JPS62193623A - Method for taking out easily-adsorbing substance as high-purity gas - Google Patents

Method for taking out easily-adsorbing substance as high-purity gas

Info

Publication number
JPS62193623A
JPS62193623A JP61038033A JP3803386A JPS62193623A JP S62193623 A JPS62193623 A JP S62193623A JP 61038033 A JP61038033 A JP 61038033A JP 3803386 A JP3803386 A JP 3803386A JP S62193623 A JPS62193623 A JP S62193623A
Authority
JP
Japan
Prior art keywords
gas
adsorption
pressure
absorption tower
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61038033A
Other languages
Japanese (ja)
Inventor
Masahiro Inoue
雅裕 井上
Masaru Nagano
長野 優
Masaru Uno
宇野 優
Kanji Ueda
上田 侃二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Seitetsu Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seitetsu Kagaku Co Ltd filed Critical Seitetsu Kagaku Co Ltd
Priority to JP61038033A priority Critical patent/JPS62193623A/en
Publication of JPS62193623A publication Critical patent/JPS62193623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To enhance recovery percentage for the specified gas by separating a gaseous specified component from a gaseous mixture by means of an adsorbing process, a gas washing process and a desorbing process and providing a pressure equalizing process respectively after the finish of each process of adsorption and desorption. CONSTITUTION:Gaseous raw material 16 is sent to an absorption tower A via a valve 1 and raisen in pressure till adsorption pressure and exhaust gas 20 finished in adsorption is discharged via a valve 2 and a check valve 19. After finishing an adsorbing process, it is shifted to a pressure equalizing process and one part of adsorbing gas is sent to an absorption tower B via the valves 2, 4. Thereafter it is shifted to a washing process and desorbed gas of an absorption tower C being in a desorbing process is sent to the absorption tower A via a vacuum pump 17 and a valve 7 and washed exhaust gas is returned to a feed line of the raw material. Then the absorption tower A is decompressed by the vacuum pump 17 to perform the desorbing process and a gaseous product 21 is recovered and after finishing the desorbing process, the pressure equalizing process is performed between the absorption tower A and absorption tower C to raise the pressure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は混合ガスから特定のガス成分を吸着剤によって
分離する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a method for separating specific gas components from a mixed gas using an adsorbent.

さらに詳しくは、圧力振動式吸着分離方法(以下PSA
法と称する)によって吸着剤に吸着させたガスをより高
濃度高収率で取り出す方法に関するものである。
For more details, please refer to the pressure oscillation adsorption separation method (hereinafter referred to as PSA).
The present invention relates to a method for extracting a gas adsorbed onto an adsorbent by a method (referred to as a method) at a higher concentration and higher yield.

(従来の技術) PSA法によって、2種以上の異なる成分を含むガス混
合物から比較的強く吸着剤に吸着されるガス成分を選択
的に吸着させ、これを脱着して分離精製することはよく
知られている。
(Prior art) It is well known that the PSA method selectively adsorbs gas components that are relatively strongly adsorbed by an adsorbent from a gas mixture containing two or more different components, and separates and purifies them by desorbing them. It is being

例えば、特開昭59−173116号公報には、二酸化
炭素またはメタン等のPSA法による分離。
For example, JP-A-59-173116 discloses separation of carbon dioxide, methane, etc. by the PSA method.

精製法が示されている。この方法では、複数の吸着塔を
用いて、昇圧および吸着工程−洗浄工程一脱着工程を繰
り返し、吸着塔間で組合せて行なわれている。吸着終了
後、他の吸着塔から脱着ガスの一部を吸着塔に導入して
吸着塔内を洗浄し、次に減圧脱着を行ない、脱着したガ
スの一部を連続して製品へ回収し、同時に残りの脱着ガ
スを別の吸着塔へ送り洗浄用として使用している。しか
し、この方法では、分離したい製品ガス成分の中に必要
でない他のガス成分が混入しゃす<、99%以上の濃度
の高純度ガスを取り出すためには大きな装置が必要であ
る。
Purification methods are shown. In this method, a plurality of adsorption towers are used to repeat a pressure raising and adsorption step, a washing step, and a desorption step, and the combinations are performed between the adsorption towers. After the adsorption is completed, a part of the desorbed gas is introduced into the adsorption tower from another adsorption tower to clean the inside of the adsorption tower, and then desorption is performed under reduced pressure, and a part of the desorbed gas is continuously recovered into the product. At the same time, the remaining desorbed gas is sent to another adsorption tower and used for cleaning. However, in this method, other unnecessary gas components may be mixed into the product gas component to be separated, and a large device is required to extract high purity gas with a concentration of 99% or more.

