JPS60251540A - Amorphous magnetooptic layer - Google Patents

Amorphous magnetooptic layer

Info

Publication number
JPS60251540A
JPS60251540A JP10703484A JP10703484A JPS60251540A JP S60251540 A JPS60251540 A JP S60251540A JP 10703484 A JP10703484 A JP 10703484A JP 10703484 A JP10703484 A JP 10703484A JP S60251540 A JPS60251540 A JP S60251540A
Authority
JP
Japan
Prior art keywords
magneto
amorphous
layer
film
optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10703484A
Other languages
Japanese (ja)
Other versions
JPH0690813B2 (en
Inventor
Motoharu Tanaka
元治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP59107034A priority Critical patent/JPH0690813B2/en
Publication of JPS60251540A publication Critical patent/JPS60251540A/en
Publication of JPH0690813B2 publication Critical patent/JPH0690813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain an amorphous magnetooptic layer having a large Kerr rotating angle and excellent reproducing characteristics by forming a magnetooptic layer consisting of Gd-Dy-Fe-Co or Gd-Dy-Fe-Co-specific metallic atoms having the axis of easy magnetization in the direction perpendicular to the film plane. CONSTITUTION:The alloy layer expressed by (GdxDY1-x)z(Fe1-yCoy)1-z or {Gdx Dy1-x)z(Fe1-yCoy)1-z}1-AMA where the conditions 0.001<x<1.00, 0.01<=y<=0.50, 0.10<=z<=0.40, 0.001<=a<=0.10 are satisfied and M is >=1 kind selected from Cr, Cu, Bi, Sn and Ni is formed on a substrate such as a hard disk or floppy disk by a sputtering method, etc. in an inert gaseous atmosphere. The film thickness is made about 0.01-1mu. The amorphous magnetooptic layer has the axis of easy magnetization in the direction perpendicular to the film plane and has the large Kerr rotating angle and excellent reproducing characteristic is thus obtd.

Description

【発明の詳細な説明】 技術分野 本発明はハードディスク、フロッピーディスク、ドキュ
メントファイル等に使用される光磁気記録媒体の磁気光
学層に関するものであり、特に磁気光学効果に優れた非
晶質磁気光学層に係るものである。
Detailed Description of the Invention Technical Field The present invention relates to a magneto-optic layer of a magneto-optical recording medium used for hard disks, floppy disks, document files, etc., and in particular to an amorphous magneto-optic layer with excellent magneto-optic effects. This is related to.

従来技術 近年、半導体レーザー光により磁気記録を行う光磁気記
録媒体が高密度記録用として種々研究されている。特に
高密度記録用きして使用されるためには磁気光学層がそ
の膜面に垂直な方向に磁化容易軸を有することが必要と
される。従来、これら光磁気記録媒体に使用される磁気
光学層としてはGd −Co 、 Gd−Fe。
BACKGROUND OF THE INVENTION In recent years, various studies have been conducted on magneto-optical recording media for high-density recording in which magnetic recording is performed using semiconductor laser light. In particular, in order to be used for high-density recording, the magneto-optic layer is required to have an axis of easy magnetization in a direction perpendicular to its film surface. Gd-Co and Gd-Fe are conventionally used as magneto-optic layers in these magneto-optical recording media.

Tb−Fe 、 Gd −Tb −Fe 、 Tb −
Dy −Fe 等が知られているか、これら非晶質磁気
光学層を用いた光磁気記録媒体は記録感度が高く半導体
レーザー光によって高速度(8波数、数MHzにおいて
)で記録できるという利点はあるものの磁気光学効果か
十分満足できるものではない問題点を有するものである
。かかることから種々の磁気光学層を用いることにより
カー回転角θkを大きくして磁気光学効果を向上させる
ことが検討されている。
Tb-Fe, Gd-Tb-Fe, Tb-
Dy -Fe etc. are known, and magneto-optical recording media using these amorphous magneto-optic layers have the advantage of having high recording sensitivity and being able to record at high speed (8 wave numbers, several MHz) with semiconductor laser light. However, the magneto-optical effect has a problem that is not fully satisfactory. For this reason, it is being considered to increase the Kerr rotation angle θk and improve the magneto-optic effect by using various magneto-optic layers.

