JPS60155519A - Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process - Google Patents

Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Info

Publication number
JPS60155519A
JPS60155519A JP59012584A JP1258484A JPS60155519A JP S60155519 A JPS60155519 A JP S60155519A JP 59012584 A JP59012584 A JP 59012584A JP 1258484 A JP1258484 A JP 1258484A JP S60155519 A JPS60155519 A JP S60155519A
Authority
JP
Japan
Prior art keywords
gas
adsorption
adsorption tower
column
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59012584A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakuratani
桜谷 敏和
Tetsuya Fujii
徹也 藤井
Shigeo Matsui
松井 滋夫
Shigeki Hayashi
茂樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA OXGEN IND Ltd
JFE Steel Corp
Osaka Oxygen Industries Ltd
Original Assignee
OSAKA OXGEN IND Ltd
Osaka Oxygen Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA OXGEN IND Ltd, Osaka Oxygen Industries Ltd, Kawasaki Steel Corp filed Critical OSAKA OXGEN IND Ltd
Priority to JP59012584A priority Critical patent/JPS60155519A/en
Publication of JPS60155519A publication Critical patent/JPS60155519A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To recover high-purity CO from feed gas containing CO and N2, economically with simple process, by using a plurality of adsorption columns each containing an adsorbent having selectivity to CO, and discharging the gas rich in hardly adsorbable component which has hitherto been recovered with an adsorption column. CONSTITUTION:The adsorption columns A and B are packed with an adsorbent and evacuated 12 to a prescribed vacuum. The column A is supplied with a mixture of CO and N2 by opening the valve 1, and the pressure in the column is adjusted to a prescribed level. The valve 3 is opened, and the mixed gas is passed through the column for a period longer than the time necessary to get the CO purity of the outlet gas equal to that of the inlet gas of the column A by a prescribed time. The inlet valve 1 is closed, and the gas left in the space in the column A is discharged from the column and recovered 13. When the pressure in the column A approaches the atmospheric pressure, the product gas is pressed into the column A to expel the gas left in the space in the column A to the column B. After the completion of the purging process, the CO gas which is an easily adsorbable component adsorbed to the adsorbent is desorbed by evacuating the column A, and recovered 11.

Description

【発明の詳細な説明】 本発明は圧力変動式吸着分離方法CPSA法)によって
、転炉又は高炉等の排ガス、少なくとも一酸化炭素、窒
素を含む原料ガスから高純度の一酸化炭素を得る方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for obtaining high-purity carbon monoxide from a raw material gas containing at least carbon monoxide and nitrogen, exhaust gas from a converter or blast furnace, etc., using a pressure fluctuation adsorption separation method (CPSA method). .

製鉄所において精錬容器から発生する排ガスは比較的多
量のCo ガスを含有している。その組成は転炉排ガス
、高炉排ガスについては下記に示す範囲内忙ある。
Exhaust gas generated from refining vessels in steel plants contains a relatively large amount of Co 2 gas. The composition of converter exhaust gas and blast furnace exhaust gas is within the range shown below.

COCO2N2N2 転炉排ガス 60〜87% 6〜20% 6〜20% 
1〜10%高炉排ガス 20〜60%20〜60%40
〜60% 1〜10%もし、これらの排ガスから高純度
のGOガスを安価に回収できれば、合成化学原料、精錬
容器内溶融金属中への吹込みガスとして用途が拓けるつ
合成化学原料としてこのCOガスを考える際には、合成
反応が高温、高圧条件下で行なわれるのが通例であるこ
とから、反応容器を損傷させる酸化性ガスの除去が必須
であり、GO2a度を出来る限り低下させる必要がある
。また反応効率を上げるためには、通常反応に関与しな
いN2 も出来るだけ除去するのが望ましい。一方、溶
融金属の精錬の効率化を目的とする精練容器内へのガス
吹込み操作は広く行なわれているが、溶融金属中の不純
ガス成分(N2.N2など)の濃度上昇を嫌つ観点から
高価なAr ガスが使用されるのか通例である。
COCO2N2N2 Converter exhaust gas 60-87% 6-20% 6-20%
1-10% blast furnace exhaust gas 20-60%20-60%40
~60% 1-10% If high-purity GO gas can be recovered at low cost from these exhaust gases, it could be used as a raw material for synthetic chemicals or as a gas to be blown into the molten metal in the smelting vessel. When considering gases, it is essential to remove oxidizing gases that can damage the reaction vessel, as synthesis reactions are usually carried out under high temperature and high pressure conditions, and it is necessary to reduce the GO2a degree as much as possible. be. Furthermore, in order to increase reaction efficiency, it is desirable to remove as much N2 as possible, which normally does not participate in the reaction. On the other hand, gas injection into the smelting vessel is widely carried out for the purpose of improving the efficiency of smelting molten metal. Usually, expensive Ar gas is used.

製鉄所内で大量に発生する転炉ガス、高炉ガスから高純
度Co ガスを安価に回収できれば、これをAr に代
替することがはy可能である。この際、高純度COガス
のN2 濃度は溶鉄の窒素濃度上昇を防ぐ観点から低〜
Tのが望ましく、またCO2濃度も精錬容器内張り耐火
物として汎用されている炭素系耐火物の酸化損傷を防ぐ
観点から低いのが望ましい。
If high-purity Co 2 gas can be recovered at low cost from converter gas and blast furnace gas generated in large quantities in steel plants, it is possible to replace it with Ar 2 . At this time, the N2 concentration of the high-purity CO gas is kept low to prevent an increase in the nitrogen concentration of the molten iron.
T is desirable, and the CO2 concentration is also desirable to be low from the viewpoint of preventing oxidative damage to carbon-based refractories, which are commonly used as refractory linings for refining vessels.

