JPS60173746A - Photoelectromagnetic recording medium - Google Patents

Photoelectromagnetic recording medium

Info

Publication number
JPS60173746A
JPS60173746A JP2938284A JP2938284A JPS60173746A JP S60173746 A JPS60173746 A JP S60173746A JP 2938284 A JP2938284 A JP 2938284A JP 2938284 A JP2938284 A JP 2938284A JP S60173746 A JPS60173746 A JP S60173746A
Authority
JP
Japan
Prior art keywords
alloy
target
substrate
rotation angle
kerr rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2938284A
Other languages
Japanese (ja)
Inventor
Hisao Arimune
久雄 有宗
Takashi Yamada
隆 山田
Takashi Maeda
隆 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2938284A priority Critical patent/JPS60173746A/en
Publication of JPS60173746A publication Critical patent/JPS60173746A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To reduce the material cost of a quaternary amorphous alloy by constituting the titled medium of the thin film of a DyFeGdCo quaternary amorphous alloy having an easy magnetization axis which is vertical to the surface of the film. CONSTITUTION:When GdCo is added to obtain the DyFeGdCo alloy which is expressed as (DyxFe1-x)1-z(GdyCo1-y)z, (x) is regulated to 0.10<x<0.35, (y) to 0.00<y<1.00, and (z) to 0.05<z<0.25. The first target 2 consisting of DyFe, the second target 3 consisting of GdCo, and a disk-shaped substrate 4 are arranged in a vacuum vessel 1. A high-frequency voltage is impressed between the first target 2 and the substrate 4 and between the second target 3 and the substrate 4 from high-frequency power sources 5 and 6, and a positive or a negative bias voltage is impressed to the substrate 4. Permanent magnets 8 and 9 are provided below the first and the second target 2 and 3 to increase the ionization efficiency of the discharged gas molecules. The high-speed formation of films suitable for mass production can be realized in this way.

Description

【発明の詳細な説明】 本発明はDy −Fe −(A −Cv四元系非晶質合
金から成る新規な光磁気記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel magneto-optical recording medium made of a Dy-Fe-(A-Cv quaternary amorphous alloy).

近年、光磁気記録媒体に用いた高密度記録が盛んに研究
されている。これは大量の情報を高密度に記録するため
、レーザー光を投光して記録媒体を局部加熱することに
よりビットを書き込み、磁気光学効果を利用して読み出
すというものである。
In recent years, high-density recording used in magneto-optical recording media has been actively researched. In order to record a large amount of information at high density, this method writes bits by projecting a laser beam to locally heat the recording medium, and reads them using the magneto-optic effect.

これらの記録媒体に要求される特性として非晶質垂直磁
化膜を形成すると同時に、カー回転角、反射率、保磁力
が共に大きく、且つキュリ一温度もしくは補償温度が記
録及び再生に適当な範囲にあることであり、とりわけ、
再生のS/N比を向上させるために大きなカー回転角が
要求されている。
These recording media are required to have an amorphous perpendicularly magnetized film, have a large Kerr rotation angle, high reflectance, and high coercive force, and have a Curie temperature or compensation temperature within an appropriate range for recording and reproduction. Among other things,
A large Kerr rotation angle is required to improve the reproduction S/N ratio.

従来周知のキュリ一点記録材料としてTbFe二元合金
がある。このT’bFθ二元合金はレーザー光による書
き込み温度範囲100〜200℃にあるのに加え、微小
ビットの安定性に関係する保磁力が2〜3 KOeと大
きいため、書き込み特性としては最適′な材料と言える
。ところが、この材料のカー回転角は0,16〜0.1
8°と小さく、再生出力信号がS/N比で40dB以下
のため読み出し性能に劣っている。
A TbFe binary alloy is a conventional Curie single point recording material. This T'bFθ binary alloy has a laser beam writing temperature range of 100 to 200°C, and has a large coercive force of 2 to 3 KOe, which is related to the stability of tiny bits, so it has optimal writing characteristics. It can be said to be a material. However, the Kerr rotation angle of this material is 0.16 to 0.1
The angle is as small as 8°, and the readout performance is poor because the reproduced output signal has an S/N ratio of 40 dB or less.

また、補償点記録材料としてGdC0二元合金がある。Further, there is a GdC0 binary alloy as a compensation point recording material.