このような非晶質磁気光学r=を用いて光磁気記録媒体
を作るには一般にガラス板のような基板上に前記磁気光
学層を真空蒸着、スパッタリング等の方法で付着させて
磁性膜を形成している。こうして得られる光磁気記録媒
体への記録、再生は次のようにして行われる。
To make a magneto-optical recording medium using such an amorphous magneto-optic r=, generally, the magneto-optic layer is deposited on a substrate such as a glass plate by a method such as vacuum evaporation or sputtering to form a magnetic film. are doing. Recording and reproduction on the magneto-optical recording medium thus obtained are performed as follows.

すなわち、記録は磁性膜のキュリ一温度または補償温度
近傍における温度変化に対応した保磁力の急激な変化特
性を利用して情報信号で変調されたレーザー光を磁性膜
に照射加熱して磁性膜表面磁化の向きを反転させること
により行われる。才た再生はこうして反転記録された磁
性膜のカー回転角を読出すことにより行われる。このよ
うな非晶質磁気光学層のように光が透過しにくい場合の
情報信号の記録、再生はカー効果を利用するものである
In other words, recording is performed by heating the magnetic film by irradiating a laser beam modulated with an information signal, taking advantage of the characteristics of the magnetic film's rapid change in coercive force in response to temperature changes near the Curie temperature or the compensation temperature. This is done by reversing the direction of magnetization. Excellent reproduction is performed by reading out the Kerr rotation angle of the magnetic film recorded in this way. The Kerr effect is used to record and reproduce information signals in cases where light does not easily pass through such an amorphous magneto-optical layer.

カー効果とは磁性体の表面で光が反射する際の偏光面の
回転現象であり、a)極(potar)効果、b)縦(
tongitudinat)効果、C)横(trans
verse )効果があり、特に非晶質合金磁性体の場
合にはaの極効果が用いられ、そのカー回転角θkを利
用して再生が行われる。
The Kerr effect is a phenomenon in which the plane of polarization rotates when light is reflected on the surface of a magnetic material, and includes a) polar effect, b) vertical (
tongitudinat) effect, C) transverse (trans
In particular, in the case of an amorphous alloy magnetic material, the polar effect of a is used, and reproduction is performed using the Kerr rotation angle θk.

従ってカー回転角θkが少しでも大きくなればそれだけ
磁気光学効果が増し、再生特性が向上することになる。
Therefore, if the Kerr rotation angle θk becomes even slightly larger, the magneto-optical effect increases and the reproduction characteristics improve.

しかしながら、前述の種々の非晶質磁気光学層、特にG
d −Dy −Fe よりなる3元系非晶質磁気光学層
のカー回転角θには0.24 deg程度であり、光再
生特性の向上が望まれている現状にある。
However, the various amorphous magneto-optic layers mentioned above, especially G
The Kerr rotation angle θ of a ternary amorphous magneto-optical layer made of d -Dy -Fe is approximately 0.24 degrees, and there is currently a desire to improve optical reproduction characteristics.

目 的 本発明の目的は膜面に*直な方向に磁化容易軸を有する
非晶質磁気光学層におけるカー回転角θkjpより増大
せしめ、それにより光袴生特性を向上させた非晶質磁気
光学層を提供することにある。
Purpose The purpose of the present invention is to increase the Kerr rotation angle θkjp in an amorphous magneto-optic layer having an axis of easy magnetization perpendicular to the film surface, thereby improving the optical properties of the amorphous magneto-optic layer. It is about providing layers.

構 成 本発明は膜面に垂直な方向に磁化容易軸を有するGd 
−Dy−Fe −Co 1もしくはGd −DY −F
e −Co −M (ただし、MはOr、Ou、Bi、
an。
Structure The present invention uses Gd having an axis of easy magnetization in the direction perpendicular to the film surface.
-Dy-Fe -Co 1 or Gd -DY -F
e -Co -M (where M is Or, Ou, Bi,
an.

Niのうちから選ばれる少くとも1種)からなる非晶質
磁気光学層である。なお、本発明の磁気光学層は垂直磁
気異方性を有することか必要であり、かつ高保磁力を有
することが望丈しく、この理由から本発明磁気光学層の
組成式f (GdXD)11−x ) 、 (Fet−
ycoy) l−zおよび 。
This is an amorphous magneto-optical layer made of at least one type selected from Ni. The magneto-optic layer of the present invention is required to have perpendicular magnetic anisotropy and desirably has a high coercive force.For this reason, the composition formula f (GdXD)11- of the magneto-optic layer of the present invention is x), (Fet-
ycoy) l-z and .