従来、上記排ガスを原料に高純度COガスを回収するプ
ロセスとしては深冷分離法、あるいは調液法、Ca5o
rb法といった溶液吸収法が考えられている。しかしな
がら前者においては、低温と高圧を、後者においては高
温と高圧を必要とし、両者共に設備が複雑かつ高価にな
る欠点がある。また深冷分離法においてはN2 とGo
の沸点が接近しているため、N2 とCOの分離を完全
に行なうことも困難である。
Conventionally, the processes for recovering high-purity CO gas using the above-mentioned exhaust gas as raw materials include the cryogenic separation method, the liquid preparation method, and the Ca5O
Solution absorption methods such as the rb method are being considered. However, the former requires low temperature and high pressure, and the latter requires high temperature and high pressure, and both have the drawback that the equipment is complicated and expensive. In addition, in the cryogenic separation method, N2 and Go
It is also difficult to completely separate N2 and CO because their boiling points are close to each other.

以上の現状に鑑みて、本発明者らはより簡便なプロセス
で安価に高純度Goガスを回収する技術として吸着法に
よる開発を試みた。
In view of the above-mentioned current situation, the present inventors attempted to develop an adsorption method as a technique for recovering high-purity Go gas at low cost through a simpler process.

前記排ガスの吸着法(PSA法)による吸着分離は、公
知であり、吸着剤に吸着しに(いガス成分(以後、難吸
着成分と云う)の回収を目的として特公昭38−239
28.43−15045 などが出願されている。又、
吸着剤に吸着しやすいガス成分(以後易吸着成分と云う
)を吸着剤に吸着させ、脱着して分離回収することによ
り易吸着成分を高純度で分離する方法も古くから実施さ
れている。
The above-mentioned adsorption separation using the adsorption method (PSA method) is well known, and was developed in Japanese Patent Publication No. 38-239 for the purpose of recovering gas components (hereinafter referred to as difficult-to-adsorb components) that cannot be adsorbed onto an adsorbent.
28.43-15045, etc. have been filed. or,
A method of separating easily adsorbed components with high purity by adsorbing gas components that are easily adsorbed onto an adsorbent (hereinafter referred to as easily adsorbed components) and separating and recovering them by desorption has also been practiced for a long time.

例えばエチレンを易吸着成分とした具体例および窒素分
離への応用について等があろう 従来から行なわれているガス混合物中の易吸着成分を吸
着剤に吸着させ回収する方法は通常法の操作を含んだも
のである。吸着加圧工程−還流工程−脱着工程を順次繰
返すことによって吸着剤に易吸着成分に磨んだガスヲ取
出すことが出来る。
For example, there are specific examples of using ethylene as an easily adsorbable component and its application to nitrogen separation.The conventional method of recovering easily adsorbable components in a gas mixture by adsorbing them onto an adsorbent does not include the operations of ordinary methods. It is something. By sequentially repeating the adsorption pressurization process, the reflux process, and the desorption process, it is possible to take out the gas that has been refined into easily adsorbable components by the adsorbent.

しかし今回の排ガスの様に共吸着しやすいガス成分の一
絃化炭素と窒素な含む混合ガスよりVXを除去し、高濃
度の一酸化炭素として回収精製するのは従来の方法では
困難である。
However, using conventional methods, it is difficult to remove VX from a mixed gas containing carbon monocarbon and nitrogen, gas components that are easy to co-adsorb, such as the exhaust gas in this case, and recover and refine it as highly concentrated carbon monoxide.

本出願人は、先に少な(ともN2及びCO又はN2、C
O2及びCOから成る混合ガスからPSA法によりN2
 を除去づ−る方法について出願を行なった(特願昭5
7−159211 号参照)。この先願昭57−159
211号で該混合ガスより一酸化炭素を濃縮した場合、
窒素の除去が不充分で一酸化炭素の濃度を充分に高める
ことが出来なかった。そこで種々検討した結果、従来他
の吸着塔に回収していた減圧工程時の難吸着成分が比較
的多いガスを廃棄することにより高濃度の−は化炭素の
精製・分離濃縮を行うことが簡単に経済的に行えること
が判明した。
The applicant previously proposed that a small amount (both N2 and CO or N2, C
N2 is extracted from a mixed gas consisting of O2 and CO by the PSA method.
filed an application for a method to remove the
7-159211). This prior application 1977-159
When carbon monoxide is concentrated from the mixed gas in No. 211,
Nitrogen removal was insufficient and the concentration of carbon monoxide could not be increased sufficiently. As a result of various studies, we found that it is easier to purify, separate and concentrate high-concentration carbon dioxide by disposing of the gas containing a relatively large amount of difficult-to-adsorb components during the depressurization process, which was conventionally collected in other adsorption towers. It turns out that it can be done economically.

本発明は少くな(とも−酸化炭素ガス及び望累ガスを含
む原料ガスから圧力変動式吸着分離法により窒素を除去
し高純度−酸化炭素ガスを回収する方法において、原料
ガス中の一酸化炭素に対して選択性7al−有する吸着
剤を収納した2つ以上の吸着塔を用い、その方法は (1)原料ガスにより吸着塔を加圧し、(11) さら
に原料ガスを吸着塔に流して、吸着塔出口における易吸
着成分の一度が吸着塔入口における易吸着成分の一度に
達するまで、或いは達した後適当なガス量または時間の
間原料ガスを流しつづけるかもしくは両者の濃度が等し
くなる点の少し前まで原料ガスを流して吸着剤に易吸着
成分を吸着させる吸着(I+工程。
The present invention relates to a method for recovering high-purity carbon oxide gas by removing nitrogen from a raw material gas containing carbon oxide gas and aqueous gas by a pressure fluctuation type adsorption separation method. Using two or more adsorption towers containing adsorbents having selectivity 7al- to Continue to flow the raw material gas for an appropriate amount of gas or time until or after reaching the point where the easily adsorbed component at the adsorption tower outlet reaches the easily adsorbed component at the adsorption tower inlet, or until the concentration of both becomes equal. Adsorption (I+ step) in which the raw material gas is passed for a short while to cause the adsorbent to adsorb easily adsorbable components.