このGdCo二元合金はカー回転角が0.20〜0.2
2°と大きく、 且つ耐環境性昏こも優れているが、補
償温度を設定するに際して合金組成に鋭敏に依存し、更
に保磁力が0.2〜Q、3 KOeと小さいため微小ビ
ットの安定性に劣り、実用化、の大きな妨げとなってい
る。
This GdCo binary alloy has a Kerr rotation angle of 0.20 to 0.2.
It has a large coercive force of 2° and excellent environmental resistance, but it depends on the alloy composition when setting the compensation temperature, and furthermore, the coercive force is small at 0.2 to Q, 3 KOe, so the stability of minute bits is affected. This is a major hindrance to practical application.

そこで、カー回転角を大きくシ、且つキュリ一温度を書
き込み可能な範囲内で高くするのに相俟って読み出し性
能を向上させるため、 TI)Fθ合金に対してTI)
を記に一部置換したり、reをCOに一部置換した三元
もしくは四元系非晶質合金薄膜が提案されている。
Therefore, in order to increase the Kerr rotation angle and raise the Curie temperature within the writable range, in order to improve the read performance, we decided to increase the Kerr rotation angle and increase the Curie temperature within the writable range.
Ternary or quaternary amorphous alloy thin films have been proposed in which re is partially replaced with CO or re is partially replaced with CO.

斯様な非晶質合金薄膜は己やCo元素がTbやFe冗素
よりもカー回転角が大きいという点に着目されたもので
あるが、これによるとカー回転角の増大に伴ってキュリ
一温度が上昇するため、所定量を越えて添加することが
できない。従って、この様な合金材料を用いて光磁気記
録媒体とするためには、キュリ一点記録可能な範囲内で
添加した単層構造膜とするか、もしくはキュリ一点記録
が不可能な組成範囲であっても大きなカー回転角を有す
る事を活かしてこれを読み出し層とし、別にTbpe等
から成る書き込み層を設けた静磁結合膜或いは交換結合
膜として用いることになる。
In such amorphous alloy thin films, attention was paid to the fact that the Kerr rotation angle of self and Co elements is larger than that of Tb and Fe elements, and according to this, as the Kerr rotation angle increases, the Curie Since the temperature will rise, it is not possible to add more than a predetermined amount. Therefore, in order to make a magneto-optical recording medium using such an alloy material, it is necessary to create a single-layer structure film in which the additives are within a range where single Curie point recording is possible, or the composition is within a composition range where single Curie point recording is not possible. Taking advantage of the fact that it has a large Kerr rotation angle, it is used as a readout layer and a magnetostatic coupling film or an exchange coupling film, in which a write layer made of Tbpe or the like is separately provided.

斯様な現状の中で、最も有望視された光磁気記録媒体の
材料に最も大きなカー回転角を有するTbFeGdCo
四元系非晶質合金が注目されている。
Under these circumstances, TbFeGdCo, which has the largest Kerr rotation angle, is considered the most promising material for magneto-optical recording media.
Quaternary amorphous alloys are attracting attention.

しかしながら、この合金は高価な希土類元素が約30%
を占めて招り、とりわけ、最も高価なTl)を使用して
いるため、材料コストが大幅に上昇し、商品化の大きな
障害となっていた。
However, this alloy contains about 30% expensive rare earth elements.
In particular, the use of Tl, which is the most expensive, significantly increases material costs, which has been a major obstacle to commercialization.

本発明は上記事情に鑑み鋭意at究に努めた結果、Dy
の値段がTbに比べて半分以下であることに着目すると
共に、約0.1°と小さいカー回転角を有するDyFe
二元系非晶質合金単体に所定量のGdCo二元系非晶質
合金を添加し合金化することによってpyre合金の本
来の磁気構造を実効的に変化させて従って本発明は上記
知見に基づき完成されたものであり、その目的は四元系
非晶質合金の材料コストを低減せしめたDyFeGdC
c+合金から成る光磁気記録媒体を提供することにある
In view of the above-mentioned circumstances, the present invention was developed as a result of intensive research.
We focused on the fact that the price of DyFe is less than half that of Tb, and that it has a small Kerr rotation angle of approximately 0.1°.
Based on the above findings, the present invention is based on the above findings, by adding a predetermined amount of GdCo binary amorphous alloy to a single binary amorphous alloy and alloying it to effectively change the original magnetic structure of the pyre alloy. The goal is to reduce the material cost of quaternary amorphous alloys by producing DyFeGdC.
An object of the present invention is to provide a magneto-optical recording medium made of a c+ alloy.

