、35000min-1で回転しているルツボのほぼ中心に毎分約1kgの速度で注湯した。なお、注湯ノズルはカーボン製で、ノズル先端部から10mmのみ直径1.0mmの開口部を有しており、それより上部(タンディッシュ側)は内径10mmの円筒形を有している。なお、本実施例においては、保持炉に給湯した後、溶解炉に原料の追加装入を行い、次のヒートを溶解して、合計3ヒートの連続操業を行った。 After melting 10kg of pure copper on the inner surface of the crucible arranged in this way with a high frequency induction furnace, it rotates at 35000min- 1 from a pouring nozzle with an opening of 1.0mm in diameter set at the bottom of the holding furnace (tundish) The hot water was poured almost at the center of the crucible at a rate of about 1 kg per minute. The pouring nozzle is made of carbon and has an opening of 1.0 mm in diameter only 10 mm from the tip of the nozzle, and the upper part (tundish side) has a cylindrical shape with an inner diameter of 10 mm. In this example, after the hot water was supplied to the holding furnace, the raw material was additionally charged into the melting furnace, the next heat was melted, and a total operation of 3 heats was performed.
実施例2:
 純銅を対象に、200mmφルツボ直径、ルツボ回転数35000min-1に対して、1.0mmφのノズル口径に対して注湯速度を1.0kg/minで、更なる微細化を試みた。実施例1と比較して、ルツボ径が大きいため液膜の受ける遠心力も大きく、得られた粒径分布は、実施例1に比較して半分以下の平均粒径が得られている。
Example 2:
For pure copper, we attempted further refinement at a casting rate of 1.0 kg / min for a nozzle diameter of 1.0 mmφ for a diameter of 200 mmφ crucible and a crucible rotation speed of 35000 min- 1 . Compared with Example 1, since the crucible diameter is large, the centrifugal force received by the liquid film is also large, and the obtained particle size distribution has an average particle size less than half that of Example 1.
実施例3:
 アルミナ製ルツボを用いて鉛フリーハンダである95.75%Sn、3.5%Ag、0.75%Cu合金を対象に粉体製造試験を実施した。表1に示すような試験条件で試験を行った結果、平均径10μmの粉体を製造することができた。
Example 3:
Using an alumina crucible, a powder production test was conducted on 95.75% Sn, 3.5% Ag, and 0.75% Cu alloy, which are lead-free solders. As a result of testing under the test conditions as shown in Table 1, a powder having an average diameter of 10 μm could be produced.
実施例4:
 アルミナ製ルツボを使用して銀ロウ用に供されている30%Ag、38%Cu、32%Zn合金を対象とした粉体製造試験を行った。表1に示すような試験条件で試験を行った結果、平均径32μmの粉体を製造することができた。
Example 4:
Using an alumina crucible, a powder production test was conducted on 30% Ag, 38% Cu, and 32% Zn alloy used for silver brazing. As a result of testing under the test conditions shown in Table 1, powder having an average diameter of 32 μm could be produced.
実施例5:
 ステンレス(SUS316L)に対して、微細粉末の製造を高い生産性で製造することを目的として、大径ルツボの使用テストを行った。直径:500mmφ、深さ120mmのマグネシア製のルツボを採用し、2000min-1の回転数を与えて注湯速度2.0kg/minで噴霧処理を行った。使用した注湯ノズル口径は1.5mmφで、ノズル加熱やルツボ加熱、およびルツボ周辺構造は、ルツボサイズに対応させて一連の実施例に類似した構造となっている。製造された粉体のサイズ分布は、平均粒径は5.2μmで、累計10%は2.1μm以下、累計50%は4.2μm以下、累計90%は7.8μm以下のサイズ分布であった。
Example 5:
Using stainless steel (SUS316L), a large diameter crucible was used for the purpose of producing fine powder with high productivity. A magnesia crucible with a diameter of 500 mmφ and a depth of 120 mm was employed, spraying was performed at a pouring rate of 2.0 kg / min with a rotation speed of 2000 min- 1 . The pouring nozzle diameter used was 1.5 mmφ, and the nozzle heating, crucible heating, and the structure around the crucible were similar to the series of examples corresponding to the crucible size. Regarding the size distribution of the produced powder, the average particle size was 5.2 μm, the cumulative 10% was 2.1 μm or less, the cumulative 50% was 4.2 μm or less, and the cumulative 90% was 7.8 μm or less.
比較例1:
 ルツボの代わりに従来技術に見られるような平板ディスク(SUS304で製造された直径120mmφ、厚み23mm)を用いてSn-Ag-Cuハンダを対象に噴霧試験を行った。なお、実施例1~5で用いた回転ルツボ周辺構造物は全て取り外し、ディスク表面で溶湯が凝固するのを避けるため、当該ディスクの裏面側に、当該ディスクとほぼ同じ直径で円周方向に磁極を交互に変更した6極の永久磁石を配置して、ディスクとの距離を調整しながらディスク表面を430℃まで加熱した。なお、この永久磁石は、薄い断熱シートで覆われており、回転軸とは分離固定されている。試験条件は表1に示すが、生成した粉体は平均粒径が85μmであるものの、数ミクロンのサイズから最大320ミクロンまで極めて広い粒径分布であった。
Comparative Example 1:
A spray test was conducted on Sn-Ag-Cu solder using a flat disk disc (diameter 120 mmφ manufactured by SUS304, thickness 23 mm) as found in the prior art instead of the crucible. Note that all the structures around the rotating crucible used in Examples 1 to 5 were removed, and in order to avoid the solidification of the molten metal on the disk surface, a magnetic pole in the circumferential direction with the same diameter as the disk was placed on the back surface side of the disk. A 6-pole permanent magnet with alternating changes was placed, and the disk surface was heated to 430 ° C. while adjusting the distance from the disk. The permanent magnet is covered with a thin heat insulating sheet and is fixed separately from the rotating shaft. The test conditions are shown in Table 1. Although the produced powder had an average particle size of 85 μm, it had a very wide particle size distribution from a size of several microns to a maximum of 320 microns.
比較例2:
 比較例1で使用したディスクに対して、表面を600mm半径Rで一定半径の球面形状に加工して平板中心部に対して最外周部をおおよそ3mm高くして回転ディスクの遠心力を極力溶湯液膜に付与出来る工夫を行った。試験条件は比較例1と全く同じであるが、平均粒径56μmであり、比較例1に見られたような巨大粒は存在せず、比較的狭い粒径分布の粉体が得られた。これは、比較例1に対して、溶湯への遠心力の付与が比較的十分に行われていた結果と思われる。しかしながら、全体の粒径分布を見ると、平均粒径は74μmに対し、累計10%重量は8μm以下、累計50%重量は68μm以下、累計90%重量は145μm以下とルツボ方式での分布に対して極めて広範囲のサイズ分布であった。
上記実施例の結果を表1に示した。
Figure JPOXMLDOC01-appb-T000002
Comparative Example 2:
For the disk used in Comparative Example 1, the surface is processed into a spherical shape with a radius of 600 mm and a constant radius, and the outermost peripheral part is raised by about 3 mm with respect to the center of the flat plate. A device that can be applied to the film was made. The test conditions were exactly the same as in Comparative Example 1, but the average particle size was 56 μm, and there were no giant particles as seen in Comparative Example 1, and a powder with a relatively narrow particle size distribution was obtained. This seems to be a result of comparatively sufficient application of centrifugal force to the molten metal relative to Comparative Example 1. However, looking at the overall particle size distribution, the average particle size is 74μm, the cumulative 10% weight is 8μm or less, the cumulative 50% weight is 68μm or less, and the cumulative 90% weight is 145μm or less. And a very wide size distribution.