(iii) 吸着(11工程終了後その吸着塔の圧力を
減少させる減圧工程 (1v)減圧した吸着塔に製品ガスを導入して難吸着成
分をパージする。a−ジ工程、 (V) パージ工程を終った吸着塔を大気圧以下に排気
して吸着剤に吸着されている易吸着成分を脱着させ製品
ガスを回収する回収工程、及び(vl)製品ガス回収が
終った吸着塔と他の減圧工程の終った吸着塔とを連結し
て後者の吸着塔からのパージガスを前者の吸着塔に導入
する吸着Cl11工程 から成り、定期的に吸着塔間の流れを変えて、上記操作
馨繰返すことを特徴どした方法に関する。
(iii) Adsorption (depressurization step (1v) to reduce the pressure of the adsorption tower after the completion of step 11) Product gas is introduced into the depressurized adsorption tower to purge the difficult-to-adsorb components. a-ji step, (V) purge step (vl) A recovery process in which the adsorption tower after the product gas recovery is evacuated to below atmospheric pressure to desorb easily adsorbed components adsorbed by the adsorbent and product gas is recovered; It consists of an adsorption Cl11 step in which the adsorption tower after the process is connected and the purge gas from the latter adsorption tower is introduced into the former adsorption tower, and the above operation is repeated by periodically changing the flow between the adsorption towers. Regarding the characterized method.

本発明の工程(1)は、吸着塔に原料ガスを導入づ−る
吸着塔の〃0圧工程である。本発明では回収すべきガス
は易吸着成分であるので、高い吸着圧は必要ではな(,
6kg/ crA −G程度の吸着圧で十分であり、そ
れより低い吸着圧であっても良い。
Step (1) of the present invention is a 0-pressure step of the adsorption tower in which a raw material gas is introduced into the adsorption tower. In the present invention, since the gas to be recovered is an easily adsorbed component, high adsorption pressure is not necessary (,
An adsorption pressure of about 6 kg/crA-G is sufficient, and a lower adsorption pressure may be used.

本発明の工程(11)は、吸着(1)工程である。吸着
塔出口における易吸着成分(Goなど)の濃度が吸着塔
入口における易吸着成分の濃度と等しくなった点という
ことは、吸着剤の破過の終了を意味する。回収すべき成
分が易吸着成分であり、所定の吸着剤量のもとで十分に
多(の製品ガスを回収するためには破過終了或は破過終
了後においてもなおかつ吸着剤に残存する吸着ザイトに
易吸着成分を吸着させることが必要であり、破過終了後
も一定の原料ガス量を流すか又は一定時間原料ガスを流
すことを要する。あるいは破過終了に達ブる少し前まで
吸着を行なうにとどめても、製品ガス純度の点からはか
まわない場合もある。
Step (11) of the present invention is an adsorption (1) step. The point at which the concentration of easily adsorbed components (such as Go) at the outlet of the adsorption tower becomes equal to the concentration of easily adsorbed components at the inlet of the adsorption tower means the end of breakthrough of the adsorbent. The component to be recovered is an easily adsorbed component, and in order to recover a sufficiently large amount of product gas under a predetermined amount of adsorbent, it must remain in the adsorbent at the end of breakthrough or even after the end of breakthrough. It is necessary to adsorb easily adsorbable components to adsorbent zyte, and it is necessary to flow a constant amount of raw material gas or to flow raw material gas for a certain period of time even after breakthrough ends.Or until shortly before reaching the end of breakthrough. Even if only adsorption is performed, it may not be a problem from the viewpoint of product gas purity.

工程(11すは吸着工程が終った吸着塔内の圧力な減少
させ吸着剤と吸着剤の空隙にある難吸着成分を該吸着塔
外に廃棄するために行なう。この場合吸着圧(ケージ圧
)の1〜互程度の圧力に低下させ4 るまでガスを廃棄するのが好ましい。
Step (11) is carried out to reduce the pressure inside the adsorption tower after the adsorption step and to dispose of the difficult-to-adsorb components in the gap between the adsorbent and the adsorbent outside the adsorption tower. In this case, adsorption pressure (cage pressure) It is preferred to discard the gas until the pressure is reduced to between 1 and 4 degrees.

工程(IVIば、減圧した吸着塔に製品ガスを導入して
吸着塔内に残っている難吸着成分(N2)をパージする
。この場合の製品ガスの導入圧は、吸着圧より低(、大
気圧より高い方が望ましく、この場合ボ゛ンプ等を使用
する必要がなく、製品ガスタンクと吸着塔を連結するこ
とによってパージを実施できる。
In the step (IVI), the product gas is introduced into the adsorption tower under reduced pressure to purge the poorly adsorbed component (N2) remaining in the adsorption tower.In this case, the introduction pressure of the product gas is lower (or higher) than the adsorption pressure. It is desirable that the pressure be higher than the atmospheric pressure, and in this case there is no need to use a pump or the like, and purging can be carried out by connecting the product gas tank and the adsorption tower.

工程(v)は、・ξ−ジ工程が終った吸着塔を真空ポン
プ、フロワー、エゼクタ−等の減圧排気装置を用いて3
00 Torr以下、好ましく300〜30’rorr
まで減圧し吸着剤に吸着されていた成分(Co ガス等
)を脱着させ、製品ガスとして回収する。
In step (v), the adsorption tower after the ξ-di step is evacuated using a vacuum evacuation device such as a vacuum pump, floor, or ejector.
00 Torr or less, preferably 300 to 30'rorr
The pressure is reduced to 100%, and the components (Co gas, etc.) adsorbed on the adsorbent are desorbed and recovered as product gas.