((GdXD)+1−X )z CFex−xcox)
!−z )t−A MAと表わすと、0.001<x<
1.0010.01≦y≦o、so、o、io≦2≦0
.4010.001≦A≦0.10の条件を満たすこと
が望ましい。
((GdXD)+1-X)zCFex-xcox)
! -z )t-A When expressed as MA, 0.001<x<
1.0010.01≦y≦o, so, o, io≦2≦0
.. It is desirable to satisfy the condition 4010.001≦A≦0.10.

本発明非晶質磁気光学層は適宜の支持体上に真空蒸着、
スノにツタリング、イオンプレーテインク等の方法で膜
厚0.01〜1μm程度に形成する。
The amorphous magneto-optical layer of the present invention is vacuum deposited on a suitable support.
The film is formed to a thickness of about 0.01 to 1 μm by a method such as sno-ni-tsutaring or ion plate ink.

ス・ぞツタリングにて磁気光学層の薄膜形成を行う場合
には各磁気光学層成分を各個にあるいは組合わせてター
ゲットとシ7、磁気光学層組成はターゲット表面の面積
比でコントロールするようにする。
When forming a thin film of the magneto-optic layer by slicing, each component of the magneto-optic layer is used individually or in combination with the target, and the composition of the magneto-optic layer is controlled by the area ratio of the target surface. .

支持体どしてはガラス、プラスチック、セラミック等が
使用できる。また本発明非晶質磁気光学層と支持体との
間、ある0は上面に保護層、断熱層、反射層等が任意に
設けられる0 効 果 このようにして得られるGd−Dy−Fe −Co。
Glass, plastic, ceramic, etc. can be used as the support. Further, between the amorphous magneto-optical layer of the present invention and the support, a protective layer, a heat insulating layer, a reflective layer, etc. are optionally provided on the upper surface of the Gd-Dy-Fe obtained in this manner. Co.

もしくはGd −Dy −re −Co −M (ただ
し、MはC!r 、 Ou 、 Bi 、 Sn 、 
Ni のうちから選ばれる少くとも1種)からなる垂直
磁化容易軸を有する非晶質磁気光学層のカー回転角θk
が大きくなるため、光再生時の光再生特性が良好となり
、8/N比が向上するとともに記録ビット数も増大し、
高密度記録再生可能な光磁気記録媒体か得られることに
なる。
or Gd-Dy-re-Co-M (where M is C!r, Ou, Bi, Sn,
Kerr rotation angle θk of an amorphous magneto-optical layer having a perpendicular easy magnetization axis made of at least one type selected from Ni
becomes larger, the optical reproduction characteristics during optical reproduction become better, the 8/N ratio improves, and the number of recording bits increases,
A magneto-optical recording medium capable of high-density recording and reproduction can be obtained.

以下に実施例を示す。Examples are shown below.

実施例1 スライドガラス支持体上にスパッタリング法によりGd
 −Dy−Fe−Co からなる非晶質磁気光学層を形
成した。ターゲットはコンポジット法を用い、Fe円板
上にGdo、s Dy o、5の合金チップおよびCo
テッゾをのせて構成し、各組成比をターゲット表面の面
積比でコントロールしつつ膜を形成した。膜は下記の条
件で基板上に約20001の膜厚のGd −Dy −F
e −C。
Example 1 Gd was deposited on a slide glass support by sputtering method.
An amorphous magneto-optical layer made of -Dy-Fe-Co was formed. The target uses a composite method, with alloy chips of Gdo, S Dy O, 5 and Co on an Fe disk.
A film was formed by placing Tezzo on it, and controlling each composition ratio by the area ratio of the target surface. A film of Gd-Dy-F with a thickness of about 20,001 mm was formed on the substrate under the following conditions.
e-C.

膜を作成した。A membrane was created.