製品ガス成分を高純度で得ようとすれば、吸着塔内の洗
浄を比較的製品ガス成分の純度の高いガスで、ある程度
時間をかけて行ない、吸着塔内の空隙部分の洗浄と、そ
れに伴なうガス成分の分圧上昇による吸着剤に吸着した
ガスの高純度化をすることが必要であるが、この結果、
単位吸着剤当たりの分離精製能力は低下する。したがっ
て、分離精製能力を維持するためKは大きい設備を必要
とし、工業的実施には問題があった。
In order to obtain product gas components with high purity, it is necessary to clean the inside of the adsorption tower with a gas with relatively high purity of the product gas component over a certain amount of time, and to clean the voids inside the adsorption tower and the accompanying cleaning. It is necessary to improve the purity of the gas adsorbed on the adsorbent by increasing the partial pressure of the gas components.
The separation and purification capacity per unit adsorbent decreases. Therefore, K requires large equipment in order to maintain separation and purification capability, which poses a problem in industrial implementation.

本発明の目的は、コンパクトな設備で高純度のガスをよ
り高収率で取り出すことにある。
An object of the present invention is to extract high-purity gas with a higher yield using compact equipment.

(問題を解決するだめの手段) 本発明者らは、上記従来法の欠点をなくし、より高い収
率で目的とするガスが得られる方法について種々検討を
重ねた結果、吸着、脱着の各工程の間に吸着塔の均圧を
行なえばガス成分の収率が高くなることを知って本発明
に到達した。
(Means to Solve the Problem) As a result of various studies on a method that eliminates the drawbacks of the above-mentioned conventional methods and obtains the target gas with a higher yield, the present inventors found that each step of adsorption and desorption The present invention was developed based on the knowledge that the yield of gas components can be increased by equalizing the pressure of the adsorption tower during this period.

すなわち、本発明は吸着塔に充填した吸着剤にガス混合
物中の特定のガス成分を選択的に吸着させ、ガス洗浄後
吸着したガス成分の脱着を行なうことにより、特定のガ
ス成分を分離する方法において、吸着、脱着の各工程終
了後にそれぞれ均圧工程を設けることを特徴とする易吸
着物質を高純度ガスとして取り出す方法である。
That is, the present invention provides a method for separating a specific gas component by selectively adsorbing a specific gas component in a gas mixture onto an adsorbent packed in an adsorption tower, and desorbing the adsorbed gas component after cleaning the gas. This is a method for extracting an easily adsorbed substance as a high-purity gas, characterized in that a pressure equalization step is provided after each of the adsorption and desorption steps.

本発明は、吸着剤を充填した複数の吸着塔を有する吸着
装置を用いて混合ガスから目的とするガス成分のみを吸
着させ、ガス洗浄後減圧脱着を行なうことにより高純度
の目的とするガス成分を効率よく分離精製する方法が、 ■ ガス混合物により吸着塔を昇圧し、引きつづき混合
ガスを吸着塔へ導入し、通過させて目的とするガス成分
を吸着させる吸着工程。
The present invention uses an adsorption device having a plurality of adsorption towers filled with adsorbent to adsorb only the target gas component from a mixed gas, and performs vacuum desorption after gas cleaning to obtain the target gas component with high purity. The method for efficiently separating and purifying gas is: (1) An adsorption process in which the pressure of an adsorption tower is increased with a gas mixture, and the mixed gas is subsequently introduced into the adsorption tower and passed through to adsorb the target gas component.

■ 吸着ガスの一部を脱着後の吸着塔へ送る均圧工程。■ Pressure equalization process in which part of the adsorbed gas is sent to the adsorption tower after desorption.