工程(vl)は、製品ガス回収が終った吸着塔と減圧工
程が終った吸着塔とを連結し、後者の吸着塔のパージ工
程で排出されるガスを前者の吸着塔に導入し、易吸着成
分を吸着剤に吸着させる。
In step (vl), the adsorption tower that has completed product gas recovery and the adsorption tower that has completed the pressure reduction process are connected, and the gas discharged in the purge process of the latter adsorption tower is introduced into the former adsorption tower to facilitate adsorption. Adsorb the components onto an adsorbent.

本発明で使用できる吸着剤として、活性炭、天然或は改
質又は合成ゼオライト系のものが挙げられる。
Adsorbents that can be used in the present invention include activated carbon and those based on natural, modified or synthetic zeolites.

以下本発明の代表的な具体例である転炉排ガス中のN2
1 N2を除去し、COを分離回収する方法に基づいて
本発明の詳細な説明するが、本発明の方法はこれらの具
体例に限定されるものではない。
The following is a typical example of the present invention, N2 in converter exhaust gas.
Although the present invention will be described in detail based on a method of removing 1 N2 and separating and recovering CO, the method of the present invention is not limited to these specific examples.

第1図は吸着サイクルにより連続的に転炉排ガスから難
吸着成分であるN2.N2を除去し、易吸着成分のCO
を分離濃縮するフローシートであろう吸着塔A、Bは易
吸着成分を選択的に吸着する吸着剤が収納されている。
Figure 1 shows N2, a component that is difficult to adsorb, continuously extracted from the converter exhaust gas through an adsorption cycle. Removes N2 and removes CO, an easily adsorbed component.
Adsorption towers A and B, which are probably flow sheets for separating and concentrating the substances, contain adsorbents that selectively adsorb easily adsorbable components.

吸着塔A、Bを真空ポンプ等で減圧排気を300 To
rr以下好ましくはろOO〜3 Q Torrの範囲進
行い、今吸着塔Aに原料ガスを減圧状態より昇圧工程に
バルブ1を開くことによって行う。このときパルプ2.
 3. 4゜5、 6. ’7. 8.” 9. 10
はすべて閉である。
Exhaust adsorption towers A and B under reduced pressure using a vacuum pump, etc. to 300 To
rr or less, preferably in the range of 00 to 3 Q Torr, and the raw material gas is now fed into the adsorption tower A from a reduced pressure state to a pressure increasing step by opening the valve 1. At this time, pulp 2.
3. 4゜5, 6. '7. 8. ”9.10
are all closed.

吸着塔Bはこのステップではまだ減圧状態ケ保持してい
る。吸着塔Aは昇圧後、吸着圧力0.01に9 / c
a Gから6. Q kg/ art G 、好ましく
は0.2に!9/crlGから2.0 kg/ cnt
 Gの吸着圧力を保つ様にバルブ6は開かれ、酸吸着ガ
スはガスホルダー16に回収される一定時間或は一定原
料ガス量の吸1(11工程終了後、原料供給バルブ1を
閉じ、吸着塔への塔内圧力を大気圧造減圧させる。吸着
塔Aの圧力が大気圧になった所でバルブ6を閉じ次いで
吸着塔Bへの連結パイプにあるバルブ5を開き、さらに
バルブ7を開き、製品ガスを大気圧力或は大気圧力より
や〜高めの圧力(製品ガスタンク圧力)で吸着塔AK尋
尋人吸着期間の空隙中の難吸着成分のパージを行なう工
程に入る。パージ工程で吸着塔Aから排出されるガスは
バルブ5を介して吸着塔Bに回収する。パージ量はあら
かじめ計算された製品ガス量或は一定時間性なわれた後
バルブ5.7は閉じられる。次いでバルブ9を開き吸着
剤に吸着している易吸着成分を脱着させるため減圧排気
機器12で30’ OTorr好ましくは60Torr
まで減圧排気を行って製品ガスであるC0な回収するも
のである。
Adsorption tower B is still maintained at reduced pressure in this step. After increasing the pressure in adsorption tower A, the adsorption pressure is 0.019/c.
a G to 6. Q kg/art G, preferably to 0.2! 9/crlG to 2.0 kg/cnt
The valve 6 is opened to maintain the adsorption pressure of G, and the acid adsorbed gas is collected in the gas holder 16. The internal pressure of the column is reduced to atmospheric pressure. When the pressure in adsorption column A reaches atmospheric pressure, close valve 6, then open valve 5 on the connection pipe to adsorption column B, and then open valve 7. Then, the product gas enters the process of purging the difficult-to-adsorb components in the voids during the adsorption period in the adsorption tower AK at atmospheric pressure or at a pressure slightly higher than atmospheric pressure (product gas tank pressure).In the purge process, the adsorption tower The gas discharged from A is recovered to adsorption tower B via valve 5. After the purge amount reaches a pre-calculated product gas amount or after a certain period of time, valve 5.7 is closed. Then, valve 9 is closed. In order to desorb the easily adsorbed components adsorbed on the open adsorbent, the vacuum exhaust device 12 is used to reduce the pressure to 30' O Torr, preferably 60 Torr.
The product gas, C0, is recovered by evacuation to a reduced pressure.

上記操作をそれぞれの吸着塔において順次、繰返すこと
により連続的に吸着剤に対する易吸着成分であるCOガ
スを分離することができる。
By sequentially repeating the above operation in each adsorption tower, it is possible to continuously separate CO gas, which is a component easily adsorbed onto the adsorbent.

実施例1 本発明法にもとづいて、−服化炭素混合ガス(GO=9
1.2% N2= 8.8%)の精製を試みた。
Example 1 Based on the method of the present invention, a carbon mixed gas (GO=9
1.2% N2 = 8.8%) was attempted.

