JPH0570922B2 - - Google Patents

Info

Publication number
JPH0570922B2
JPH0570922B2 JP58033973A JP3397383A JPH0570922B2 JP H0570922 B2 JPH0570922 B2 JP H0570922B2 JP 58033973 A JP58033973 A JP 58033973A JP 3397383 A JP3397383 A JP 3397383A JP H0570922 B2 JPH0570922 B2 JP H0570922B2
Authority
JP
Japan
Prior art keywords
magneto
coercive force
composition
recording medium
oersted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58033973A
Other languages
Japanese (ja)
Other versions
JPS59159510A (en
Inventor
Yoshifumi Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3397383A priority Critical patent/JPS59159510A/en
Priority to DE3348424A priority patent/DE3348424C2/en
Priority to DE19833309483 priority patent/DE3309483C3/en
Publication of JPS59159510A publication Critical patent/JPS59159510A/en
Priority to US06/783,052 priority patent/US4670353A/en
Publication of JPH0570922B2 publication Critical patent/JPH0570922B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/16Layers for recording by changing the magnetic properties, e.g. for Curie-point-writing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は光磁気メモリー、磁気記録、表示素子
などに用いられる磁気光学記録媒体に関するもの
で、特に磁気カー効果若しくはフアラデー効果な
どの磁気光学効果を用いて読出すことのできる磁
性薄膜記録媒体に関するものである。 従来、磁気光学記録媒体としてはMnBi、
MnCuBiなどの多結晶体薄膜、GdCo、GdFe、
TbFe、DyFe、GdTbFe、TbDyFeなどの非晶質
薄膜、GIGなどの単結晶薄膜などが知られてい
る。これらの薄膜のうち、大面積の薄膜を室温近
傍の温度で製作する製膜性、信号を小さな光熱エ
ネルギーで書込むための書込み効率、書込まれた
信号をS/N比よく読出すための読出し効率など
を勘案し、最近では前記非晶質薄膜が磁気光学記
録媒体として優れていると考えられている。 しかしながら、これ等の非晶質薄膜においては
信号を読出すための読出し効率に対応する性能指
数がMnBi等の多結晶質薄膜やGIGの単結晶質薄
膜に比し小さく、S/N比が十分にとれないとい
う難点がある。 S/N比良く読出すために非晶質薄膜の磁気光
学定数を大きくするための提案としては特開昭56
−126907号公報にGdTbFeよりなる非晶質3元系
合金薄膜が示されている。さらにAbstracts of
The 10th International Colloquism on
Magnetic Films and Surfaces(1982.9.13〜16)
13a1に示されている如くTbFeCoよりなる非晶質
3元系合金薄膜がある。表1に従来の磁気光学薄
膜の磁気光学定数の1つであるカー回転角を示
す。 表 1 材料名 カー回転角(度) DyFe 0.12 TbFe 0.18 GdFe 0.24 GdCo 0.2 TbDyFe 0.20 GdDyFe 0.24 GdTdFe 0.27 Tb0.21(Fe0.85Co0.150.79 0.32 (測定波長6328Å) 表1より分かる様に、カー回転角が最も大きい
のはTb0.21(Fe0.85Co0.150.79の0.32度である。S/
N比が良く読出せる為にはカー回転角の如き磁気
光学定数が大きければ大きい程良いことは言うま
でもない。 一方、表1に示した如き合金はフエリ磁性を示
すために補償組成が存在する。この補償組成域近
傍においては保磁力は非常に大きな値を示す。 一般にS/N比に効くカー回転角と記録された
磁区の安定性に効く保磁力とは合金組成に対して
独立に変化するために、カー回転角の大きい組成
が必ずしも適当な大きさの保磁力を示すとはかぎ
らない。カー回転角が大きくても保磁力が非常に
大きな合金組成であれば、記録媒体としては着
磁・消磁をするのに非常に大きな磁場を必要とす
るために、実用上の点から不都合である。 本発明の目的は、磁気光学定数が十分に大き
く、S/N比の良い読出しが可能で、かつ、取扱
い易い保磁力をもつた磁気光学記録媒体を提供す
ることにある。 本発明は、テルビウム・鉄・コバルトの3元系
非晶質磁性合金より成り、この合金の組成をTbY
(Fe1-XCoX1-Yと表わしたときに、XおよびYが
条件、 0<X0.375かつ0.1Y0.16 +4/37.5X 0.375<X<1かつ0.1Y0.2 −0.064(X−0.375) 0<X0.3かつ0.245Y0.4 0.3<X<1かつ0.3Y0.4 のいずれか1つを満足するように形成された磁気
光学記録媒体によつて上記目的を達成するもので
ある。 以下、図面を用いて本発明の実施例を説明す
る。 第1図は本発明に係る磁気光学記録媒体
TbFeCoの3元系非晶質磁性合金の組成と保持力
との関係を示したものである。図中1の曲線は補
償組成を示し、2,2′は保磁力4000エールステ
ツドを、3,3′は保磁力3000エールステツドを、
4,4′は保磁力2000エールステツドを、5,
5′は保磁力1000エールステツドを、6,6′は
200エールステツドを示す。補償組成近傍の組成
においては補償組成に近づくにしたがつて急激に
保磁力が大きくなつている。これら補償組成近傍
の組成の媒体は着磁・消磁の際に非常に大きな磁
場を必要とし、また製造の際の特性のバラツキ、
再現性の面からも不都合である。 一般に取扱い易い磁気光学記録敗退を実現する
為には保磁力は4000エールステツド以下である必
要がある。又、膜面に垂直な方向に磁化容易軸を
向けるのに十分な磁気異方性を持たせる組成とし
て、FeとCoとを合わせた原子比が60atom%〜
90atom%の範囲に存在することが望ましい。 従つて、適当な保磁力を有する組成は第1図の
斜線で示される領域となる。曲線2,2′をそれ
ぞれ近似すると上記領域は、組成をTbY(Fe1-X
CoX1-Yとして、各々 0<X0.375かつ0.1Y0.16 +4/37.5X (1) 0.375<X<1かつ0.1Y0.2 −0.064(X−0.375) (2) 0<X0.3かつ0.245Y0.4 (3) 0.3<X<1かつ0.3Y0.4 (4) の式で示される4つの領域で表わされる。更に本
発明は、以下の実施例に示すように、上記(3)式の
条件を0.245≦Yと減縮した。 以下に、上記式を満足する組成で形成された本
発明の実施例を示す。 (実施例) 高周波スパツター装置において25mm×76mmの大
きさの白板ガラスを基板にし、ターゲツトとして
直径127mmのFeの円板上に10mm×10mm厚さ1mmの
大きさのTb、Coの薄板を夫々14枚、2枚載せた
ものを使用した、基板とターゲツトとの間隔が90
mmとなる様にセツトした後3×10-7Torr以下に
