JPS60155518A - Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process - Google Patents

Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Info

Publication number
JPS60155518A
JPS60155518A JP59012583A JP1258384A JPS60155518A JP S60155518 A JPS60155518 A JP S60155518A JP 59012583 A JP59012583 A JP 59012583A JP 1258384 A JP1258384 A JP 1258384A JP S60155518 A JPS60155518 A JP S60155518A
Authority
JP
Japan
Prior art keywords
adsorption
adsorption tower
gas
stage
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59012583A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakuratani
桜谷 敏和
Tetsuya Fujii
徹也 藤井
Shigeo Matsui
松井 滋夫
Shigeki Hayashi
茂樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA OXGEN IND Ltd
JFE Steel Corp
Osaka Oxygen Industries Ltd
Original Assignee
OSAKA OXGEN IND Ltd
Osaka Oxygen Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA OXGEN IND Ltd, Osaka Oxygen Industries Ltd, Kawasaki Steel Corp filed Critical OSAKA OXGEN IND Ltd
Priority to JP59012583A priority Critical patent/JPS60155518A/en
Publication of JPS60155518A publication Critical patent/JPS60155518A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PURPOSE:To recover CO gas from feed gas containing CO, CO2 and N2, economically, in high purity, with simple process, by using two or more adsorption columns packed with adsorbent having selectivity to CO2, and removing CO2 from the feed gas by the pressure variation adsorptive separation process comprising repeated adsorption and desorption in each adsorption column. CONSTITUTION:The adsorption columns A and B each containing an adsorbent having selective adsorptivity to CO2 are evacuated, and feed gas is introduced under pressure into the column A. The pressure in the column A is increased to effect the adsorption of CO2 and CO to the adsorbent, and the remaining component is discharged from the end of the column A. After the completion of the adsorption process, the pressure in the column A is released to atmospheric pressure or thereabout, and the column A is evacuated 40 from its bottom to effect the desorption of the CO2 component adsorbed to the adsorbent. After desorption, the CO2 still left adsorbed to the adsorbent is expelled from the adsorbent by the entrained desorption with the waste gas discharged from the end of the column A as purge gas. When the vacuum purge of the CO2 is completed, the column A is pressurized to the adsorption pressure with the product gas. The above procedures are repeated alternately in the columns A and B to effect the adsorptive removal of CO2 with the adsorbent and the recovery of high purity CO.

Description

【発明の詳細な説明】 本発明は圧力変動式吸着分離方法(PSA法)によって
、転炉又は高炉等の排ガス、少なくとも一酸化炭素、二
酸化炭素、窒素を含む原料ガスから高純度の一酸化炭素
を得る方法に関する。
Detailed Description of the Invention The present invention uses a pressure fluctuation adsorption separation method (PSA method) to extract high-purity carbon monoxide from exhaust gas from a converter or blast furnace, a raw material gas containing at least carbon monoxide, carbon dioxide, and nitrogen. Regarding how to get .

製鉄所において精錬容器から発生する排ガスは比較的多
量のCOガスを含有している。その組成は転炉排ガス、
高炉排ガスについては下記に示す範囲内にある。
Exhaust gas generated from refining vessels in steel plants contains a relatively large amount of CO gas. Its composition is converter exhaust gas,
Blast furnace exhaust gas is within the range shown below.

C0Co2NH2 2 転炉排ガス 60〜87% 3〜20% 3〜20%1
〜1o%高炉排ガス 20〜30%20〜60%40〜
6o% 1〜10%もし、これらの排ガスから高純度の
Coガスを安価に回収できれば、合成化学原料、精錬容
器内溶融金属中への吹込みガスとして用途が拓ける。合
成化学原料としてこのCOガスを考える際には、合成反
応が高温、高圧条件下で行なわれるのが通例であること
から、反応容器を損傷させる酸化性ガスの除去が必須で
あり、CO3濃度を出来る限り低下させる必要がある。
C0Co2NH2 2 Converter exhaust gas 60-87% 3-20% 3-20%1
~1o% blast furnace exhaust gas 20~30%20~60%40~
6o% 1-10% If high-purity Co gas can be recovered at low cost from these exhaust gases, it can be used as a synthetic chemical raw material or as a gas to be blown into molten metal in a refining vessel. When considering this CO gas as a raw material for synthetic chemicals, it is essential to remove oxidizing gases that can damage the reaction vessel, as the synthesis reaction is usually carried out under high temperature and high pressure conditions. It is necessary to reduce it as much as possible.