■ 吸着、均圧工程終了後、その吸着塔と洗浄工程が終
了した吸着塔を連結し、後者の吸着塔より減圧脱着した
ガスの一部を前者の吸着塔に導入し、不要ガス成分を洗
浄する洗浄工程。
■ After the adsorption and pressure equalization processes are completed, the adsorption tower is connected to the adsorption tower that has undergone the cleaning process, and a portion of the gas desorbed under reduced pressure from the latter adsorption tower is introduced into the former adsorption tower to clean unnecessary gas components. cleaning process.

バ 吸着剤に吸着している目的とするガス成分を減圧脱
着させ、一部のガスを洗浄用とし、残りの脱着ガスは製
品として回収する脱着工程。
A desorption process in which the target gas component adsorbed on the adsorbent is desorbed under reduced pressure, some of the gas is used for cleaning, and the remaining desorbed gas is recovered as a product.

V 脱着終了後、吸着ガスの一部を導入して行なう均圧
工程からなり、これらの操作を連続的に繰り返し、高純
度の目的とするガス成分を収率よ〈分離精製することが
できる。
V After the desorption is completed, a pressure equalization step is carried out by introducing a portion of the adsorbed gas, and these operations are continuously repeated to separate and purify the target gas component with high purity.

本発明で用いられる吸着剤としては、周知のもので、活
性炭、ゼオライト(以下ZMSと称する)。
The adsorbent used in the present invention is well known, such as activated carbon and zeolite (hereinafter referred to as ZMS).

分子ぶるい活性炭(以下CMSと称す)などがあげられ
る。これらの吸着剤を用途別にみると、XMSは空気中
の酸素の分離、−酸化炭素の分離。
Examples include molecular bright activated carbon (hereinafter referred to as CMS). Looking at these adsorbents by application, XMS is used for the separation of oxygen in the air, and for the separation of carbon oxides.

水素の分離など、またCMSも銘柄によっては空気中の
窒素の分離、水素の分離などに使用することができる。
Depending on the brand, CMS can also be used to separate nitrogen from the air, hydrogen, etc.

吸着剤は、堅固な塔内に充填して使用し、吸着剤量およ
び吸着剤層高さは、ガスの処理量、塔内流速などの諸条
件によって決定する。
The adsorbent is used by being packed in a rigid column, and the amount of adsorbent and the height of the adsorbent layer are determined depending on various conditions such as the amount of gas to be processed and the flow rate in the column.

吸着は、混合ガスを吸着剤層に導入し、目的とする易吸
着ガス成分、例えばCO,CO2,CH4等を十分吸着
させる。難吸着成分ガスは、吸着塔上部より排出される
。吸着工程が終了した吸着塔内空隙および吸着剤間の空
隙には目的とする成分以外のガスを多量に含んだガスが
混在している。まだ吸着剤には目的とする成分以外のガ
スも多少吸着しているためこれらを洗浄する目的で、目
的とする成分がリッチなガスを供給し、洗浄を行なう。
In adsorption, a mixed gas is introduced into an adsorbent layer, and the target easily adsorbed gas components, such as CO, CO2, CH4, etc., are sufficiently adsorbed. The poorly adsorbed component gas is discharged from the upper part of the adsorption tower. After the adsorption step has been completed, gas containing a large amount of gas other than the target component is mixed in the voids within the adsorption tower and the voids between the adsorbents. Since the adsorbent still has some gases other than the target components adsorbed, in order to clean these gases, a gas rich in the target components is supplied for cleaning.

洗浄に用いるガスは脱着工程で取り出される脱着ガスの
一部を用い、洗浄に使用した後のガスは塔上部より排出
され、原料ガス側に戻される。脱着は、目的とするガス
成分を十分吸着した吸着剤の圧力を減することにより、
目的とするガス成分を吸着剤から分離し、脱着ガスとし
て吸着塔下部より取り出し、一部は製品となり、一部は
洗浄ガスとして使用される。
The gas used for cleaning is a part of the desorption gas taken out in the desorption step, and the gas used for cleaning is discharged from the upper part of the tower and returned to the source gas side. Desorption is carried out by reducing the pressure of an adsorbent that has sufficiently adsorbed the target gas component.
The target gas component is separated from the adsorbent and taken out from the bottom of the adsorption tower as a desorption gas, part of which becomes a product and part of which is used as a cleaning gas.