なるまで真空排気した。この後、真空槽に99.999
%純度のArガスを6×10-3Torrまで導入した。
この時のAr流量は30SCCMであつた。高周波電
源よりターゲツトへ2W/cm2の割合で電力を投入
して製膜を行つた。(サンプルNo.1)この様にし
てできた膜厚1500Åの膜は膜面に垂直な方向に磁
化容易軸を有し、X線回折の結果非晶質であるこ
とが分つた。また、この膜をX線マイクロアナラ
イザー(XMA)で組成分析を行つたところ、
Tbが13.5atom%、Coが4.7atom残部Feであるこ
とがわかつた。この膜のカー回転角は0.29°、保
磁力は1500エールステツドあつた。 サンプルNo.1と、ターゲツトのTbおよびCo薄
板の枚数を変え、同様の実験を行つた結果を表2
に示す。
The present invention relates to a magneto-optical recording medium used in magneto-optical memory, magnetic recording, display elements, etc., and particularly relates to a magnetic thin film recording medium that can be read using magneto-optic effects such as magnetic Kerr effect or Faraday effect. It is. Conventionally, MnBi,
Polycrystalline thin films such as MnCuBi, GdCo, GdFe,
Amorphous thin films such as TbFe, DyFe, GdTbFe, and TbDyFe, and single crystal thin films such as GIG are known. Among these thin films, the film-forming ability of producing a large-area thin film at a temperature close to room temperature, the writing efficiency for writing signals with small photothermal energy, and the ability to read written signals with a good S/N ratio are important. In consideration of read efficiency and the like, the amorphous thin film has recently been considered to be excellent as a magneto-optical recording medium. However, in these amorphous thin films, the figure of merit corresponding to the readout efficiency for reading signals is smaller than that of polycrystalline thin films such as MnBi or single crystalline thin films such as GIG, and the S/N ratio is insufficient. The problem is that it cannot be taken into account. A proposal to increase the magneto-optical constant of an amorphous thin film in order to read out a good S/N ratio is given in Japanese Patent Application Laid-open No. 1983
JP-126907 discloses an amorphous ternary alloy thin film made of GdTbFe. Further Abstracts of
The 10th International Colloquism on
Magnetic Films and Surfaces (1982.9.13-16)
As shown in 13a1, there is an amorphous ternary alloy thin film made of TbFeCo. Table 1 shows the Kerr rotation angle, which is one of the magneto-optic constants of conventional magneto-optic thin films. Table 1 Material 1 Material name Car Rotating angle (degree) DYFE 0.18 GDFE 0.24 GDCO 0.2 TBDYFE 0.20 GDDYFE 0.24 GDDYFE 0.27 TB 0.21 (FE 0.85 CO 0.15 ) 0.79 0.32 (measured wavelength 6328å) As you can see from Table 1 -The rotation angle The largest one is Tb 0.21 (Fe 0.85 Co 0.15 ) 0.79 at 0.32 degrees. S/
Needless to say, the larger the magneto-optical constant, such as the Kerr rotation angle, the better, in order to read the N ratio better. On the other hand, since the alloys shown in Table 1 exhibit ferrimagnetism, a compensating composition exists. Near this compensation composition region, the coercive force exhibits a very large value. In general, the Kerr rotation angle, which affects the S/N ratio, and the coercive force, which affects the stability of recorded magnetic domains, change independently depending on the alloy composition. It does not necessarily indicate magnetic force. If the alloy composition has a very large coercive force even if the Kerr rotation angle is large, it is disadvantageous from a practical point of view as it requires a very large magnetic field to magnetize and demagnetize the recording medium. . An object of the present invention is to provide a magneto-optic recording medium that has a sufficiently large magneto-optic constant, allows reading with a good S/N ratio, and has a coercive force that is easy to handle. The present invention consists of a ternary amorphous magnetic alloy of terbium, iron, and cobalt, and the composition of this alloy is Tb Y