また反応効率を上げるためには、通常反応に関与しない
N2 も出来るだけ除去するのが望ましい。一方、溶融
金属の精錬の効率化を目的とする精錬容器内へのガス吹
込み操作は広く行なわれているが、溶融金属中の不純ガ
ス成分(N2、N2など)の濃度上昇を嫌う観点から高
価なAr ガスが使用されるのが通例である。製鉄所内
で大量に発生する転炉ガス、制炉ガスから高純度Co 
ガスを安価に回収できれば、これをAr に代替するこ
とがはy可能である。この際、高純度COガスのN2濃
度は溶鉄の窒素濃度上昇を防ぐ観点から低いのが望まし
く、またC02a度も精錬容器内張り耐火物として汎用
されている炭素系耐火物の酸化損傷を防ぐ観点から低い
のが望ましい。
Furthermore, in order to increase reaction efficiency, it is desirable to remove as much N2 as possible, which normally does not participate in the reaction. On the other hand, gas injection into a refining vessel is widely carried out for the purpose of improving the efficiency of refining molten metal. Typically, expensive Ar gas is used. High-purity Co is extracted from converter gas and blast furnace gas generated in large quantities in steel plants.
If gas can be recovered at low cost, it is possible to replace it with Ar. At this time, it is desirable that the N2 concentration of the high-purity CO gas is low from the perspective of preventing an increase in the nitrogen concentration of molten iron, and the CO2a degree is also preferably low from the perspective of preventing oxidation damage to carbon-based refractories, which are commonly used as refractory linings for refining vessels. Low is desirable.

従来、上記排ガスを原料に高純度Co ガスを回収する
プロセスとしては深冷分離法、あるいは調液法、Co5
orb法といった溶液吸収法が考えられている。しかし
ながら前者においては、低温と高圧を、後者においては
高温と高圧を必要とし、両者共に設備が複雑かつ高価に
なる欠点がある。また深冷分離法においてはN2 とC
oの沸点が接近しているバめ、N2 とCoの分離を完
全に行なうことも困難である。
Conventionally, the processes for recovering high-purity Co gas using the above exhaust gas as raw materials include the cryogenic separation method, the liquid preparation method, and the Co5
Solution absorption methods such as the orb method are being considered. However, the former requires low temperature and high pressure, and the latter requires high temperature and high pressure, and both have the drawback that the equipment is complicated and expensive. In addition, in the cryogenic separation method, N2 and C
Since the boiling points of N2 and Co are close to each other, it is difficult to completely separate N2 and Co.

以上の現状に鑑みて、本発明者らは、より簡便なプロセ
スで安価に高純度COガスを回収する技術として吸着法
による開発Z試みた。
In view of the above-mentioned current situation, the present inventors attempted development Z using an adsorption method as a technique for recovering high-purity CO gas at low cost through a simpler process.

前記排ガスの吸着法(PSA法ンによる吸着分離は、公
知であり、吸着剤に吸着しにくいガス成分(以後、難吸
着成分と云う)の回収を目的として特公昭38−239
28.4ろ−15045などが出願されている。又、吸
着剤に吸着しやすいガス成分(以後易吸着成分と云う)
を吸着剤に吸着させ脱着して分離回収することにより易
吸着成分を高純度で分離する方法も古くから実施されて
いる。例えばエチレンを易吸着成分とした具体例およ国
素分離への応用について等がある。
The above-mentioned adsorption method (PSA method) is a well-known adsorption method and was developed in Japanese Patent Publication No. 38-239 for the purpose of recovering gas components that are difficult to adsorb onto adsorbents (hereinafter referred to as "hardly adsorbed components").
No. 28.4-15045 has been filed. In addition, gas components that are easily adsorbed by adsorbents (hereinafter referred to as easily adsorbed components)
A method of separating easily adsorbable components with high purity by adsorbing them onto an adsorbent, desorbing them, and separating and recovering them has also been practiced for a long time. For example, there are specific examples using ethylene as an easily adsorbed component and applications to the separation of national elements.