以上の基本工程(吸着−洗浄一説着)に加え、吸着工程
と脱着工程終了後に各塔間を連結し均圧を行なう。この
均圧工程を加えることにより、さらに高純度のガスをよ
り高収率で得ることができる。
In addition to the above basic steps (adsorption, cleaning, and adsorption), after the adsorption step and desorption step, each column is connected to equalize the pressure. By adding this pressure equalization step, even higher purity gas can be obtained at a higher yield.

本発明をさらに具体的に説明するために3塔式のPSA
装置を用いて、−酸化炭素と水素の混合ガスから一酸化
炭素を分離精製する方法を述べる。
To further specifically explain the present invention, a three-column PSA
A method for separating and purifying carbon monoxide from a mixed gas of -carbon oxide and hydrogen using an apparatus will be described.

第1図は、3つの吸着塔を有するPSA装置のフローシ
ートである。この装置は3つの吸着塔A。
FIG. 1 is a flow sheet of a PSA device having three adsorption towers. This equipment has three adsorption towers A.

BおよびC9原料ガスプロワ−16,減圧するだめの真
空ポンプ17ならびに弁1〜15で構成されている。吸
着塔A、B、Cには、それぞれZMSが充填されており
、このうち1塔(例えば吸着塔Aに着目する)に原料ガ
ス18が開状態にある弁1を通って送られ、吸着塔Aは
吸着圧まで昇圧される。吸着圧に達すると吸着済み排ガ
ス20は弁2と逆止弁19を通り排気される。吸着工程
が終わると数秒間の均圧工程により吸着ガスの一部が弁
2および4を通り、脱着後の吸着塔Bに送られる。次に
洗浄工程にはいると弁1.2および13が閉、弁7およ
び8が開となり、別の脱着工程にある吸着塔Cより一酸
化炭素リッチガスが弁15゜真空ポンプ17.弁7を通
って吸着塔Aに送られる。
It is composed of a B and C9 source gas blower 16, a vacuum pump 17 for pressure reduction, and valves 1 to 15. Adsorption towers A, B, and C are each filled with ZMS, and raw material gas 18 is sent to one of these towers (for example, focus on adsorption tower A) through valve 1 in an open state, and The pressure of A is increased to the adsorption pressure. When the adsorption pressure is reached, the adsorbed exhaust gas 20 passes through the valve 2 and the check valve 19 and is exhausted. After the adsorption step is completed, a part of the adsorbed gas passes through valves 2 and 4 through a pressure equalization step of several seconds and is sent to adsorption tower B after desorption. Next, when entering the cleaning step, valves 1.2 and 13 are closed, valves 7 and 8 are opened, and carbon monoxide-rich gas is supplied from adsorption tower C in another desorption step to valve 15° vacuum pump 17. It passes through valve 7 and is sent to adsorption tower A.

洗浄を行なった排ガスは弁8を通って原料ガス供給ライ
ンにリサイクルされ、再び吸着される。次に脱着工程と
なり、真空ポンプ17を使って減圧脱着させる。弁1,
2.7および8は閉、弁13を開としておき、脱着ガス
の一部を別の洗浄工程にある吸着塔Bに弁9を通して送
り、残りのガスを製品ガス21として回収する。脱着完
了後、均圧工程において弁2を開、弁1,7.8および
13を閉とし、弁2および6を通して吸着塔Cより吸着
ガスが一部送られ昇圧される。
The cleaned exhaust gas is recycled to the raw material gas supply line through the valve 8 and adsorbed again. Next, there is a desorption process, in which the vacuum pump 17 is used to depressurize and desorb. Valve 1,
2.7 and 8 are closed, valve 13 is left open, a part of the desorbed gas is sent through valve 9 to adsorption tower B in another cleaning step, and the remaining gas is recovered as product gas 21. After the desorption is completed, in the pressure equalization step, valve 2 is opened and valves 1, 7, 8, and 13 are closed, and a portion of the adsorbed gas is sent from adsorption tower C through valves 2 and 6 to increase the pressure.