(Fe 1- X Co The above object is achieved by a magneto-optical recording medium formed to satisfy any one of the following: 0<X0.3 and 0.245Y0.4 It is. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a magneto-optical recording medium according to the present invention.
This figure shows the relationship between the composition and coercive force of a ternary amorphous magnetic alloy of TbFeCo. The curve 1 in the figure shows the compensation composition, 2, 2' indicates a coercive force of 4000 Oersted, 3, 3' indicates a coercive force of 3000 Oersted,
4, 4' has a coercive force of 2000 Oersted, 5,
5' has a coercive force of 1000 Oersted, 6 and 6' have a coercive force of 1000 Oersted.
Showing 200 Eersted. In compositions near the compensation composition, the coercive force increases rapidly as the composition approaches the compensation composition. Media with compositions close to these compensation compositions require extremely large magnetic fields for magnetization and demagnetization, and also have variations in characteristics during manufacturing.
This is also disadvantageous in terms of reproducibility. In general, in order to achieve easy-to-handle magneto-optical recording, the coercive force must be less than 4000 Oersted. In addition, as a composition that provides sufficient magnetic anisotropy to orient the axis of easy magnetization in the direction perpendicular to the film surface, the atomic ratio of Fe and Co is 60 atom% or more.
It is desirable that it exists in the range of 90 atom%. Therefore, the composition having an appropriate coercive force is the area shown by diagonal lines in FIG. Approximating curves 2 and 2' respectively, the above region has a composition of Tb Y (Fe 1-X
Co _ 3 and 0.245Y0.4 (3) 0.3<X<1 and 0.3Y0.4 (4) It is expressed by four regions. Furthermore, in the present invention, as shown in the following examples, the condition of the above equation (3) is reduced to 0.245≦Y. Examples of the present invention formed with compositions satisfying the above formula will be shown below. (Example) In a high-frequency sputtering device, a white glass plate with a size of 25 mm x 76 mm was used as a substrate, and 14 thin plates of Tb and Co each with a size of 10 mm x 10 mm and a thickness of 1 mm were placed on a Fe disk with a diameter of 127 mm as a target. The distance between the board and the target is 90
After setting it so that the pressure was 3×10 -7 Torr or less, it was evacuated to below 3×10 -7 Torr. After this, 99.999 in the vacuum chamber
% purity Ar gas was introduced up to 6×10 -3 Torr.
The Ar flow rate at this time was 30 SCCM. Film formation was performed by applying power to the target at a rate of 2 W/cm 2 from a high-frequency power source. (Sample No. 1) The film thus formed with a thickness of 1500 Å had an axis of easy magnetization in the direction perpendicular to the film surface, and was found to be amorphous by X-ray diffraction. In addition, when we analyzed the composition of this film using an X-ray microanalyzer (XMA), we found that
It was found that Tb was 13.5 atoms, Co was 4.7 atoms, and the balance was Fe. The Kerr rotation angle of this film was 0.29°, and the coercive force was 1500 Oersted. Table 2 shows the results of a similar experiment using sample No. 1 and changing the number of target Tb and Co thin plates.
Shown below.