〈作成条件〉 =7 0残留ガス圧 :8X10 Torr OArガス圧 : 1.5X10 TorrQ放電々力
 :400W Oルスノぞツタ時間 :60m1n Oメインスノぞツタ時間: 8m1n 本実施例ではHcの大きい補償組成付近のFeo、tt
 (Gd6.sDy6,5)64+の組成において、F
eの一部f Coで置換していく形、すなわち(Fe1
−XOOx) 0.77 (odosI)yO,5)0
.23 の中のx8変化して膜を作製した。
<Creation conditions> =7 0 Residual gas pressure: 8 x 10 Torr OAr gas pressure: 1.5 x 10 Torr Q discharge power: 400 W O main snow creep time: 60 m1n O main snow creep time: 8 m1 n In this example, the compensation composition with large Hc was used. Feo, tt
In the composition of (Gd6.sDy6,5)64+, F
A form in which part of e is replaced by f Co, that is, (Fe1
-XOOx) 0.77 (odosI)yO,5)0
.. Membranes were prepared by changing x8 in 23.

膜の評価は基板側からHe −Ne レーザー(J=6
33nm)i照射してカー効果を用いてカー回転角ak
をめ、また振動試料型磁力計(V、8.M )によりキ
ュリ一温度Tci求めて行った。Co量とθにおよびT
cとの関係8第1図に示す。この第1図より、Coiを
増すとθにはは0.24 degから0.36 deg
位まで大きくなることがわかる。#にはCo t x=
=Q、l o付近で飽和傾向を示しており、それよりC
o量を増してもあまり効果はない。一方、TCはCo量
を増すことにより120℃から230℃程度まで直線的
に高くなることがわかる。Tcが高くなると記録感度か
悪くなるのでCO′tを多くは添加できない。以上のこ
とよりθにとTcの変化からしてCo量の最適値はX=
0.07〜0.15程度といえる。
The film was evaluated using a He-Ne laser (J=6
33nm) i irradiation and Kerr rotation angle ak using Kerr effect
In addition, the Curie temperature Tci was determined using a vibrating sample magnetometer (V, 8.M). Co amount and θ and T
The relationship with c is shown in Figure 1. From this figure 1, when Coi is increased, θ changes from 0.24 deg to 0.36 deg.
It can be seen that it grows up to # is Co t x=
= Q, l It shows a tendency to saturate around o, and from that point C
Even if the amount is increased, there is not much effect. On the other hand, it can be seen that TC increases linearly from 120°C to about 230°C by increasing the amount of Co. If Tc becomes high, recording sensitivity deteriorates, so it is not possible to add a large amount of CO't. From the above, considering the changes in θ and Tc, the optimal value for the amount of Co is X=
It can be said that it is about 0.07 to 0.15.

実施例2〜6 スライドガラス支持体上にスノξツタリング法によりG
d −Dy−Fe −Co−Mからなる非晶質磁気光学
層を形成した。ターゲットはコンポジット法を用いF 
e 00g Oo o、1 の合金円板上にGd o、
s Dyo、s の合金チップおよびMテップそのせて
構成し、組成はターゲット表面の面積比でコントロール
しつつ膜を形成した。
Examples 2 to 6 G was deposited on a slide glass support by the snow ξ tuttering method.
An amorphous magneto-optical layer made of d-Dy-Fe-Co-M was formed. The target is F using the composite method.
e 00g Oo o, Gd o on the alloy disk of 1,
A film was formed using an alloy chip of s Dyo, s and an M tip, and the composition was controlled by the area ratio of the target surface.

各非晶質磁気光学ノー膜の作成条件を次表に示す。The preparation conditions for each amorphous magneto-optic film are shown in the table below.

各非晶質磁気光学層は保磁力Hcの大きい補償組成付近
の(Fe0.9C!00.1)0.77 (Gdg、a
 Dyo、s )o、23もしくは(Fe o、ec”
 o、t )0.78 (Gd o、sDy o、s 
) o、2□ の組成において(Gdo、5Dyo、s
 )の一部をMで置換するという形、すなわち(F’e
o、5COo、s)o、yy ((Gdo、aDFO,
1I)1−X MX )0.23もしくは(Feo、*
COo、t)’、ys((Gdo、+5Dyo、s)j
−2Mx)o、22とし、MがOr 、 Ou 、 N
iの場合は前者、Mf)5 Bl 、 8nO)場合は
後者として作成した。
Each amorphous magneto-optic layer has a compensation composition near (Fe0.9C!00.1)0.77 (Gdg, a
Dyo, s ) o, 23 or (Fe o, ec”
o,t )0.78 (Gd o,sDyo o,s
) o, 2□ composition (Gdo, 5Dyo, s
) is replaced by M, that is, (F'e
o, 5COo, s) o, yy ((Gdo, aDFO,
1I) 1-X MX ) 0.23 or (Feo, *
COo,t)',ys((Gdo,+5Dyo,s)j
−2Mx) o, 22, and M is Or, Ou, N
In the case of i, the former was prepared, and in the case of Mf)5Bl,8nO), the latter was prepared.