これらの操作をそれぞれの吸着塔において順次繰り返す
ことにより高純度の一酸化炭素を収率よく回収すること
ができる。
By sequentially repeating these operations in each adsorption tower, high purity carbon monoxide can be recovered in good yield.

〔実 施 例〕〔Example〕

以下実施例により本発明を説明するが、本発明はこれら
の具体例に限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these specific examples.

実施例−1 Z M S 561 yを内径40wn長さ600mm
の3つの塔に充填した装置を用いて、Co 66容量%
Example-1 ZMS 561 y has an inner diameter of 40wn and a length of 600mm.
Co 66% by volume using a device packed in three columns of
.

H234容量%の混合ガスを160 NR/11で通し
吸着圧0.IKシーGで145秒間吸着を行ない、次に
5秒間均圧を行なった。さらに0.1 Kg/edGで
145秒間洗浄を行ない、最後に145秒間脱着を行な
い製品ガスを回収した。最終到達脱着圧は60 Tor
rであった。次に均圧を5秒間行なった。脱着ガスは一
部洗浄ガスとしてリサイクルし、残りを製品ガスとして
回収した。このとき製品ガスCO純度は、99.9容量
に、CO収率は96にであった。
A mixed gas of 34% by volume of H2 was passed through at 160 NR/11 and the adsorption pressure was 0. Adsorption was performed using IK Sea G for 145 seconds, and then pressure equalization was performed for 5 seconds. Further, cleaning was performed for 145 seconds at 0.1 Kg/edG, and finally desorption was performed for 145 seconds to recover the product gas. Final desorption pressure is 60 Torr
It was r. Next, pressure equalization was performed for 5 seconds. A portion of the desorption gas was recycled as cleaning gas, and the rest was recovered as product gas. At this time, the product gas CO purity was 99.9 volume, and the CO yield was 96.

比較例−1 上記と同条件で均圧工程を含まない従来法を行なったが
、製品ガスCO純度99.9容量%、CO収率は80%
であった。
Comparative Example-1 A conventional method without pressure equalization step was carried out under the same conditions as above, but the product gas CO purity was 99.9% by volume and the CO yield was 80%.
Met.

実施例−2 2M8561Fを内径40mm長さ600叫の3つの吸
着塔に充填した装置を用いて、CO52容量%、N24
8容量%の混合ガスを18ONλ21で通し、吸着圧0
.1 Kg/crilGで85秒間吸着を行ない、次に
5秒間均圧を行なった。さらに0. IKgAiIGで
85秒間洗浄を行ない、最後に85秒間脱着を行ない製
品ガスを回収した。最終到達脱着圧は、60 Torr
であった。次に均圧を5秒間行なった。脱着ガスは、一
部洗浄用としてリサイクルし、残りを製品ガスとして回
収した。このとき製品ガスCO純度は99.2容量%、
CO収率は64%であった。
Example-2 Using an apparatus in which 2M8561F was packed into three adsorption towers with an inner diameter of 40 mm and a length of 600 mm, CO52% by volume and N24
8 volume% mixed gas is passed through 18ONλ21, adsorption pressure is 0.
.. Adsorption was carried out at 1 Kg/crilG for 85 seconds, followed by pressure equalization for 5 seconds. Another 0. Cleaning was performed for 85 seconds with IKgAiIG, and finally desorption was performed for 85 seconds to recover the product gas. Final desorption pressure is 60 Torr
Met. Next, pressure equalization was performed for 5 seconds. Part of the desorption gas was recycled for cleaning, and the rest was recovered as product gas. At this time, the product gas CO purity was 99.2% by volume.
The CO yield was 64%.

比較例−2 上記と同条件で均圧工程を含まない従来法を行なったが
、製品ガスCO純度は99.2容量%。
Comparative Example 2 A conventional method without pressure equalization step was carried out under the same conditions as above, but the product gas CO purity was 99.2% by volume.

CO収率は52%であった。The CO yield was 52%.