従来から行なわれているガス混合物中の易吸着成分を吸
着剤に吸着させ回収する方法は通常次の操作を含んだも
のである。吸着加圧工程−還流工程−脱着工程を順次繰
返すことによって吸着剤に易吸着成分に富んだガスを取
出すことが出来る。
A conventional method for recovering easily adsorbable components in a gas mixture by adsorbing them onto an adsorbent usually includes the following operations. By sequentially repeating the adsorption pressurization process, the reflux process, and the desorption process, a gas rich in easily adsorbable components can be extracted from the adsorbent.

しかし今回の排ガスの様に共吸着しやすいガス成分の一
酸化炭素と窒素、二酸化炭素を含む混合ガスより二酸化
炭素及び璧累を除去し、高濃度の−y化炭素として回収
精製するのは従来の方法では困難である。
However, conventionally, carbon dioxide and carbon dioxide are removed from a mixed gas containing carbon monoxide, nitrogen, and carbon dioxide, which are gas components that are easy to co-adsorb, such as the exhaust gas in this case, and recovered and purified as highly concentrated -y carbon. method is difficult.

本出願人は、先に少なくともN2及びGo又はN2、C
O2及び■から成る混合ガスからPSA法によりN2 
を除去する方法について出願を行なつた(特願昭57−
159211号参照)。この先願昭57−1.5921
1号で該混合ガスより一酸化炭素を濃縮した場合、窒素
は除去されかつ水素も完全に除去されるものの一酸化炭
素と二酸化炭素とが共存する場合同じ様に吸着され濃縮
されるため、−膜化炭素の濃度を充分に高めることが出
来なかった。そのため、窒素の除去効率を上げるために
、製品−酸化炭素ガスを吸着塔に送入して難吸着成分で
あるN2をパージする工程を採用していた。
The applicant has previously identified at least N2 and Go or N2, C
N2 is extracted from a mixed gas consisting of O2 and ■ by the PSA method.
filed an application for a method for removing the
159211). Prior application 1986-1.5921
When carbon monoxide is concentrated from the mixed gas in No. 1, nitrogen is removed and hydrogen is also completely removed, but when carbon monoxide and carbon dioxide coexist, they are adsorbed and concentrated in the same way, so - It was not possible to sufficiently increase the concentration of carbon film. Therefore, in order to increase the nitrogen removal efficiency, a process has been adopted in which the product-carbon oxide gas is sent to an adsorption tower to purge N2, which is a difficult-to-adsorb component.

パージ工程に製品ガスを使用するため、製品として使用
しうるガス量が少ない問題があった。そこで種々検討し
た結果前処理工程として吸着法による二酸化炭素の除去
技術を用い、□組合せた結果、N2除去のためのパージ
工程を省略しても十分に高濃度の一酸化炭素の精製分離
濃縮を行うことが簡単に経済的に行えることが判明した
Since product gas is used in the purge process, there is a problem in that the amount of gas that can be used as a product is small. As a result of various studies, we decided to use adsorption technology to remove carbon dioxide as a pretreatment process, and in combination, we were able to purify, separate, and concentrate carbon monoxide at a sufficiently high concentration even if the purge process for removing N2 was omitted. It turned out to be easy and economical to do so.

本発明は二段階吸着操作により、少くとも二酸化炭素、
−酸化炭素及び窒素からなる原料ガス中の一酸化炭素を
濃縮する方法において、(α) その第1段階の吸着操
作は二酸化炭素に対して選択性を有する吸着物質を充填
した2つ以上の吸着塔を使用し、その方法は各吸着塔で
吸着および脱着を繰返す圧力変動式吸着分離によってそ
の原料ガスから二酸化炭素を除去することからなり、(
以后脱C02PSA法と云う)そして、(hl 第2段
階の吸着操作は、第1段階の吸着工程から排出されたガ
ス(以下、第1段階製品ガスという)中の一酸化炭素に
対して選択性を有する吸着物質を充填した2つ以上のぼ
着塔を使用し、その方法は (1)第1段階製品ガスにより吸着塔を加圧する加圧工
程、 (1リ さらに第1段階製品ガスを吸着塔に流して吸着
塔出口における易吸着成分の濃度が吸着塔入口における
易吸着成分の濃度に達するまで、ある。
The present invention uses a two-stage adsorption operation to at least absorb carbon dioxide,
- In a method for concentrating carbon monoxide in a raw material gas consisting of carbon oxide and nitrogen, (α) the first stage adsorption operation is performed using two or more adsorption systems filled with adsorbent substances that are selective to carbon dioxide. The process consists of removing carbon dioxide from the feed gas by pressure-swing adsorption separation with repeated adsorption and desorption in each adsorption tower;
(hereinafter referred to as the C02PSA method) and (hl) The second stage adsorption operation is selective to carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage product gas). The method uses two or more adsorption towers filled with an adsorption material having a The concentration of the easily adsorbed component at the outlet of the adsorption tower reaches the concentration of the easily adsorbed component at the inlet of the adsorption tower.