The results of the above examples are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
 なお、本実施例では金属粉末の製造に限定したが、食品、医薬品および染料、顔料などにも適用可能であることは言うまでもなく、金属のように処理温度が高くない場合には、場合によってはルツボの加熱機構が不要であることから、簡単な回転機構での対処が可能となる。また、大きな粉体サイズが要求される場合には、本実施例で使用したルツボ直径よりも更に大径のルツボを使用して大きな生産性で球形粉体の製造も可能である。 In addition, although it limited to manufacture of a metal powder in a present Example, it cannot be overemphasized that it is applicable also to a foodstuff, a pharmaceutical, a dye, a pigment, etc., when processing temperature is not high like metal, depending on the case. Since a crucible heating mechanism is unnecessary, it is possible to cope with a simple rotating mechanism. When a large powder size is required, a spherical powder can be produced with high productivity by using a crucible having a diameter larger than that of the crucible used in this embodiment.
 なお、加熱手段は、高周波誘導加熱の他に通電抵抗加熱も可能である。更に、一般的には注湯部おいては溶融金属によるルツボの溶損、摩耗が懸念されるため、ルツボサイズに余裕がある場合には、注湯位置をルツボの半径方向に徐々に移動させる機構を具備してもよい。 Note that the heating means can be energized resistance heating in addition to high-frequency induction heating. Furthermore, in general, there is a concern about melting and wear of the crucible due to molten metal in the pouring part, so that the pouring position is gradually moved in the radial direction of the crucible when there is a margin in the crucible size. A mechanism may be provided.
 また、本実施例では、注湯流の制御に電磁流動制御方式を取り入れたが、保持炉(タンディシュ)内に浸漬したストッパー方式を採用してもよい。 Further, in this embodiment, the electromagnetic flow control method is incorporated in the pouring flow control, but a stopper method immersed in a holding furnace (tundish) may be adopted.
 これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
発明の効果
Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.
The invention's effect
 本発明の方法で製造された微粉末の具体的用途を述べる。
ハンダボール
 超小型LSI 部品のBGA(Ball Grid Array)やCSP(Chip Size Package)は,携帯電話,デジタル家電などに,接点材料としてハンダボールが使用されているが,現在のボールサイズは50~100μm径であるが,LSIの小型化に対応して,将来的には5~10μm径まで縮小されることが望ましいと見込まれている。
 本発明の方法による微粒子は、サイズの均一性と真円度が高く、これらの課題が一気に解決するものであり、Sn-Ag系,Sn-Ag-Cu系,Sn-Ag-Cu-Bi系,Sn-Bi系,Sn-Cu系および,Sn-Zn系等,鉛フリーはんだの製造が可能となる。
溶射材料
 近年,コールドスプレーに代表される音速レベルに高速化した粒子を部材に衝突させる「高速粒子衝突技術」を利用した表面コーティング技術が注目されており、この高速粒子衝突技術を用いたコーティング技術には,Ti,Co,クロム-ニツケル合金や超硬合金粉末等が,航空機のエンジン部材や,発電機のタービン翼,ボイラーチューブ等への表面コーティング技術として採用されている。
 そのために20μm程度以下の微粉末が好ましく,キャリヤーガスによる粒子搬送中の飛散速度低下防止や,流動性,粒子衝突時の変形機構のために,使用される粒子は球形に近いことが不可欠であり,更に,効率面から均一な粒子サイズへの要望が大きい。本願発明による粒子はこれらの粒子として利用される。
MIM用(金属射出成形素材)
 一般的にチタン合金は、航空機用材料、化学機器用材料などとして使用されているが,チタンは加工がむずかしく、航空機部材のように形状の複雑な製品の場合は、非常にコスト高となっており,このような問題を解決するため、粉末冶金法が注目されているが、そこで、従来のプレス成形粉末冶金法に代わる原料粉をバインダで包んだ状態で射出成形する金属粉末射出成形法(Metal Injection Molding:以下MIMという)で製造した焼結体は,密度が高く,表面粗度も小さく,近年,急速にその利用が拡大している。MIMは,成形体は焼結後の密度を向上させるためにも、充填密度が高くなる球形で緻密な微粉が望ましく,更に,球形微粉の方が流れやすいため,製品欠陥低減の観点から,球形微粉末が不可欠となっている。本発明による粉末の製造は,かかる用途に適した粉末を提供できる。