本発明の他の目的は本来キュリ一温度の低いJFθ合金
を用いて、単層キュリー点記録を可能せしめる適当なキ
ュリ一温度に設定すると共に、カー回転角を増大させた
DyFeGdCo合金から成る光磁気記録媒体を提供す
ることにある。
Another object of the present invention is to set an appropriate Curie temperature to enable single-layer Curie point recording by using a JFθ alloy that originally has a low Curie temperature, and to increase the Kerr rotation angle. The goal is to provide recording media.

本発明によ°れば、膜面と垂直な方向に磁化容易軸を有
するDyFeGdCo四元系非晶質合金(以下、DyF
e+MOo合金と略す)薄膜から成ることを特徴とする
光磁気記録媒体が提供できる。
According to the present invention, a DyFeGdCo quaternary amorphous alloy (hereinafter referred to as DyF
A magneto-optical recording medium characterized by being made of a thin film (abbreviated as e+MOo alloy) can be provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本゛発明によれば、 TI)元素に替えて比較的安価な
りy元素を用いて商品コストを低減せしめたDyFθG
dCo合金薄膜を特徴とするものであり、更に、この合
金はDyFe合金にGdCo合金を添加した四元系合金
であることについて、次に述べる所見に基づいて優れた
カー回転角や適当なキュリ一温度を有する光磁気記録媒
体となることが考えられる。
According to the present invention, DyFθG is used which reduces the product cost by using the relatively inexpensive y element instead of the TI element.
It is characterized by a dCo alloy thin film, and furthermore, this alloy is a quaternary alloy made by adding a GdCo alloy to a DyFe alloy.Based on the following findings, it has an excellent Kerr rotation angle and an appropriate Curie angle. It is conceivable that it will become a magneto-optical recording medium that has a temperature.

即ち、J、 M、 D、 CoeyがJ、 AT)pL
 Pt1y8.4913+1646 (1978)の論
文の中で述べているところによると、メスバウアー効果
実験によって非晶質GdO。
That is, J, M, D, Coey is J, AT) pL
Pt1y8.4913+1646 (1978) states in his paper that amorphous GdO was obtained by the Mössbauer effect experiment.

合金では比較的単純なフェリー磁性体の磁気構造を成し
ていることに対して、非晶質DyFe合金は単イオンの
Dy原子が大きな磁気異方性を有するためにDyとFe
の磁気モーメントは全体としては反平行に向いているも
ののDy原子のモーメント及びFe原子のモーメントは
いずれも円錐状に広がりを有した磁気構造となっている
。この広がりの程度はコーンアングルと呼ばれる。また
カー回転角は遷移金属元素の副格子磁化に依存している
ことが既に実験的に示されており、DyFe合金のカー
回転角が小さいのはこれを担うFe原子のモーメントが
合金のような互いのモーメントが反平行に向いた単純な
フェリ磁性元素を添加し、これとの磁気交換相互作用に
よってDyFe二元系合金単体のときのコーンアングル
より小さく縮めることが期待されるものとし、その結果
、 Feモーメントがより同一方向に向くためにカー回
転角がDyFe二元系合金単体のものより飛躍的に向上
するものと見積った。
The alloy has a relatively simple magnetic structure of Ferry magnetic material, whereas the amorphous DyFe alloy has a large magnetic anisotropy in the Dy atom of a single ion, so Dy and Fe
Although the magnetic moments of the two atoms are oriented antiparallel as a whole, the moments of the Dy atoms and the moments of the Fe atoms both have a conical magnetic structure. This degree of spread is called the cone angle. In addition, it has already been experimentally shown that the Kerr rotation angle depends on the sublattice magnetization of the transition metal element, and the reason why the Kerr rotation angle of DyFe alloy is small is that the moment of the Fe atoms responsible for this is It is assumed that by adding a simple ferrimagnetic element whose moments are oriented antiparallel to each other, and by magnetic exchange interaction with this element, the cone angle can be reduced to a smaller value than that of the DyFe binary alloy alone. It was estimated that the Kerr rotation angle would be dramatically improved compared to that of the DyFe binary alloy alone because the Fe moments would be more directed in the same direction.

本発明者等は上記の考えに基づき、実験を繰り返した結
果、TbFeGdCo系四元系非晶質合金と同等な光磁
気特性を得られることが判った。
Based on the above idea, the inventors of the present invention repeatedly conducted experiments and found that it was possible to obtain magneto-optical properties equivalent to those of a TbFeGdCo quaternary amorphous alloy.