いは達した後、適当なガス量または時間の間第1段階製
品ガスを流しつづけるか、もしくは両者の濃度が等しく
なる点の少し前まで第1段階製品ガスを流して吸着剤に
易吸着成分を吸着させる吸着(1)工程、 (ilil 吸着(1)工程終了後その吸着塔と排気脱
着が終った吸着塔とを連結し、前者の吸着塔からガスを
後者の吸着塔に導入し、前者の吸着塔の圧力を降下させ
る減圧放出工程、この工程は必らずしも行なう必要はな
い。
After the first stage product gas is reached, continue to flow the first stage product gas for an appropriate amount of gas or time, or flow the first stage product gas until just before the point where the concentrations of the two become equal, so that the easily adsorbed components are absorbed by the adsorbent. After the completion of the adsorption (1) step, the adsorption tower is connected to the adsorption tower that has undergone exhaust gas desorption, and the gas is introduced from the former adsorption tower to the latter adsorption tower, and the former This step does not necessarily have to be carried out.

(1v) 減圧放圧工程を終った吸着塔を大気圧以下に
排気して吸着剤に吸着されている易吸着成分を脱着させ
製品ガスを回収する回収工程、M 製品ガス回収が終っ
た吸着塔と吸着(11工程が終った吸着塔とを連結して
後者の吸着塔からの減圧放圧ガスを前者の吸着塔に導入
する吸着(n)工程、 から成り、定期的に吸着塔間の流れを変えて、上記操作
を繰返すことを特徴とした方法に関する。
(1v) A recovery process in which the adsorption tower that has completed the depressurization and depressurization process is evacuated to below atmospheric pressure to desorb easily adsorbed components adsorbed on the adsorbent and recover product gas, M Adsorption tower that has completed product gas recovery and the adsorption (n) step, which connects the adsorption tower that has completed the adsorption (step 11) and introduces the depressurized and released gas from the latter adsorption tower into the former adsorption tower, and the flow between the adsorption towers is periodically increased. The present invention relates to a method characterized in that the above operation is repeated with different values.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は少なくとも一酸化炭素、二酸化炭素、窒素から
成る原料ガスから圧力変動式吸着分離方法により一酸化
炭素を濃縮及び分m精製する方法において、天然酸るい
は改質、又は合成ゼオライト系吸着剤からなる吸着剤を
収納した2つ以上の吸着塔を使用する。
The present invention provides a method for concentrating and fractionally refining carbon monoxide from a raw material gas consisting of at least carbon monoxide, carbon dioxide, and nitrogen by a pressure fluctuation type adsorption separation method, using a natural acidic or reformed or synthetic zeolite adsorbent. Two or more adsorption towers containing adsorbents consisting of:

第1段階における原料ガスから二酸化ガスを除去する工
程は、通常のPSA法すなわち吸着、減圧、製品ガスに
よるパージおよび製品ガスによる加圧の繰返しにより実
施しても良く、又他の方法であっても良い。二酸化炭素
を除去する好ましい方法は次の通りである。
The step of removing carbon dioxide from the raw material gas in the first stage may be carried out by the usual PSA method, that is, repeating adsorption, depressurization, purging with product gas, and pressurization with product gas, or by other methods. Also good. A preferred method of removing carbon dioxide is as follows.