精製工程としては既述の如く「吸着−減圧(並流)−・
ξ−ジ(並流)−真空排気(向流)−加圧(並流)」の
精製サイクルにもとづいて実施した。
As mentioned above, the purification process is ``adsorption-depressurization (co-current)--
It was carried out based on the purification cycle of ξ-di (co-current)-vacuum evacuation (counter-current)-pressurization (co-current).

活性化したゼオライト(0,5kg、1/8Rレツト)
ヲ充填したステンレススチール製の吸着塔を真空排気し
て6 Q Torrの真空に保った後上記の混合ガス(
Co = 91.2% N2= 8.8%)を線速2c
mZ玄で塔の下部より導入して、混合ガスの精製を実施
した(精製所要時間約6分) この場合、供給ガス量13.15NAに対して精製−酸
化炭素ガス量は4.67N7であり、Co回収率は39
%−酸化炭素純度は99%以上であった。
Activated zeolite (0.5kg, 1/8R let)
After evacuating the stainless steel adsorption tower filled with water and maintaining the vacuum at 6 Q Torr, the above mixed gas (
Co = 91.2% N2 = 8.8%) at a linear speed of 2c
The mixed gas was purified by introducing it from the bottom of the column using an mZ tank (required time for purification was approximately 6 minutes).In this case, the amount of purified carbon oxide gas was 4.67N7 for the amount of supplied gas of 13.15NA. , Co recovery rate is 39
%-carbon oxide purity was greater than 99%.

本実施例の詳細は次の通りである。第1図のフローにお
いて、吸着塔A、Bにそれぞれ350℃で活性化した改
質モルデナイト系ゼオライトを0、5 kg収納し、真
空ポンプ12で6(]T’orr迄真空排気を行う。−
酸化炭素混合ガス(Go =91.2% N2=8.8
%)バルブ(1)を開にして、吸着塔(Alに導入して
、塔内圧力を1.0kl?/dGに設定した。更に吸着
工程として吸着塔出口バルブ6を開き、吸着塔出口ガス
のCO線純度入口ガスのC0純度とはy同じになる時間
より2NA?余分に混合ガスを流したつこの際吸着塔圧
力が1.0kg/cr4になるように原料ガス供給と制
御した。次いで、吸着塔入口バルブ1を閉じ吸着塔Aの
空隙(吸着剤間)にたまっている空隙ガスを塔外に廃棄
し、廃棄ガスタンク16に回収する。A塔内圧が大気圧
近< (0,02kg10+!G )になれはバルブ6
は閉じ製品ガスタンク圓とA塔の間に設けているバルブ
(7)及び吸着塔出口バルブ(5)を開にして製品ガス
タンクより製品ガス(−酸化炭素)を製品ガスタンク圧
力でもって吸着塔(んに尋人し吸着剤間の空隙に大気圧
力でなお吸着剤に吸着しないで残っているガスを吸着塔
CB+に追い出すパージ工程に入る。
Details of this embodiment are as follows. In the flow shown in Fig. 1, 0.5 kg of modified mordenite-based zeolite activated at 350°C is stored in adsorption towers A and B, respectively, and evacuated to 6 (] T'orr by vacuum pump 12.-
Carbon oxide mixed gas (Go = 91.2% N2 = 8.8
%) valve (1) was opened, the adsorption tower (Al was introduced into the tower, and the pressure inside the tower was set to 1.0 kl?/dG. Furthermore, as part of the adsorption process, the adsorption tower outlet valve 6 was opened, and the adsorption tower outlet gas From the time when the CO line purity becomes the same as the CO purity of the inlet gas, y is 2NA? When the extra mixed gas was flowed, the feed gas supply was controlled so that the adsorption column pressure was 1.0 kg/cr4.Next, , the adsorption tower inlet valve 1 is closed, and the void gas accumulated in the voids (between the adsorbents) of the adsorption tower A is disposed of outside the tower and collected in the waste gas tank 16. When the internal pressure of the A tower is close to atmospheric pressure < (0.02kg10+ !G) Become Valve 6
Close the valve (7) installed between the product gas tank and tower A, and open the adsorption tower outlet valve (5) to transport the product gas (-carbon oxide) from the product gas tank at the pressure of the product gas tank to the adsorption tower (n). Next, a purge step is started in which the gas remaining in the gaps between the adsorbents without being adsorbed by the adsorbents is expelled to the adsorption tower CB+ at atmospheric pressure.

このパージ工程が終了するとバルブ(5)と(7)を閉
じると同時に吸着塔入口側(下部)と真空ポンプ(12
+を接続している配管に設けられているバルブ(9)を
開にし、吸着剤に吸着されている易吸着成分であるCO
ガスを吸着塔(八を大気圧から6QTorr迄排気しつ
つ脱着させ製品タンク圓に回収した。
When this purge process is completed, valves (5) and (7) are closed, and at the same time the adsorption tower inlet side (lower part) and the vacuum pump (12
Open the valve (9) installed in the pipe connecting the
The gas was desorbed from the adsorption tower (8) while being evacuated from atmospheric pressure to 6 Q Torr, and collected in the product tank.

実施例2 以下本発明をさらに具体的に説明するために予めCO2
を除去した転炉排ガス(C02=88%、C03=0.
2%、N2−76%、N2=4.2%)よりN2.N2
を除去し、Go を分1tl#:#縮を行ツタ実施例を
示す。
Example 2 Below, in order to explain the present invention more specifically, CO2
Converter exhaust gas (C02=88%, C03=0.
2%, N2-76%, N2=4.2%). N2
Remove and Go minute 1tl#:#reduce the ivy example.