本発明によれば、DyFeGdoO合金を単層キュリ一
点記録材料と°して用いる場合、GdCoの添加量を(
DY X Fe+ −x )+−z (Gdy Co+
−y)z と表示した時、Xが0.10 < X< 0
.35、yが0.00 < y< 1.00、Zが0.
05 < Z < 0.25の範囲に設定するのが望ま
しい。
According to the present invention, when the DyFeGdoO alloy is used as a single-layer single-layer recording material, the amount of GdCo added is (
DY X Fe+ -x )+-z (Gdy Co+
-y) When displayed as z, X is 0.10 < X < 0
.. 35, y is 0.00 < y < 1.00, Z is 0.
It is desirable to set it in the range of 05 < Z < 0.25.

また、Cr’100合金の合計した添加量が25 at
omic%以上のDyFeGdCo合金薄膜であっても
、その大きなカー回転角を活かして読み出し層専用の材
料として用いることができ、本発明者等の実験によれば
、書き込み層のTbFθ非晶質垂直磁化膜の上に、Gd
とCoの合計した原子比が25 atomtc%以上の
DyFe()C100合金薄膜を読み出し層として形成
した二層構造において、TbFeとの交換結合によって
キュリ一点書き込みができることを確認しており、Dy
FeGCLCO合金薄膜のキュリ一温度に関係なく記録
でき、高い読み出し性能を発揮させることができた。尚
、本発明のDyFeGdCo合金薄膜は補償組成に対し
、室温で希土類金属を多くし、補償点書き込みすること
も原理的1こ可能であるっ次に上記した本発明の光磁気
記録媒体を製作するに当り、スパッタリング、真空蒸着
、イオンブレーティング等4種々の方法でも製作できる
が、第1図のマグネトロンスパッタリング装置を用いた
製作方法を詳述する。
In addition, the total addition amount of Cr'100 alloy is 25 at
Even if the DyFeGdCo alloy thin film has a larger Kerr rotation angle than omic%, it can be used as a material exclusively for the readout layer by taking advantage of its large Kerr rotation angle. On top of the membrane, Gd
In a two-layer structure in which a DyFe()C100 alloy thin film with a total atomic ratio of 25 atomtc% or more of Co and Co is formed as a readout layer, it has been confirmed that Curie single point writing can be performed by exchange coupling with TbFe.
Recording was possible regardless of the Curie temperature of the FeGCLCO alloy thin film, and high readout performance was achieved. Note that it is also possible in principle to write compensation points by increasing the rare earth metal in the compensation composition of the DyFeGdCo alloy thin film of the present invention at room temperature.Next, the magneto-optical recording medium of the present invention described above is manufactured. Although it can be manufactured using four different methods such as sputtering, vacuum evaporation, and ion blating, the manufacturing method using the magnetron sputtering apparatus shown in FIG. 1 will be described in detail.

図中、真空槽(1)の内部には、DyFeから成る第1
ターゲツト+21、GdCoから成る第2ターゲツト(
3)、回転駆動されることによりDyFeGdCo合金
薄膜が形成される円板状の基板(4)が配置されている
In the figure, inside the vacuum chamber (1) there is a first tube made of DyFe.
Target +21, second target consisting of GdCo (
3) Disposed is a disk-shaped substrate (4) on which a DyFeGdCo alloy thin film is formed by being rotationally driven.

第1ターゲツト(2)と基板(4)、並びに第2ターゲ
ツト(3)と基板(4)の開−こは、それぞれ高周波電
源(5)(6)により高周波電圧が印加されるとともに
、基板(4)に対して正もしくは負のバイアス電圧を印
加することができるようfζ直流電源(7)が付設しで
ある。
A high frequency voltage is applied to the openings between the first target (2) and the substrate (4), and between the second target (3) and the substrate (4) by the high frequency power supplies (5) and (6), respectively. An fζ DC power supply (7) is attached so as to be able to apply a positive or negative bias voltage to 4).

この第1.2ターゲツト(21(31の下側には、プレ
ーナーマグネトロン型カソードに基づき、アルニコ、フ
ェライト、サマリウムコバルト製の永久磁石+8) (
91が備えつけられ、これによ7.り電場と磁場の直交
するペニング放電現象を利用して放電ガス分子のイオン
化効率が高められ、量産に適した高速成膜が可能となる
This 1.2 target (21 (underside of 31 is a permanent magnet +8 made of alnico, ferrite, samarium cobalt, based on a planar magnetron type cathode) (
91 is provided, which allows for 7. By utilizing the Penning discharge phenomenon in which the electric field and magnetic field are orthogonal to each other, the ionization efficiency of discharge gas molecules is increased, making high-speed film formation suitable for mass production possible.