【表】 このように本発明においては、Tb−Fe−Co3
元系非晶質磁性合金のTbの量を規制することに
よつて取扱い易い保磁力を有する磁気光学記録媒
体が得られるが、更に残りのFeおよびCoの原子
比の比率を適当に選択することによつて、読出し
のS/N比の高い磁気光学記録媒体とすることが
望ましい。 本発明のTb−Fe−Co3元系非晶質磁性薄膜よ
り成る磁気光学記録媒体では、FeとCoとを合わ
せた原子比を100atom%としたときに、Coの原
子比が増大するにつれて、カー回転角が大きくな
り、Coの原子比が50atom%で最大となり、更に
Co量を増すに従つてカー回転角は小さくなる。
十分に高いS/N比の読出しを可能とする為に
は、Coの原子比が30atom%〜70atom%の範囲に
存在しなくてはならない。従つて本発明において
も、前記合金の組成を前記(1)〜(4)式の領域内で、
かつ、FeとCoとを合わせた原子比を100atom%
としたときに、Coの原子比が30atom%〜70atom
%の範囲に存在するように構成することによつて
読出しのS/N比が高く、かつ、取扱い易い保磁
力を有する磁気光学記録媒愛が得られるものであ
る。更に前記磁気光学記録媒体において、Feと
Coとを合わせた原子比を100atom%としたとき
に、Coの原子比を40atom%〜60atom%の範囲に
存在するように構成すると、カー回転角が最大値
から約6%以内のずれしかなく、特性のバラツ
キ、再現性等を問題にしなければならない製造面
からも取扱い易く、更に望ましいものである。 これらの結果は全てスパツター法により得られ
た媒体についての結果であるが、真空蒸着法によ
つても全く同様の結果が得られた。 以上説明したように、本発明は従来の磁気光学
記録媒体において、この記録媒体の保磁力を取扱
い易い大きくさとする効果を有するものである。
[Table] In this way, in the present invention, Tb−Fe−Co3
By controlling the amount of Tb in the base amorphous magnetic alloy, a magneto-optical recording medium with a coercive force that is easy to handle can be obtained, but it is also necessary to appropriately select the atomic ratio of the remaining Fe and Co. Therefore, it is desirable to use a magneto-optical recording medium with a high reading S/N ratio. In the magneto-optical recording medium made of the Tb-Fe-Co ternary amorphous magnetic thin film of the present invention, when the combined atomic ratio of Fe and Co is 100 atom%, as the atomic ratio of Co increases, the carbon As the rotation angle increases, the Co atomic ratio reaches its maximum at 50 atom%, and further
As the amount of Co increases, the Kerr rotation angle decreases.
In order to enable readout with a sufficiently high S/N ratio, the atomic ratio of Co must be in the range of 30 atomic % to 70 atomic %. Therefore, in the present invention, the composition of the alloy is within the range of formulas (1) to (4),
And the combined atomic ratio of Fe and Co is 100atom%
When the atomic ratio of Co is 30atom% to 70atom
%, it is possible to obtain a magneto-optical recording medium which has a high reading S/N ratio and has a coercive force that is easy to handle. Furthermore, in the magneto-optical recording medium, Fe and
If the atomic ratio of Co is set to be in the range of 40atom% to 60atom% when the combined atomic ratio of Co is 100atom%, the Kerr rotation angle will only deviate within about 6% from the maximum value. From the viewpoint of manufacturing, which requires consideration of variations in characteristics, reproducibility, etc., it is easy to handle and is further desirable. All of these results were for media obtained by the sputtering method, but exactly the same results were obtained by the vacuum evaporation method. As described above, the present invention has the effect of increasing the coercive force of a conventional magneto-optical recording medium to a size that is easy to handle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁気光学記録媒体の
TbFeCo3元系非晶質磁性合金の組成と保磁力と
の関係を示す図である。 1……補償組成、2,2′……保磁力4000エー
ルステツドを示す組成、3,3′……保磁力3000
エールステツドを示す組成、4,4′……保磁力
2000エールステツドを示す組成、5,5′……保
磁力1000エールステツドを示す組成、6,6′…
…保磁力200エールステツドを示す組成。
FIG. 1 shows a magneto-optical recording medium according to the present invention.
FIG. 3 is a diagram showing the relationship between the composition and coercive force of a TbFeCo ternary amorphous magnetic alloy. 1...Compensation composition, 2,2'...Composition showing coercive force 4000 Oersted, 3,3'...Coercive force 3000
Composition showing Oersted, 4,4'... coercive force
Composition showing 2000 Oersted, 5,5'... Composition showing coercive force 1000 Oersted, 6,6'...
...Composition exhibiting a coercive force of 200 Oersted.