第1図に示したフローにおいて吸着塔A%Bにそれぞれ
650℃で活性化した合成ゼオライト(MS−5A)を
0.5 k&収納し、真空ポンプα2で60Torr迄
真空排気を行う9 次いでバルブ(11を開にしてすでに除湿脱Co2シた
転炉排ガスを吸着塔Aに導入して、塔内圧力を1.5k
g/cF!(rに設定した。更に吸着工程として吸着塔
出口バルブ6を開き、吸着塔出口ガス純度が入口ガス純
度とはy同じになる迄の時間原料ガスを流し続ける。こ
の除吸着塔圧力が1.5 kg/ cr/lGt維持す
るよ5に原料ガス供給を制御した。吸着塔出口のガスの
CO線純度入口のガスのCO線純度なると入口バルブ1
を閉じ吸着塔(Alの空隙(吸着剤間)にたまっている
空隙ガスを塔外に廃棄する。A塔内圧が大気圧(Okg
/CdCx )になればパルプ6は閉じ製品ガスクンク
11とA塔間に設けであるパルプ7及び吸着塔出口バル
ブ5を開にして製品ガスタンク11より製品ガス(CO
)を製品ガスタンク圧力でもって吸着塔(Alに導入し
吸着剤間の空隙に大気圧力で吸着剤に吸着しないで残っ
ているガスを吸着塔(Blに追い出すパージ工程に入る
。この・ξ−ジ工程が終了するとパルプ5と7を閉じる
と同時に吸着塔入口側(下部)と真壁ホンゾ12を接続
しているパルプ9を開にし、吸着剤に吸着されている易
吸着成分であるGo及びCo2ガスを吸着塔Aを大気圧
から60TOrrまで排気しつつ脱着させ製品ガスタン
ク11に回収した。
In the flow shown in Fig. 1, 0.5 kg of synthetic zeolite (MS-5A) activated at 650°C is stored in adsorption towers A and B, respectively, and evacuated to 60 Torr with vacuum pump α2. 11 is opened to introduce the converter flue gas, which has already been dehumidified and removed Co2, into the adsorption tower A, and the pressure inside the tower is increased to 1.5k.
g/cF! In addition, as an adsorption step, the adsorption tower outlet valve 6 is opened, and the raw material gas is continued to flow until the adsorption tower outlet gas purity becomes y the same as the inlet gas purity.This removal tower pressure is 1. The raw material gas supply was controlled to maintain 5 kg/cr/lGt.When the CO line purity of the gas at the outlet of the adsorption tower and the CO line purity of the gas at the inlet, the inlet valve 1
The adsorption tower (A) is closed and the void gas accumulated in the Al voids (between the adsorbents) is disposed of outside the tower.
/CdCx ), the pulp 6 is closed and the pulp 7 and adsorption tower outlet valve 5 installed between the product gas cylinder 11 and the A tower are opened to allow the product gas (CO
) is introduced into the adsorption tower (Al) at the pressure of the product gas tank, and the remaining gas that has not been adsorbed by the adsorbent is forced into the adsorption tower (Bl) into the voids between the adsorbents at atmospheric pressure. When the process is completed, pulps 5 and 7 are closed, and at the same time, pulp 9, which connects the adsorption tower inlet side (lower part) and Makabe Honzo 12, is opened, and Go and Co2 gases, which are easily adsorbed components adsorbed by the adsorbent, are removed. was desorbed while evacuating the adsorption tower A from atmospheric pressure to 60 TOrr and collected in the product gas tank 11.

このとき製品ガスタンク11に回収されたガス量は5.
55Nlでガス濃度はGOが991%あった。
At this time, the amount of gas collected in the product gas tank 11 is 5.
At 55 Nl, the gas concentration was 991% GO.

このときの転炉排ガス供給量は15.5Nl、パージガ
ス量は0.69Nlで製品として使用しうるCOの回収
率は41%であった。
At this time, the converter exhaust gas supply amount was 15.5 Nl, the purge gas amount was 0.69 Nl, and the recovery rate of CO that could be used as a product was 41%.

本発明の実施態様を示すと次の通りである。The embodiments of the present invention are as follows.

本発明は少なくとも一酸化炭素ガス及び窒素ガスを含む
混合ガスから圧力変動式吸着分離法により純度の良い一
酸化炭素ガスを精製分離する方法において、原料ガス中
の一酸化炭素に対して選択性を有する吸着剤を収納した
2つ以上の吸着塔を用い、原料ガスにより吸着塔を加圧
し、次いで原料ガスを吸着塔に流して吸着剤に易吸着成
分を吸着させ、次いで該吸着塔の塔内圧力を減少させて
、この間に放出されるガスを他の吸着塔に導入すること
なしに、次いで該吸着塔に製品ガスを導入して吸着塔内
の吸着剤量空隙の難吸着成分をパージすると共にここで
吸着塔から放出されるパージガスを製品ガス回収を終っ
た他の吸着塔に導入して易吸着成分と吸着剤に吸着させ
、次いでパージを終った吸着塔を大気圧以下に排気する
間に該吸着塔内から排出される易吸着成分に富むガスを
製品ガスとして回収する操作を定期的に吸着塔間のガス
の流れを変えて繰り返すことを特徴とした高純度−酸化
炭素ガスの精製分離方法に関する。
The present invention provides a method for purifying and separating carbon monoxide gas of high purity from a mixed gas containing at least carbon monoxide gas and nitrogen gas by a pressure fluctuation type adsorption separation method. Using two or more adsorption towers containing an adsorbent having the following properties, the adsorption tower is pressurized with a raw material gas, the raw material gas is then flowed through the adsorption tower to cause the adsorbent to adsorb easily adsorbed components, and then the inside of the adsorption tower is The pressure is reduced and the gas released during this time is not introduced into another adsorption tower, and then the product gas is introduced into the adsorption tower to purge the poorly adsorbed components in the adsorbent volume voids in the adsorption tower. At the same time, the purge gas discharged from the adsorption tower is introduced into another adsorption tower that has completed product gas recovery and is adsorbed onto easily adsorbable components and adsorbents, and then the adsorption tower that has completed purging is evacuated to below atmospheric pressure. Purification of high-purity carbon oxide gas characterized by periodically changing the gas flow between the adsorption towers and repeating the operation of recovering gas rich in easily adsorbable components discharged from the adsorption tower as a product gas. Regarding separation method.