本発明において使用されるD3r 、 F’eから成る
第1ターゲツト(2)は、例えばFe製円板の上に角形
状のDyチップを適当な数だけ載置し、また、髄。
The first target (2) consisting of D3r and F'e used in the present invention is made by placing an appropriate number of square Dy chips on a disk made of Fe, for example, and placing a suitable number of square Dy chips on a disk made of Fe.

COから成る第2ターゲツト(3)はC○製内円板主1
こ角形状のGdチップを適当な数だけ載置して構成され
るが、Dy製円板の上にFeチップ及びGd製円板の上
にCOチップを載置したものであってもよく、更に、斯
様なチップの形状を角形状に代えて爪形状等任意の形状
に変更してもよい。この他、第1ターゲツト(2)をD
yFe合金マタハFecO合金、第2ターゲツト(3)
をGdC0合金またはDy13’1合金によ、り構成し
ても同等の効果が達成できる。更に、ひとつのターゲッ
ト電極によりDyFe合金製円板またはFeCjo合金
製円板の上lζG1Co合金チップまたはDV尉金合金
チップ載置したものでありてもよく、また、DyFeG
CLCo四元合金製円板により構成しても何ら変わると
ころがないのは、言うまでもない。
The second target (3) consisting of CO is the inner disc main 1 made of C○.
It is constructed by placing an appropriate number of square-shaped Gd chips, but it may also be made by placing an Fe chip on a Dy disk and a CO chip on a Gd disk. Furthermore, the shape of such a tip may be changed to an arbitrary shape such as a claw shape instead of a square shape. In addition, the first target (2) is
yFe alloy Mataha FecO alloy, second target (3)
The same effect can be achieved even if the structure is made of a GdC0 alloy or a Dy13'1 alloy. Furthermore, one target electrode may be one in which a lζG1Co alloy chip or a DV gold alloy chip is placed on a DyFe alloy disc or a FeCjo alloy disc.
Needless to say, there is no difference even if the structure is made of a disk made of a CLCo quaternary alloy.

本発明においては、カー薗転角が大きく、且っ高保磁力
、角形比にも優れた好適な光磁気記録媒体を得るために
、基板(4)に対して正もしくは負のバイアス電圧を印
加してもよいが、無バイアスによっても本発明の目的を
十分に達成することができる。このとき、雰囲気ガス圧
を所定の範囲に設定するのがよく、雰囲気ガス圧がI 
X 10’ Torr未満では安定な放電状態が得られ
ず、成膜が困難となり、50 X 10 Torrを越
えると、磁妻性薄膜中に含まれるアルゴン(Ar)や酸
素(0)が増加して膜特性が劣化し、大きなカー回転角
や大きな保磁力を得ることがむずかしく、また均一性、
安定性も得ニクくナルタメ、I X 10−3〜50 
X 10−’’rorr 、好適には3 X 10 〜
20 X 10 Torr(7)範囲に設定される。
In the present invention, a positive or negative bias voltage is applied to the substrate (4) in order to obtain a suitable magneto-optical recording medium with a large Kerr's rotation angle, high coercive force, and excellent squareness. However, the object of the present invention can also be fully achieved with no bias. At this time, it is best to set the atmospheric gas pressure within a predetermined range, so that the atmospheric gas pressure is
If it is less than X 10' Torr, a stable discharge state cannot be obtained and film formation becomes difficult, and if it exceeds 50 X 10 Torr, argon (Ar) and oxygen (0) contained in the magnetic thin film increase. The film properties deteriorate, making it difficult to obtain a large Kerr rotation angle and a large coercive force, and the uniformity and
It also provides stability, IX 10-3 to 50
X 10-''rorr, preferably 3 X 10 ~
It is set in the 20 x 10 Torr (7) range.

本装置においては基板1回転当り0.1〜3oλ好適f
ζは0.1−10λとなるように基板の回転速度が設定
される。
In this device, 0.1 to 3 oλ per rotation of the substrate is suitable.
The rotation speed of the substrate is set so that ζ is 0.1-10λ.