A specific application of the fine powder produced by the method of the present invention will be described.
Solder balls Ultra-compact LSI parts such as BGA (Ball Grid Array) and CSP (Chip Size Package) use solder balls as contact materials in mobile phones, digital home appliances, etc., but the current ball size is 50-100 μm. The diameter is expected to be reduced to 5 to 10μm in the future in response to LSI miniaturization.
The fine particles obtained by the method of the present invention have high size uniformity and roundness, and these problems can be solved at once. Sn-Ag, Sn-Ag-Cu, Sn-Ag-Cu-Bi , Sn-Bi series, Sn-Cu series, Sn-Zn series, etc. can be manufactured.
In recent years, surface coating technology using “high-speed particle collision technology” that collides particles that have been accelerated to a sound velocity level represented by cold spray with a member has been attracting attention. Coating technology using this high-speed particle collision technology Ti, Co, chromium-nickel alloy, cemented carbide powder, etc. are used as surface coating technology for aircraft engine parts, generator turbine blades, boiler tubes, etc.
For this purpose, fine powders of about 20 μm or less are preferred, and it is essential that the particles used be nearly spherical in order to prevent a decrease in the scattering speed during particle transportation by the carrier gas, fluidity, and deformation mechanism during particle collision. Furthermore, there is a great demand for uniform particle size in terms of efficiency. The particles according to the present invention are used as these particles.
For MIM (metal injection molding material)
In general, titanium alloys are used as aircraft materials, chemical equipment materials, etc., but titanium is difficult to process, and in the case of products with complex shapes such as aircraft parts, the cost is very high. In order to solve such problems, powder metallurgy is attracting attention. However, metal powder injection molding (instead of conventional press-molding powder metallurgy) is a metal powder injection molding (injection molding) in a state of being wrapped in a binder. Sintered bodies manufactured by Metal Injection Molding (hereinafter referred to as MIM) have high density and low surface roughness, and their use has been rapidly expanding in recent years. In order to improve the density after sintering, MIM is preferably spherical and dense fine powder with high packing density, and spherical fine powder is more likely to flow. From the viewpoint of reducing product defects, Fine powder is indispensable. The production of the powder according to the present invention can provide a powder suitable for such use.