実施例−3 CM5407F’を内径40m1長さ600mの3つの
吸着塔に充填した装置を用いて、CO228容量%、N
272容量%の混合ガスを32ONA、41で通し、吸
着圧0.1. K17/iGで115秒間吸着を行ない
、次に5秒間均圧を行なった。さらに0.1Kg/cr
rlGで115秒間洗浄を行ない、最後に115秒間脱
着を行ない製品ガスを回収した。最終到達圧力は、60
Torrであった。次に均圧を5秒間行なった。脱着ガ
スは一部洗浄ガスとしてリサイクルし、残りを製品ガス
として回収した。このとき製品ガスco2濃度は99.
9容量%+ CO2収率は50%であった。
Example-3 Using an apparatus in which CM5407F' was packed into three adsorption towers with an inner diameter of 40 m and a length of 600 m, CO2 by volume% and N
A mixed gas of 272% by volume was passed through 32ONA and 41, and the adsorption pressure was 0.1. Adsorption was performed with K17/iG for 115 seconds, and then pressure equalization was performed for 5 seconds. Furthermore 0.1Kg/cr
Cleaning was performed with rlG for 115 seconds, and finally desorption was performed for 115 seconds to recover the product gas. The final pressure reached is 60
It was Torr. Next, pressure equalization was performed for 5 seconds. A portion of the desorption gas was recycled as cleaning gas, and the rest was recovered as product gas. At this time, the product gas CO2 concentration is 99.
9% by volume + CO2 yield was 50%.

比較例−3 上記と同条件で均圧工程を含壕ない従来法を行なったが
、製品co2純度は99.9容量%、 CO2収率は3
3%であった。
Comparative Example-3 A conventional method without pressure equalization step was carried out under the same conditions as above, but the product CO2 purity was 99.9% by volume and the CO2 yield was 3.
It was 3%.

(発明の効果) 本発明の方法を実施することにより、各種製造プロセス
で発生する廃ガス、分解ガス等の混合ガスから目的とす
るガス成分を高純度かつ高収率で取得することができる
。また、従来法と比較してコンパクトな装置で実施でき
るので、その結果、コストの低減、エネルギーの省力化
がはかれる。
(Effects of the Invention) By carrying out the method of the present invention, a target gas component can be obtained with high purity and high yield from a mixed gas such as waste gas and cracked gas generated in various manufacturing processes. Moreover, since it can be carried out using a compact device compared to the conventional method, cost reduction and energy saving are achieved as a result.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法を実施するだめの3つの吸着塔
を有するPSA装置のフローシート、第2図−1は、各
吸着塔における工程を時間の経過とともにあられした表
、第2図−2は第2図−1に対応する各吸着塔の圧力変
化を示した図であり第1図 兵Tボ〉フ。 第2図−1 二f呈時1匍 (抄つ一一−−シ 第2図−2
Fig. 1 is a flow sheet of a PSA device having three adsorption towers for carrying out the method of the present invention, Fig. 2-1 is a table showing the steps in each adsorption tower over time, and Fig. -2 is a diagram showing pressure changes in each adsorption tower corresponding to Fig. 2-1; Figure 2-1 2f presentation 1 liter (Shotsu 11--shi Figure 2-2)

Claims (5)