また、成膜時には第1ターゲツト(2)と基板(4)の
間に0〜2.5 Kwの高周波電力が印加、されると同
時に、第2ターゲツト(3)と基板(4)の間にも0〜
2.5kwの高周波電力が印加されることにより、Dy
及びFeの元素と則及びC6の元素が所定の比率から成
るDyFe(MCO’合金薄膜が形成される。
Furthermore, during film formation, high frequency power of 0 to 2.5 Kw is applied between the first target (2) and the substrate (4), and at the same time, a high frequency power of 0 to 2.5 Kw is applied between the second target (3) and the substrate (4). Also 0~
By applying 2.5kw of high frequency power, Dy
A DyFe(MCO' alloy thin film is formed) consisting of a predetermined ratio of the elements Fe and C6 in a predetermined ratio.

次に、本発明の実施例を述べる。Next, examples of the present invention will be described.

〔実施例〕〔Example〕

上述した第1図に示すマグネトロンスパッタリング装置
を使用し、第1ターゲツト(2)としてはFe製円板(
6インチφ)の上にDyチップ(,1cm角形)を霞き
、第2ターゲツト(3)としてはCo製円板(6インチ
φ)の上に匡チップ(l am角形)を置いたものとし
た。
The magnetron sputtering apparatus shown in FIG. 1 described above was used, and the first target (2) was an Fe disk (
A Dy chip (1 cm square) was placed on top of a 6 inch φ), and a square chip (Lam square) was placed on a Co disc (6 inch φ) as the second target (3). did.

真空槽(1)の到達真空度を5 X 10 Torrと
し、アルゴンのガス圧を5 X 10 Torrに設定
し、プレスパツタ後、第1ターゲツト(2)に印加する
高周波電力量を所定値に設定すると同時に、第2ターゲ
ツト(3)に印加される高周波電力を変化させることに
よってG6C0添加量の異なったDyFeG1Co合金
薄膜を基板(4)上に形成した。これらの薄膜について
X線回折及びトルクメーターにより測定したところ、そ
れぞれ非晶質及び垂直磁化膜となっていることが確かめ
られた。
The ultimate vacuum of the vacuum chamber (1) is set to 5 x 10 Torr, the argon gas pressure is set to 5 x 10 Torr, and the amount of high frequency power applied to the first target (2) after press sputtering is set to a predetermined value. At the same time, by changing the high frequency power applied to the second target (3), DyFeG1Co alloy thin films with different amounts of G6C0 added were formed on the substrate (4). When these thin films were measured using X-ray diffraction and a torque meter, it was confirmed that they were amorphous and perpendicularly magnetized films, respectively.

か(して得られたDyFθGdCo合金薄膜について、
カー回転角を対称角振動法に用いたカー効果測定装置に
より、保磁力及びキュリ一温度を振動試料型磁力計(V
SM)で測定し、更に組成分析を102発光分光装置に
より測定したところ、第1表に示す第1表より、試料番
号4及び5が単層キュリ一点記録用媒体として最適な値
をとっていることが判る。
Regarding the DyFθGdCo alloy thin film obtained by
Coercive force and Curie temperature are measured using a vibrating sample magnetometer (V
SM) and further compositional analysis using a 102 emission spectrometer, as shown in Table 1, sample numbers 4 and 5 had optimal values as a single-layer Curie recording medium. I understand that.

第2図はこの結果に基づいて、DyFe合金に対するG
dC0添加効果をカー回転角特性曲線ピ)、保磁力特性
曲線(o)及びキュリ一温度特性曲線(/埼として表わ
した図である。
Based on this result, Figure 2 shows the G
It is a diagram showing the effect of dC0 addition as a Kerr rotation angle characteristic curve (p), a coercive force characteristic curve (o), and a Curie temperature characteristic curve (/sai).

第2図より明らかな通り、 (MOoが少量添加される
ことにより、DyFeのカー回転角よりも2倍以上の大
幅な増加を示し、更に添加量が増加するのに伴ってカー
回転角及びキュリ一温度が上昇するのが判る。
As is clear from Figure 2, (by adding a small amount of MOo, the Kerr rotation angle increases by more than twice that of DyFe, and as the amount of addition increases, the Kerr rotation angle increases. It can be seen that the temperature rises.

また、GtlCoの添加量が約25 atomic%ま
でであれば、単層でのキュリ一点書き込みができること
は明らかであり、保磁力についても、GdC0を添加す
るのに伴って増大しており1、微小ビットの安定性に寄
与する。
Furthermore, it is clear that if the amount of GtlCo added is up to about 25 atomic%, Curie single point writing is possible in a single layer, and the coercive force also increases with the addition of GdCo1, and is extremely small. Contributes to bit stability.