Claims (1)

【特許請求の範囲】 1 テルビウム・鉄・コバルトの3元系非晶質磁
性合金より成り、該合金の組成を以下の式、 TbY(Fe1-XCoX1-Y で表わしたときに、XおよびYが条件、 (1) 0<X≦0.375かつ0.1≦Y≦0.16 +4/37.5X (2) 0.375<X<1かつ0.1≦Y≦0.2 −0.064(X−0.375) (3) 0<X≦0.3かつ0.245≦Y≦0.4 (4) 0.3<X<1かつ0.3≦Y≦0.4 のいずれか1つを満足するように形成された磁気
光学記録媒体。
[Claims] 1. Consisting of a ternary amorphous magnetic alloy of terbium, iron, and cobalt, when the composition of the alloy is expressed by the following formula: Tb Y (Fe 1-X Co X ) 1-Y , X and Y are conditions: (1) 0<X≦0.375 and 0.1≦Y≦0.16 +4/37.5X (2) 0.375<X<1 and 0.1≦Y≦0.2 −0.064 (X−0.375) (3) 0<X≦0.3 and 0.245≦Y≦0.4 (4) A magneto-optical recording medium formed to satisfy any one of 0.3<X<1 and 0.3≦Y≦0.4.
JP3397383A 1982-03-17 1983-03-01 Magnetooptical recording medium Granted JPS59159510A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3397383A JPS59159510A (en) 1983-03-01 1983-03-01 Magnetooptical recording medium
DE3348424A DE3348424C2 (en) 1982-03-17 1983-03-16 Terbium:iron:cobalt alloy used as magneto:optic recording material
DE19833309483 DE3309483C3 (en) 1982-03-17 1983-03-16 Magneto-optical recording material and its use
US06/783,052 US4670353A (en) 1982-03-17 1985-10-01 Magnetooptical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3397383A JPS59159510A (en) 1983-03-01 1983-03-01 Magnetooptical recording medium