膜の評価は基板(支持体)側からHe −Neレーザー
(λ=633nm)を照射し、カー効果を用いてカー回
転角θにおよび保磁力Hcをめた。
For evaluation of the film, a He-Ne laser (λ=633 nm) was irradiated from the substrate (support) side, and the Kerr rotation angle θ and the coercive force Hc were determined using the Kerr effect.

それらの結果を第2図〜第6図に示す。これらの図より
XlすなわちMの量を増加させることによりHcは小さ
くなるもののθには大きくなることかわかる。各実施例
では(Gao、5DYo、s )の一部をMで置換した
ため異方性に寄与しているDyか減り、Hcが小さくな
り、M量をそれほど増大できなかったか、(Feo、e
Coo、りと(Gdo、5Dyo、s ) (7)比を
一定にしてM−iを増すようにすればHcの急激な低下
はなくなり、M量を多くすることができる。
The results are shown in FIGS. 2 to 6. From these figures, it can be seen that by increasing the amount of Xl, that is, M, Hc becomes smaller, but θ becomes larger. In each example, since a part of (Gao, 5DYo, s) was replaced with M, Dy contributing to anisotropy decreased, Hc became smaller, and the amount of M could not be increased that much, or (Feo, e
Coo, Rito (Gdo, 5Dyo, s) (7) If M-i is increased while keeping the ratio constant, the rapid drop in Hc will be eliminated and the amount of M can be increased.

ここで、改めて各実施例における非晶質磁気光学層にお
いて最もカー回転角θkが大きくなる場合のGd−Dy
−Fe−Co−M膜組成、カー回転角θにおよびCoお
よびMを含有しない場合に比べたθにの増加値+tとめ
て次表に示す。
Here, Gd-Dy when the Kerr rotation angle θk becomes the largest in the amorphous magneto-optic layer in each example
The -Fe-Co-M film composition, the Kerr rotation angle θ, and the increase in θ compared to the case without Co and M, +t, are shown in the following table.

(以下余白)(Margin below)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は実施例における各非晶質磁気光学層膜
中の00もしくはMの量を変えた場合のθにとHeもし
くはTcの変化図である。
FIGS. 1 to 6 are diagrams showing changes in θ and He or Tc when the amount of 00 or M in each amorphous magneto-optic layer film in Examples is changed.

Claims (1)

【特許請求の範囲】 L 膜面に垂直な方向に磁化容易軸を有するGd −D
y −Fe −Co からなる非晶質磁気光学層。 2 膜面に垂直な方向に磁化容易軸を有するGd−Dy
−Fe−Co −M (ただし、MはOr 、 Cu 
。 Bi、Sn、Ni のうちから選ばれる少くとも1種)
からなる非晶質磁気光学層。
[Claims] L Gd -D having an axis of easy magnetization in the direction perpendicular to the film surface
An amorphous magneto-optical layer made of y-Fe-Co. 2 Gd-Dy with easy axis of magnetization in the direction perpendicular to the film surface
-Fe-Co -M (M is Or, Cu
. At least one type selected from Bi, Sn, and Ni)
An amorphous magneto-optic layer consisting of.
JP59107034A 1984-05-26 1984-05-26 Amorphous magneto-optical layer Expired - Lifetime JPH0690813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59107034A JPH0690813B2 (en) 1984-05-26 1984-05-26 Amorphous magneto-optical layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59107034A JPH0690813B2 (en) 1984-05-26 1984-05-26 Amorphous magneto-optical layer

Publications (2)

Publication Number Publication Date
JPS60251540A true JPS60251540A (en) 1985-12-12
JPH0690813B2 JPH0690813B2 (en) 1994-11-14