更に、比較例としてTbFe 、 (MCo 、 Tb
FeCo 。
Furthermore, as comparative examples, TbFe, (MCo, Tb
FeCo.

Tt)FeGdCOのそれぞれの合金を第2表に示した
Table 2 shows the respective alloys of Tt)FeGdCO.

@1表及び第2表より明らかな通り、 GdCo合金(
試料番号2)以外のキュリ一点記録可能な範囲の主な材
料lこおいて、 Tbを含む材料系の中で最も優れたT
bFeGαCo四元糸非晶質合全元糸非晶質合金)と同
等な特性が得られていることが判る。
As is clear from Tables 1 and 2, GdCo alloy (
Among the main materials other than sample number 2) that can be recorded at one Curie point, T is the best among the materials containing Tb.
It can be seen that properties equivalent to those of the (FeGαCo quaternary thread amorphous combined original thread amorphous alloy) were obtained.

第3図はGdCoの添加量に応じた媒体(試料番号1乃
至4)について、カー回転角の波長依存性を表わしてい
る。特性曲線に)ヰ)(へ)及び(ト)はそれぞれ試料
番号1,2.3及び4を用いて測定した結果である。
FIG. 3 shows the wavelength dependence of the Kerr rotation angle for media (sample numbers 1 to 4) depending on the amount of GdCo added. In the characteristic curves, ヰ), ``e'' and ``g'' are the results of measurements using sample numbers 1, 2.3 and 4, respectively.

第3図より、各媒体とも全波長領域に亘って長波長側に
なるのに伴ってカー回転角が増大していることが判る。
From FIG. 3, it can be seen that the Kerr rotation angle increases as the wavelength becomes longer over the entire wavelength region for each medium.

これにより、実用の半導体レーザーが波長5ooo A
近傍にあることから有利な特性を有していることになる
As a result, a practical semiconductor laser has a wavelength of 5ooo A.
Since it is located nearby, it has advantageous characteristics.

尚、第1表及び第2表、並び!ご第2図及び第3図で示
された結果は、すべて同じ装置を用いて同じ条件で作成
し、同じ評価手段で測定した値である。
In addition, Table 1 and Table 2, sorted! The results shown in FIGS. 2 and 3 were all produced using the same equipment under the same conditions and measured using the same evaluation means.

上述の実施例から明らかなように、キュリ一温度の低い
DyFe合金を用いて、単層キュリ一点記録を可能せし
める適当なキュリ一温度)こ設定すると共にカー回転角
を増大させることができた。更1こ優れた光磁気特性を
もつ’rbFeaaco四元系非晶質合金と同等な特性
を有するDyFeGdco合金薄膜が提供でき、材料コ
ストを低減せしめた光磁気記録媒体となった。
As is clear from the above examples, by using a DyFe alloy with a low Curie temperature, it was possible to set an appropriate Curie temperature that enables single-layer Curie point recording and to increase the Kerr rotation angle. A DyFeGdco alloy thin film having properties equivalent to those of 'rbFeaaco quaternary amorphous alloy, which has even better magneto-optical properties, can be provided, resulting in a magneto-optical recording medium with reduced material costs.

【図面の簡単な説明】[Brief explanation of drawings]

゛ 第1図は光磁気記録媒体を生成するためのマグネト
ロンスパッタリング装置の概略図、第2図はカー回転角
、保磁力及びキュリ一温度の各特性曲線を示した図、第
3図はカー回転角の波長依存特性曲線を示した図である
。 2・・第1ターゲツト、3・・・第2ターゲツト、4・
・・基板 特許出願人京セラ株式会社 第8図 巳皮東 (口n1) 手続補正書(自発) 昭和59年3月1関S自 特許庁長官 若 杉 和 夫 殿 1、 事件の表示 昭和59年特許願第 29i2号2
、発明の名称 光磁気記録媒体 3、補正をする者 事件との関係 特許出願人 住所 京都市山科区東野北井ノ上町5番地の224、補
正命令の日付 自発補正 5、補正の対象 願書及び明細書 6、補正の内容 別紙のとおり、タイプ印書による願書および明細書 7
、ぐ;(コさ、
゛ Fig. 1 is a schematic diagram of a magnetron sputtering device for producing magneto-optical recording media, Fig. 2 is a diagram showing characteristic curves of Kerr rotation angle, coercive force, and Curie temperature, and Fig. 3 is a diagram showing Kerr rotation angle, coercive force, and Curie temperature characteristic curves. FIG. 3 is a diagram showing a wavelength dependence characteristic curve of the angle. 2. First target, 3. Second target, 4.
...Substrate patent applicant Kyocera Corporation Figure 8 Mibi Higashi (mouth n1) Procedural amendment (spontaneous) March 1, 1981 Kazuo Wakasugi, Commissioner of the Patent Office, Sekis S. 1, Indication of the case 1988 Patent Application No. 29i2 2
, Title of the invention Magneto-optical recording medium 3, Relationship with the case of the person making the amendment Patent applicant address 224-5-224, Higashino-Kitainouemachi, Yamashina-ku, Kyoto City, Date of amendment order Voluntary amendment 5, Subject of amendment Application and specification 6. Contents of amendment As shown in the attached sheet, typed application and specification 7
, ugh; (kosa,