Claims (20)

  1. チャンバー内で、有機もしくは無機材料を加熱して溶融材を形成し、
    前記溶融材料を保持炉に供給し、前記保持炉からノズルを介して前記溶融材料を円筒状回転ルツボに供給し、
    前記円筒状ルツボを中心軸の周りに高速回転させ、
    前記ルツボの開口端から前記チャンバー内で雰囲気ガス中に遠心噴霧し、微粉末を成形することを特徴とする回転ルツボを使用した微粉末成形方法。
    In the chamber, the organic or inorganic material is heated to form a molten material,
    Supplying the molten material to a holding furnace, supplying the molten material from the holding furnace through a nozzle to a cylindrical rotating crucible;
    Rotating the cylindrical crucible around the central axis at a high speed;
    A fine powder forming method using a rotating crucible, characterized in that fine powder is formed by centrifugal spraying into an atmospheric gas in the chamber from the open end of the crucible.
  2. 前記溶融材を連続的に前記ルツボに供給し、連続的に微粉末を製造することを特徴とする回転ルツボを使用した請求項1記載の微粉末成形方法。 The fine powder molding method according to claim 1, wherein a rotating crucible is used, wherein the molten material is continuously supplied to the crucible to continuously produce fine powder.
  3. 前記ルツボの内面を前記溶融材の融点以上に加熱することを特徴とする回転ルツボを使用した請求項1記載の微粉末成形方法。 The fine powder molding method according to claim 1, wherein the inner surface of the crucible is heated to a melting point or higher of the molten material.
  4. 前記回転軸に当該ルツボの中心軸を合せると共に、ルツボ開口部を鉛直上向に設定することを特徴とする回転ルツボを使用した請求項1記載の微粉末成形方法。 2. The fine powder forming method according to claim 1, wherein the rotating crucible is used while aligning the center axis of the crucible with the rotating shaft and setting the crucible opening vertically upward.
  5. 前記ルツボの形状は、円筒状であることを特徴とする回転ルツボを使用した請求項1記載の微粉末成形方法。 2. The fine powder molding method according to claim 1, wherein the crucible has a cylindrical shape.
  6. 前記ルツボの深さ方向内面側壁を鉛直方向に対して±10度以内の上広もしくは下広口径に設定することを特徴とする回転ルツボを使用した請求項1記載の微粉末成形方法。 2. The fine powder molding method according to claim 1, wherein the inner wall of the crucible in the depth direction is set to an upper or lower wide diameter within ± 10 degrees with respect to the vertical direction.
  7. 前記ルツボがセラミックス製であり、その外周に断熱材を、さらにその外周に高速回転時の遠心力に耐えうる耐熱金属製ルツボ受けを設置した回転体から成ることを特徴とする回転ルツボを使用した請求項1記載の微粉末成形方法。 The crucible is made of ceramics, and a rotating crucible comprising a rotating body provided with a heat insulating material on its outer periphery and a heat-resistant metal crucible receiver capable of withstanding centrifugal force during high-speed rotation on its outer periphery is used. The fine powder molding method according to claim 1.
  8. 前記耐熱金属製ルツボ受け外周部に冷却用フィンを取り付けたことを特徴とする回転ルツボを使用した請求項7記載の微粉末成形方法。 The fine powder molding method according to claim 7, wherein a rotating crucible is used, wherein a cooling fin is attached to an outer peripheral portion of the heat-resistant metal crucible receiver.
  9. 前記ルツボ内部に、回転中心軸を中心に設けた注湯用ノズルとその外周に高周波誘導加熱コイルもしくは通電抵抗加熱装置等を配置して、注湯ノズルとルツボを加熱することを特徴とする回転ルツボを使用した請求項1記載の微粉末成形方法。 A rotation characterized by heating a pouring nozzle and a crucible by disposing a pouring nozzle provided around a rotation center axis inside the crucible and a high-frequency induction heating coil or an energizing resistance heating device on the outer periphery thereof. The fine powder molding method according to claim 1, wherein a crucible is used.
  10. 前記注湯ノズルの外面に誘導コイルを配置し、当該誘導コイルの内外面とノズル下部に発熱用スリーブを設置して、注湯ノズルとルツボの内側面、および底面を加熱することを特徴とする請求項9記載の回転ルツボを使用した微粉末成形方法。 An induction coil is arranged on the outer surface of the pouring nozzle, and a heating sleeve is installed on the inner and outer surfaces of the induction coil and the lower part of the nozzle, thereby heating the inner surface and the bottom surface of the pouring nozzle and the crucible. A fine powder molding method using the rotating crucible according to claim 9.
  11. 前記注湯ノズルを、ルツボの回転中心から1/2半径内の領域に配置することを特徴とする回転ルツボを使用した請求項9記載の微粉末成形方法。 The fine powder molding method according to claim 9, wherein the rotating crucible is used, wherein the pouring nozzle is arranged in a region within a half radius from the rotation center of the crucible.