本発明の第1工程は、吸着塔に原料ガスを導入する吸着
塔の加圧工程である。本発明では回収すべきガスは易吸
着成分であるので、高い吸着圧は必要でなく、6kg/
cIIL2G程度の吸着圧で十分であり、それより低い
吸着圧であっても良い。
The first step of the present invention is an adsorption tower pressurization step in which a raw material gas is introduced into the adsorption tower. In the present invention, since the gas to be recovered is an easily adsorbed component, a high adsorption pressure is not required, and 6 kg/
An adsorption pressure of approximately cIIL2G is sufficient, and an adsorption pressure lower than that may be sufficient.

本発明の第2工程は吸着(I)工程である。本工程は吸
着塔出口におけるガス中の易吸着成分(COなど)の濃
度が吸着塔入口のガス中のそれに等しくなる、吸着剤の
破過点の前後まで継続するのが望ましい。回収すべき成
分が易吸着成分であり、所定の吸着剤量のもとて十分に
多くの製品ガスを回収するためには破過終了或いは破過
終了後においてもなおかつ吸着剤に残存する吸着サイト
に易吸着成分を吸着させることが必要であり、破過終了
後も一定の原料ガス量を流すか、又は一定時間の間原料
ガスを流すことを要する。或いは破過点に達する少し前
まで吸着を行なうにとどめても製品純度の点からは問題
の少ない場合もある。
The second step of the present invention is the adsorption (I) step. This step is preferably continued until around the breakthrough point of the adsorbent, at which the concentration of easily adsorbable components (such as CO) in the gas at the outlet of the adsorption tower becomes equal to that in the gas at the inlet of the adsorption tower. The components to be recovered are easily adsorbable components, and in order to recover a sufficient amount of product gas with a given amount of adsorbent, adsorption sites that remain on the adsorbent even after breakthrough or after breakthrough are necessary. It is necessary to adsorb easily adsorbable components to the reactor, and it is necessary to flow a constant amount of raw material gas or to flow raw material gas for a certain period of time even after the breakthrough is completed. Alternatively, there may be fewer problems in terms of product purity even if the adsorption is carried out until just before the breakthrough point is reached.

本発明の第3の工程は、吸着(I)工程が終った吸着塔
内の圧力を減少させ吸着剤と吸着剤の空隙にある難吸着
成分に富むガスを該吸着塔外に廃棄するために行なう。
The third step of the present invention is to reduce the pressure inside the adsorption tower after the adsorption (I) step and to dispose of the gas rich in difficult-to-adsorb components in the gap between the adsorbent and the adsorbent to the outside of the adsorption tower. Let's do it.

この場合、(少なくとも)ゲージ圧でいう吸着圧力の十
〜十の圧力に低下する間に放出されるガスは他の吸着塔
に導入することなく廃棄する。
In this case, the gas released during the pressure drop to (at least) 10 to 10 times the adsorption pressure in gauge pressure is discarded without being introduced into another adsorption tower.

本発明の第4の工程は、減圧した吸着塔に製品ガスを導
入して吸着塔内に残っている難吸着成分(N2など)に
富むガスをパージする。この場合°の製品ガスの導入圧
は吸着圧より低く、大気圧より高い方が望ましく、この
場合ポンプ等を使用する必要がなく、製品ガスタンクと
吸着塔を連結するごとによってパージを実施できる。
In the fourth step of the present invention, the product gas is introduced into the adsorption tower under reduced pressure, and the gas rich in difficult-to-adsorb components (such as N2) remaining in the adsorption tower is purged. In this case, the introduction pressure of the product gas is preferably lower than the adsorption pressure and higher than atmospheric pressure, and in this case there is no need to use a pump, etc., and purging can be performed each time the product gas tank and adsorption tower are connected.

本発明の第5の工程は、パージ工程を終った吸着塔を真
空ポンプ、プロワ−、エゼクタ−等の減圧排気装置を用
いて500 Tovr以下、好ましくは600〜30 
Tovrまで減圧し、吸着剤に吸着されていた易吸着成
分を脱着させ製品ガスとして回収する。
In the fifth step of the present invention, the adsorption tower after the purge step is heated to 500 Tovr or less, preferably 600 to 30 Tovr using a vacuum pump, blower, ejector, etc.
The pressure is reduced to Tovr, and easily adsorbed components adsorbed on the adsorbent are desorbed and recovered as a product gas.

第4の工程に附随する工程は、製品ガス回収が終った吸
着塔と減圧工程が終った吸着塔とを連結し、後者の吸着
塔のパージ工程で排出されるガスを前者の吸着塔に導入
し、易吸着成分を吸着剤に吸着させるものである。
The process accompanying the fourth step is to connect the adsorption tower after product gas recovery and the adsorption tower after the pressure reduction process, and introduce the gas discharged in the purge process of the latter adsorption tower into the former adsorption tower. The easily adsorbable component is then adsorbed onto the adsorbent.