Claims (1)

【特許請求の範囲】[Claims] 膜面と垂直な方向に磁化容易軸を有するDyFeGcl
Co四元系非晶質合金薄膜から成ることを特徴とする光
磁気記録媒体。
DyFeGcl with easy axis of magnetization in the direction perpendicular to the film surface
A magneto-optical recording medium comprising a Co quaternary amorphous alloy thin film.
JP2938284A 1984-02-17 1984-02-17 Photoelectromagnetic recording medium Pending JPS60173746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2938284A JPS60173746A (en) 1984-02-17 1984-02-17 Photoelectromagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2938284A JPS60173746A (en) 1984-02-17 1984-02-17 Photoelectromagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60173746A true JPS60173746A (en) 1985-09-07

Family

ID=12274584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2938284A Pending JPS60173746A (en) 1984-02-17 1984-02-17 Photoelectromagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60173746A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251540A (en) * 1984-05-26 1985-12-12 Ricoh Co Ltd Amorphous magnetooptic layer
JPH01112549A (en) * 1987-10-26 1989-05-01 Fuji Electric Co Ltd Production of magneto-optical recording medium
US5094925A (en) * 1989-06-30 1992-03-10 Sharp Kabushiki Kaisha Opto-magnetic recording medium
US5635296A (en) * 1993-06-21 1997-06-03 Sharp Kabushiki Kaisha Magneto-optical recording medium whereon overwriting is permitted by light intensity modulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107751A (en) * 1983-11-17 1985-06-13 Canon Inc Photothermomagnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107751A (en) * 1983-11-17 1985-06-13 Canon Inc Photothermomagnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251540A (en) * 1984-05-26 1985-12-12 Ricoh Co Ltd Amorphous magnetooptic layer
JPH01112549A (en) * 1987-10-26 1989-05-01 Fuji Electric Co Ltd Production of magneto-optical recording medium
US5094925A (en) * 1989-06-30 1992-03-10 Sharp Kabushiki Kaisha Opto-magnetic recording medium
US5635296A (en) * 1993-06-21 1997-06-03 Sharp Kabushiki Kaisha Magneto-optical recording medium whereon overwriting is permitted by light intensity modulation

Similar Documents

Publication Publication Date Title
Tsunashima Magneto-optical recording
US6893746B1 (en) Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus
Meiklejohn Magnetooptics: A thermomagnetic recording technology
JPS6115308A (en) Photomagnetic recording material
JPS6079702A (en) Photomagnetic recording medium
JPS60173746A (en) Photoelectromagnetic recording medium
JPS6029956A (en) Production of photomagnetic recording medium
US4734334A (en) Magneto-optical recording medium
Kryder et al. Control of parameters in rare earth-transition metal alloys for magneto-optical recording media
US5529854A (en) Magneto-optic recording systems
JPH0418023B2 (en)
JPH0570922B2 (en)
JPS60187954A (en) Magnetic recording medium consisting of thin magnetic film
JPH0470705B2 (en)
JPS60173745A (en) Photoelectromagnetic recording medium
KR100306975B1 (en) Magnetic material containing metastable alloy and its manufacturing method
JPS61296551A (en) Photomagnetic recording element and its production
JPS6122451A (en) Photomagnetic recording medium
JPS59200762A (en) Target for sputtering
JPH0240151A (en) Magneto-optical recording medium
US20050069731A1 (en) Magneto-optical recording medium
JPS60194505A (en) Photomagnetic recording medium
JPH04186708A (en) Magnetooptic recording medium
JPS63266626A (en) Magnetic recording medium
JPS61188759A (en) Photomagnetic recording medium