  12. 前記注湯ノズルから流出する流れを、直径0.3mmないし5.0mmの円形もしくは楕円断面のラミナーフロー状態を確保しながら前記溶融材料を注湯することを特徴とする回転ルツボを使用した請求項8記載の微粉末成形方法。 The rotary crucible using the rotating crucible characterized by pouring the molten material while ensuring a laminar flow state having a circular or elliptical cross section with a diameter of 0.3 mm to 5.0 mm as the flow flowing out from the pouring nozzle. A fine powder molding method.
  13. 前記ルツボへの容積給湯速度Q、ルツボ半径rおよび、ルツボ回転数nを次式の範囲に制御したことを特徴とする回転ルツボを使用した請求項1記載の微粉末成形方法。
    ここで、Qは[cc/min]、rは[cm]および、nは[min-1]とする。
    Figure JPOXMLDOC01-appb-M000001
    2. The fine powder molding method according to claim 1, wherein a rotary crucible is used, wherein the volumetric hot water supply speed Q, the crucible radius r, and the crucible rotation speed n are controlled within the following range.
    Here, Q is [cc / min], r is [cm], and n is [min- 1 ].
    Figure JPOXMLDOC01-appb-M000001
  14. 前記ルツボは、酸化物セラミックス、高強度成形炭素、もしくは金属製であることを特徴とする回転ルツボを使用した請求項1記載の微粉末成形方法。 The fine powder molding method according to claim 1, wherein the crucible is made of oxide ceramics, high-strength molded carbon, or metal.
  15. チャンバー内に、対象とする材料を溶解する溶融炉と、
    前記溶融炉から溶融材を供給される保持炉と、
    前記溶融材を受けるルツボと、
    前記ルツボを回転中心軸に沿って高速回転させる駆動装置と、
    前記溶融装置からの溶融材料を前記ルツボの底面に注湯する注湯ノズルとを備え、
    前記溶融材料を当該ルツボの開口端から前記チャンバー内で噴霧した微粉末を捕獲する前記チャンバーを備えたことを特徴とする回転ルツボを使用した微粉末成形装置。
    A melting furnace for melting the target material in the chamber;
    A holding furnace to which a molten material is supplied from the melting furnace;
    A crucible for receiving the molten material;
    A driving device for rotating the crucible at a high speed along a rotation center axis;
    A pouring nozzle for pouring the molten material from the melting device onto the bottom surface of the crucible,
    A fine powder molding apparatus using a rotating crucible, comprising the chamber for capturing the fine powder sprayed in the chamber from the open end of the crucible with the molten material.
  16. 前記ルツボは底つき円筒状で、上部開口の直径をD、深さをHとすると、D/Hは10~0.5である請求項15記載の微粉末製造装置。 The fine powder production apparatus according to claim 15, wherein the crucible has a bottomed cylindrical shape, and D / H is 10 to 0.5, where D is the diameter of the upper opening and H is the depth.
  17. 前記ルツボの中心軸を鉛直上向に設定したルツボである請求項15記載の微粉末成形装置。 The fine powder molding apparatus according to claim 15, wherein the crucible has a center axis of the crucible set vertically upward.
  18. 前記ルツボの深さ方向内面側壁は鉛直方向に対して±10度以内の上広もしくは下広口径を有するルツボを備えた請求項15記載の微粉末成形装置。 The fine powder molding apparatus according to claim 15, wherein the inner wall of the crucible in the depth direction includes a crucible having an upper or lower wide diameter within ± 10 degrees with respect to the vertical direction.
  19. 前記ルツボがセラミックス製であり、その外周に断熱材を、さらにその外周に高速回転時の遠心力に耐えうる耐熱金属製ルツボ受けを設置した回転するルツボである請求項15記載の微粉末成形装置。。 The fine powder molding apparatus according to claim 15, wherein the crucible is made of ceramics, and is a rotating crucible having a heat insulating material on its outer periphery and a heat-resistant metal crucible receiver that can withstand centrifugal force at high speed rotation on its outer periphery. . .
  20. 前記耐熱金属製ルツボ受け外周部に冷却用フィンを取り付けた回転ルツボである請求項15記載の微粉末成形装置。 The fine powder molding apparatus according to claim 15, which is a rotating crucible having cooling fins attached to an outer peripheral portion of the heat-resistant metal crucible receiver.
PCT/JP2008/063371 2008-07-25 2008-07-25 Device and method for manufacturing fine powder by using rotary crucible WO2010010627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/063371 WO2010010627A1 (en) 2008-07-25 2008-07-25 Device and method for manufacturing fine powder by using rotary crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/063371 WO2010010627A1 (en) 2008-07-25 2008-07-25 Device and method for manufacturing fine powder by using rotary crucible