Publications (2)

Publication Number Publication Date
JPS59159510A JPS59159510A (en) 1984-09-10
JPH0570922B2 true JPH0570922B2 (en) 1993-10-06

Family

ID=12401424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3397383A Granted JPS59159510A (en) 1982-03-17 1983-03-01 Magnetooptical recording medium

Country Status (1)

Country Link
JP (1) JPS59159510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877002B2 (en) 2002-11-28 2014-11-04 Tokyo Electron Limited Internal member of a plasma processing vessel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189208A (en) * 1984-03-09 1985-09-26 Nippon Hoso Kyokai <Nhk> Photomagnetic recording medium
JPS6184004A (en) * 1984-10-01 1986-04-28 Sumitomo Metal Mining Co Ltd Photo-magnetic recording medium
JPH0772946B2 (en) * 1984-10-11 1995-08-02 株式会社日立製作所 Magneto-optical recording medium
DE3536210A1 (en) * 1984-10-11 1986-04-17 Hitachi, Ltd., Tokio/Tokyo Magneto-optical recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231703A (en) * 1975-09-05 1977-03-10 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic thin film recording medium
JPS5873746A (en) * 1981-10-27 1983-05-04 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium
JPS58159252A (en) * 1982-03-17 1983-09-21 Canon Inc Magnetooptic recording medium
JPS595450A (en) * 1982-07-02 1984-01-12 Ricoh Co Ltd Optical magnetic recording medium
JPS5988808A (en) * 1982-11-15 1984-05-22 Ricoh Co Ltd Magnetic recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231703A (en) * 1975-09-05 1977-03-10 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic thin film recording medium
JPS5873746A (en) * 1981-10-27 1983-05-04 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium
JPS58159252A (en) * 1982-03-17 1983-09-21 Canon Inc Magnetooptic recording medium
JPS595450A (en) * 1982-07-02 1984-01-12 Ricoh Co Ltd Optical magnetic recording medium
JPS5988808A (en) * 1982-11-15 1984-05-22 Ricoh Co Ltd Magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877002B2 (en) 2002-11-28 2014-11-04 Tokyo Electron Limited Internal member of a plasma processing vessel

Also Published As

Publication number Publication date
JPS59159510A (en) 1984-09-10

Similar Documents

Publication Publication Date Title
JPH0118506B2 (en)
US4670353A (en) Magnetooptical recording medium
US5738950A (en) Magnetooptical recording medium
JPS6079702A (en) Photomagnetic recording medium
JPH0570922B2 (en)
EP0253282A2 (en) Thin-film having large kerr rotation angle and production process thereof
JPS60107751A (en) Photothermomagnetic recording medium
US4734334A (en) Magneto-optical recording medium
JPH0232690B2 (en)
JP2550633B2 (en) Photothermal magnetic recording medium
JPS60187954A (en) Magnetic recording medium consisting of thin magnetic film
JPS6137765B2 (en)
JPH0470705B2 (en)
JPH0465523B2 (en)
JPH0430166B2 (en)
JPS59168953A (en) Opto-thermo-magnetic recording medium
JP2705066B2 (en) Photothermal magnetic recording media
JPH0589555A (en) Information recording and reproducing method
JPH0616452B2 (en) Magneto-optical recording medium
JPS62165753A (en) Magnetooptic recording medium
JPS63266626A (en) Magnetic recording medium
JPH05266525A (en) Production of magneto-optical recording medium
JPH0792936B2 (en) Method for manufacturing magneto-optical recording element
JPS60101702A (en) Recording method of photomagnetic recording medium
JPS5996713A (en) Magnetic recording medium