Family

ID=14448838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59107034A Expired - Lifetime JPH0690813B2 (en) 1984-05-26 1984-05-26 Amorphous magneto-optical layer

Country Status (1)

Country Link
JP (1) JPH0690813B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172237A (en) * 1985-01-28 1986-08-02 Kyocera Corp Photoelectromagnetic recording element
JPS6257145A (en) * 1985-09-05 1987-03-12 Mitsubishi Electric Corp Photothermomagnetic recording medium
JPS6423445A (en) * 1987-07-17 1989-01-26 Ricoh Kk Magneto-optical recording medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250203A (en) * 1975-10-20 1977-04-22 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic transfer recording material
JPS55130106A (en) * 1979-03-27 1980-10-08 Philips Nv Magnetic optical memory element
JPS5794948A (en) * 1980-12-04 1982-06-12 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium
JPS58199456A (en) * 1982-05-17 1983-11-19 Canon Inc Optical thermomagnetic recording medium
JPS5954055A (en) * 1982-09-20 1984-03-28 Sharp Corp Magnetooptic recording medium
JPS5961011A (en) * 1982-09-30 1984-04-07 Ricoh Co Ltd Optical magnetic recording medium
JPS5968854A (en) * 1982-09-28 1984-04-18 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS60107751A (en) * 1983-11-17 1985-06-13 Canon Inc Photothermomagnetic recording medium
JPS60173746A (en) * 1984-02-17 1985-09-07 Kyocera Corp Photoelectromagnetic recording medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250203A (en) * 1975-10-20 1977-04-22 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic transfer recording material
JPS55130106A (en) * 1979-03-27 1980-10-08 Philips Nv Magnetic optical memory element
JPS5794948A (en) * 1980-12-04 1982-06-12 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium
JPS58199456A (en) * 1982-05-17 1983-11-19 Canon Inc Optical thermomagnetic recording medium
JPS5954055A (en) * 1982-09-20 1984-03-28 Sharp Corp Magnetooptic recording medium
JPS5968854A (en) * 1982-09-28 1984-04-18 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS5961011A (en) * 1982-09-30 1984-04-07 Ricoh Co Ltd Optical magnetic recording medium
JPS60107751A (en) * 1983-11-17 1985-06-13 Canon Inc Photothermomagnetic recording medium
JPS60173746A (en) * 1984-02-17 1985-09-07 Kyocera Corp Photoelectromagnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172237A (en) * 1985-01-28 1986-08-02 Kyocera Corp Photoelectromagnetic recording element
JPS6257145A (en) * 1985-09-05 1987-03-12 Mitsubishi Electric Corp Photothermomagnetic recording medium
JPS6423445A (en) * 1987-07-17 1989-01-26 Ricoh Kk Magneto-optical recording medium

Also Published As

Publication number Publication date
JPH0690813B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JPH0630300B2 (en) Amorphous magneto-optical layer
JPS6148148A (en) Thermooptical magnetic recording medium
JPS60233810A (en) Amorphous magneto-optics layer
JPS61253655A (en) Photomagnetic recording medium
JPS60251540A (en) Amorphous magnetooptic layer
JP2602425B2 (en) Amorphous magneto-optical layer
JPH0638370B2 (en) Amorphous magneto-optical layer
JP2550633B2 (en) Photothermal magnetic recording medium
JPS60246041A (en) Photo thermomagnetic recording medium
JPS6118107A (en) Non-crystalline magneto-optical layer
JPS6332748A (en) Information recording medium
JPH0782669B2 (en) Magneto-optical recording medium
JP2607476B2 (en) Magneto-optical recording method
JPH0350342B2 (en)
JP2550698B2 (en) Magneto-optical recording medium
JP3237977B2 (en) Magneto-optical recording medium
JPS6189604A (en) Metal oxide magnetic substance and magnetic film
JPH06131713A (en) Magneto-optical disk and its production
JPH08315435A (en) Magneto-optical recording medium
JPH0249240A (en) Magneto-optical recording medium
JPH11167753A (en) Optical information recording medium, and format method
JPH087886B2 (en) Magneto-optical recording medium
JPS6280844A (en) Photomagnetic recording medium
JPH08273224A (en) Information storage medium and its recording and reproducing method
JPH0232766B2 (en) JIKIKOGAKUKIROKUZAIRYO

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term