本発明で使用できる吸着剤として、活性炭、天然或いは
改質又は合成ゼオライト系のものが挙げられる。
Adsorbents that can be used in the present invention include activated carbon and those based on natural, modified or synthetic zeolites.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施する好ましい装置のフローシートであ
る。 特許出願人 川崎製鉄株式会社 同 大阪酸素工業株式会社 −1 (外4名)
The figure is a flow sheet of a preferred apparatus for carrying out the invention. Patent applicant Kawasaki Steel Corporation Osaka Sanso Kogyo Co., Ltd.-1 (4 others)

Claims (1)

【特許請求の範囲】 少くなくとも一酸化炭素ガス及び窒素ガスを含む、原料
ガスから圧力変動式吸着分離方法により窒素ガスを除去
する方法において、原料ガス中の一酸化炭素に対して選
択性を有する吸着剤を収納した2つ以上の吸着塔を用い
、その方法は(1) 原料ガスにより吸着塔を加圧し、
(11) さらに原料ガスを吸着塔に流して、吸着塔出
口における易吸着成分の濃度が吸着塔入口における易吸
着成分の濃度に達するまで或いは達した後適当なガス量
または時間の間原料ガスを流しつづけるかもしくは両者
の磯度が等しくなる点の少し前まで原料ガスを流して吸
着剤に易吸着成分を吸着させる吸着(1)工程、 (iiil 吸着(11工程終了後その吸着塔の圧力を
減少させる減圧工程、 (1v)減圧した吸着塔に製品ガスを導入して難吸着成
分をノξ−ジするパージ工程、 M パージ工程を終った吸着塔を大気圧以下に排気して
吸着剤に吸着されている易吸着成分を脱着させ製品ガス
を回収する回収′工程、及び(vl) 製品ガス回収が
終った吸着塔と他の減圧工程の終った吸着塔とを連絡し
て後者の吸着塔からのパージガスを前者の吸着塔に導入
する吸着(■)工程。 から成り、定期的に吸着塔間の流れを変えて、上記操作
を繰返すことを特徴とした方法。
[Claims] A method for removing nitrogen gas from a raw material gas containing at least carbon monoxide gas and nitrogen gas by a pressure fluctuation adsorption separation method, which provides selectivity to carbon monoxide in the raw material gas. The method is as follows: (1) pressurizing the adsorption tower with a raw material gas;
(11) Furthermore, the raw material gas is passed through the adsorption tower until the concentration of the easily adsorbed component at the outlet of the adsorption tower reaches the concentration of the easily adsorbed component at the inlet of the adsorption tower, or for an appropriate amount of gas or time after reaching the concentration of the easily adsorbed component at the inlet of the adsorption tower. Adsorption (1) step in which the easily adsorbed components are adsorbed by the adsorbent by continuing to flow the raw material gas or by flowing the raw material gas until just before the point where the roughness of both becomes equal; (1v) Purge step to introduce the product gas into the reduced pressure adsorption tower to remove difficult-to-adsorb components; M After the purge step, the adsorption tower is evacuated to below atmospheric pressure and the adsorption A recovery step in which adsorbed easily adsorbable components are desorbed and product gas is recovered, and (vl) an adsorption tower in which product gas recovery has been completed is connected to an adsorption tower in which another pressure reduction step has been completed, and the latter adsorption tower is An adsorption (■) step in which the purge gas from the previous adsorption tower is introduced into the former adsorption tower.A method characterized by periodically changing the flow between the adsorption towers and repeating the above operation.
JP59012584A 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process Pending JPS60155519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012584A JPS60155519A (en) 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012584A JPS60155519A (en) 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Publications (1)

Publication Number Publication Date
JPS60155519A true JPS60155519A (en) 1985-08-15

Family

ID=11809398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012584A Pending JPS60155519A (en) 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Country Status (1)

Country Link
JP (1) JPS60155519A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768118A (en) * 1993-09-03 1995-03-14 Iwatani Gas Kk Method for separating and recovering gaseous carbon monoxide
JPH0768119A (en) * 1993-09-03 1995-03-14 Iwatani Gas Kk Method for separation and recovery of carbon monoxide
US5683492A (en) * 1995-05-24 1997-11-04 Linde Aktiengesellschaft Process for the recovery of carbon monoxide from a purge gas containing at least carbon monoxide, nitrogen and hydrogen
JP2021058856A (en) * 2019-10-08 2021-04-15 Jfeスチール株式会社 Gas separation recovery equipment and gas separation recovery method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768118A (en) * 1993-09-03 1995-03-14 Iwatani Gas Kk Method for separating and recovering gaseous carbon monoxide
JPH0768119A (en) * 1993-09-03 1995-03-14 Iwatani Gas Kk Method for separation and recovery of carbon monoxide
US5683492A (en) * 1995-05-24 1997-11-04 Linde Aktiengesellschaft Process for the recovery of carbon monoxide from a purge gas containing at least carbon monoxide, nitrogen and hydrogen
JP2021058856A (en) * 2019-10-08 2021-04-15 Jfeスチール株式会社 Gas separation recovery equipment and gas separation recovery method

Similar Documents

Publication Publication Date Title
US4539020A (en) Methods for obtaining high-purity carbon monoxide
JP2744596B2 (en) Method for selectively separating relatively strong adsorbent components from relatively weak adsorbent components of feed gas mixture
US5096470A (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
EP0884275B1 (en) Process and apparatus for producing a gaseous product
KR890005264B1 (en) Production of oxygen enriched air
JPS6137968B2 (en)
JPH0250041B2 (en)
WO2009073928A1 (en) A plant and process for recovering carbon dioxide
USRE32590E (en) Methods for obtaining high-purity carbon monoxide
JPS6297637A (en) Method and apparatus for oxidizing carbonaceous material
JPS6137970B2 (en)
JPS60155519A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPH0112529B2 (en)
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPS60103002A (en) Method for purifying carbon monoxide and hydrogen in gaseous mixture containing carbon monoxide, carbon dioxide, hydrogen and nitrogen by adsorption
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS6139087B2 (en)
JPS6078612A (en) Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method
JPS6139090B2 (en)
JPS60155521A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPS6097020A (en) Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method
JPH0221285B2 (en)
JPS60155518A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPS625645B2 (en)
JPS62193623A (en) Method for taking out easily-adsorbing substance as high-purity gas