【特許請求の範囲】[Claims] (1)吸着塔に充填した吸着剤にガス混合物中の特定の
ガス成分を選択的に吸着させ、ガス洗浄後吸着したガス
成分の脱着を行なうことにより、特定のガス成分を分離
する方法において、吸着、脱着の各工程終了後にそれぞ
れ均圧工程を設けることを特徴とする易吸着物質を高純
度ガスとして取り出す方法。
(1) A method of separating a specific gas component by selectively adsorbing a specific gas component in a gas mixture onto an adsorbent filled in an adsorption tower, and desorbing the adsorbed gas component after cleaning the gas. A method for extracting easily adsorbed substances as a high-purity gas, characterized by providing a pressure equalization step after each adsorption and desorption step.
(2)減圧脱着を行ない吸着塔下部より特定ガス成分を
得る特許請求の範囲第(1)項記載の方法。
(2) The method according to claim (1), in which the specific gas component is obtained from the lower part of the adsorption tower by performing vacuum desorption.
(3)脱着ガスの一部を洗浄用のガスとして用いる特許
請求の範囲第(1)項記載の方法。
(3) The method according to claim (1), in which a part of the desorption gas is used as a cleaning gas.
(4)特定ガス成分の取り出し、およびガス洗浄を工程
期間中連続して行なう特許請求の範囲第(1)項記載の
方法。
(4) The method according to claim (1), wherein extraction of a specific gas component and gas cleaning are performed continuously during the process.
(5)洗浄を行なったガスを吸着工程の吸着塔下部へ導
入する特許請求の範囲第(1)項記載の方法。
(5) The method according to claim (1), wherein the cleaned gas is introduced into the lower part of the adsorption tower in the adsorption step.
JP61038033A 1986-02-21 1986-02-21 Method for taking out easily-adsorbing substance as high-purity gas Pending JPS62193623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61038033A JPS62193623A (en) 1986-02-21 1986-02-21 Method for taking out easily-adsorbing substance as high-purity gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61038033A JPS62193623A (en) 1986-02-21 1986-02-21 Method for taking out easily-adsorbing substance as high-purity gas

Publications (1)

Publication Number Publication Date
JPS62193623A true JPS62193623A (en) 1987-08-25

Family

ID=12514236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61038033A Pending JPS62193623A (en) 1986-02-21 1986-02-21 Method for taking out easily-adsorbing substance as high-purity gas

Country Status (1)

Country Link
JP (1) JPS62193623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182927A (en) * 2014-03-25 2015-10-22 住友精化株式会社 Method of and equipment for refining hydrogen chloride
US10211149B2 (en) 2017-02-21 2019-02-19 Samsung Electro-Mechanics Co., Ltd. Fan-out semiconductor package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201516A (en) * 1981-06-04 1982-12-10 Mitsubishi Heavy Ind Ltd Adsorbing and separating method for gaseous mixture
JPS6078611A (en) * 1983-10-06 1985-05-04 Kawasaki Steel Corp Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201516A (en) * 1981-06-04 1982-12-10 Mitsubishi Heavy Ind Ltd Adsorbing and separating method for gaseous mixture
JPS6078611A (en) * 1983-10-06 1985-05-04 Kawasaki Steel Corp Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182927A (en) * 2014-03-25 2015-10-22 住友精化株式会社 Method of and equipment for refining hydrogen chloride
US10211149B2 (en) 2017-02-21 2019-02-19 Samsung Electro-Mechanics Co., Ltd. Fan-out semiconductor package

Similar Documents

Publication Publication Date Title
JPS6261616A (en) Method for separating high purity gas from gaseous mixture
JPS6137968B2 (en)
EP0451677A2 (en) Vacuum swing adsorption process for production of 95+% N2 from ambient air
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
JP3073917B2 (en) Simultaneous pressure change adsorption method
CA2366185A1 (en) Improved pressure swing adsorption process for high recovery of high purity gas
GB2155805A (en) Gas separation process and apparatus
US6113672A (en) Multiple equalization pressure swing adsorption process
JPS6245315A (en) Pressure swing adsorbing method
JP4481112B2 (en) Pressure fluctuation adsorption type gas separation method and apparatus
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
KR102018322B1 (en) Adsorber system for adsorption process and method of separating mixture gas using its adsorption process
JPS6137970B2 (en)
JP3101225B2 (en) Pressure fluctuation adsorption type high purity carbon dioxide production method
JPS62193623A (en) Method for taking out easily-adsorbing substance as high-purity gas
JP2001335305A (en) Co gas/h2 gas recovery equipment and method for recovering co gas/h2 gas
JPS60819A (en) Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method
JP2587334B2 (en) Method of separating CO gas not containing CH4
JPH02283608A (en) Method for separating and recovering carbon monoxide
JPS62117612A (en) Regenerating method for adsorption tower
KR102439733B1 (en) Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen
JP2000317245A (en) Separation and purification of gas
JP2004300035A (en) Method for separating methane gas and apparatus therefor
JPS62273025A (en) Separation of gaseous mixture
JPS60155519A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process