Publications (1)

Publication Number Publication Date
WO2010010627A1 true WO2010010627A1 (en) 2010-01-28

Family

ID=41570106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063371 WO2010010627A1 (en) 2008-07-25 2008-07-25 Device and method for manufacturing fine powder by using rotary crucible

Country Status (1)

Country Link
WO (1) WO2010010627A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108971506A (en) * 2018-07-02 2018-12-11 王尚木 A kind of device and method of the mass low cost production small ball of noble metal
CN110539001A (en) * 2019-08-29 2019-12-06 北京康普锡威科技有限公司 Connecting rod, self-cooling centrifugal rotary disc atomization powder making device and atomization powder making method
CN113399674A (en) * 2021-06-18 2021-09-17 唐山市嘉恒实业有限公司 Metal granulating device with more uniform particles and preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332406A (en) * 2006-06-13 2007-12-27 Sanki Dengyo Kk Method for forming fine powder by using rotary crucible, and apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332406A (en) * 2006-06-13 2007-12-27 Sanki Dengyo Kk Method for forming fine powder by using rotary crucible, and apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108971506A (en) * 2018-07-02 2018-12-11 王尚木 A kind of device and method of the mass low cost production small ball of noble metal
CN110539001A (en) * 2019-08-29 2019-12-06 北京康普锡威科技有限公司 Connecting rod, self-cooling centrifugal rotary disc atomization powder making device and atomization powder making method
CN110539001B (en) * 2019-08-29 2022-12-30 有研增材技术有限公司 Connecting rod, self-cooling centrifugal rotary disc atomization powder making device and atomization powder making method
CN113399674A (en) * 2021-06-18 2021-09-17 唐山市嘉恒实业有限公司 Metal granulating device with more uniform particles and preparation method

Similar Documents

Publication Publication Date Title
KR102292150B1 (en) Centrifugal atomization of iron-based alloys
JP2007332406A (en) Method for forming fine powder by using rotary crucible, and apparatus therefor
JPH0791571B2 (en) Method for producing titanium particles
CN104475744A (en) Device and method for preparing spherical titanium powder and titanium alloy powder through gas atomization
JP6006861B1 (en) Metal powder manufacturing apparatus and manufacturing method thereof
JP2009221550A (en) Powder production machine, and powder production method
CN107116224A (en) A kind of preparation method of the mould powdered steels of 18Ni 300 for 3D printing technique
WO2020021122A1 (en) Method for the obtaining cost effective powder
US4648820A (en) Apparatus for producing rapidly quenched metal particles
US4207040A (en) Rotary atomization means for the production of metal powder
WO2010010627A1 (en) Device and method for manufacturing fine powder by using rotary crucible
KR101372839B1 (en) Method and apparatus for manufacturing powders
US4178335A (en) Method of producing solid particles of metal
EP0017723A1 (en) Method and apparatus for making metallic glass powder
WO2009153865A1 (en) Micropowder producing apparatus and process
JPS5871306A (en) Production of powder
CN103769596A (en) Method for preparing high-stacking-density oblate powder material
JP5748991B2 (en) Powder production disc
CN109622981A (en) A kind of device and method efficiently preparing metal powder
JPH03107404A (en) Method and apparatus for manufacturing metal powder
JPS60190503A (en) Production of metallic powder
Öztürk et al. Production of rapidly solidified metal powders by water cooled rotating disc atomisation
JP2013119663A (en) Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device
WO1982003809A1 (en) Apparatus for spraying metal or other material
JPH07500053A (en) Method and apparatus for producing metal strips and composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791615

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08791615

Country of ref document: EP

Kind code of ref document: A1