二酸化炭素に対して選択性を有する吸着物質を充填した
2つ以上の吸着塔を使用し、その方法は(1)第1段階
製品ガスによる吸着塔を加圧する加圧工程、好ましくは
0.2〜3kg/cni−Gまで加圧する、 (11) 原料ガスを吸着塔に流して主として二酸化炭
素を吸着物質に吸着させる吸着工程、1i1 次いで吸
着塔を大気圧附近まで減圧する減圧工程、 (1v)次いで吸着塔を減圧排気機器により排気する排
気工程、(好ましくは減圧排気は6o〜300Torr
 まで行なわれる)そして、 M 次いで第2段階吸着(1)工程からの廃棄ガスを用
いて、減圧排気を行いながらパージする、パージ工程、 から成り、定期的に吸着塔間の流れを変えて、上記操作
を繰返すことから成る方法。
Two or more adsorption towers filled with an adsorption material having selectivity for carbon dioxide are used, and the method includes (1) a pressurizing step of pressurizing the adsorption tower with a first stage product gas, preferably 0.2 Pressurize to ~3 kg/cni-G, (11) Adsorption step in which the raw material gas is passed through the adsorption tower and mainly adsorbs carbon dioxide to the adsorbent material, 1i1 Next, a depressurization step in which the adsorption tower is depressurized to around atmospheric pressure, (1v) Next, there is an evacuation step in which the adsorption tower is evacuated using a reduced pressure evacuation device (preferably the reduced pressure evacuation is performed at a temperature of 6 o to 300 Torr).
M Next, the second stage adsorption (1) consists of a purge step in which the waste gas from the step (1) is used to purge while performing vacuum evacuation, and the flow between the adsorption towers is changed periodically. A method consisting of repeating the above operations.

第2段階の吸着操作は第1段階の吸着工程から排出され
たガス(以下第1段階製品ガスという)中の一酸化炭素
に対して選択性を有する吸着物質 −を充填した2つ以
上の吸着塔を使用し、その方法は (11第1段階製品ガスにより吸着塔を加圧する加圧工
程 (n) さらに第1段階製品ガスを吸着塔に流して、吸
着塔出口における易吸着成分の濃度が吸着塔入口におけ
る易吸着成分の純度に達するまで、或は達した後、適当
なガス量又は時間の間、第1段階製品ガスを流しつづけ
るか、もしくは両者の濃度が等しくなる点の少し前まで
、第1段階製品ガスを流して吸着剤に易吸着成分を吸着
させる吸着(1)工程 −吸着(1)工程終了後、その吸着塔と排気脱着が終っ
た吸着塔とを連結し、前者の吸着塔から後者の吸着塔に
前者のガスを導入し、前者の吸着塔の圧力を大気圧又は
大気圧近(まで降下させる減圧放圧工程。
The second stage adsorption operation consists of two or more adsorption systems filled with an adsorbent substance that is selective to carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage product gas). The method is (11 Pressurizing step of pressurizing the adsorption tower with the first stage product gas (n)) Furthermore, the first stage product gas is passed through the adsorption tower, and the concentration of easily adsorbed components at the outlet of the adsorption tower is Continue to flow the first stage product gas until or after reaching the purity of the easily adsorbed component at the adsorption tower inlet for an appropriate amount of gas or time, or until shortly before the point where the concentrations of both are equal. , Adsorption (1) step in which the adsorbent adsorbs easily adsorbable components by flowing the first stage product gas - After the adsorption (1) step, the adsorption tower is connected to the adsorption tower after exhaust desorption, and the former A depressurization and release process in which the former gas is introduced from the adsorption tower into the latter adsorption tower, and the pressure in the former adsorption tower is lowered to atmospheric pressure or near atmospheric pressure.

この工程をかならず行なう必要はない。It is not necessary to always perform this step.

(5)吸着剤に吸着されている易吸着成分を減圧排気装
置を用いて脱着させ製品ガスを回収する回収工程、及び (Vl 製品ガス回収が終った吸着塔と、吸着(1)工
程が終った吸着塔とを連結して、後者の吸着塔からの減
圧放圧ガスを前者の吸着塔に導入して易吸着成分を吸着
させる吸着用)工程、 から成り、定期的に吸着塔間の流れを変えて、上記操作
乞繰返すことを特徴とした方法に関する。
(5) A recovery step in which the easily adsorbed components adsorbed on the adsorbent are desorbed using a vacuum evacuation device and the product gas is recovered; The adsorption process consists of an adsorption process in which the depressurized gas from the latter adsorption tower is connected to the adsorption tower, and the depressurized gas from the latter adsorption tower is introduced into the former adsorption tower to adsorb easily adsorbable components, and the flow between the adsorption towers is periodically The present invention relates to a method characterized in that the above operation is repeated with different values.

本発明の第1段階の工程(V)は、二酸化炭素含有量の
極めて少ない第2段階廃棄ガスを減圧下に導入するパー
ジ工程であり、二酸化炭素の脱着に有利な方法であると
共に、廃棄ガスの有効利用というシステムの合理性を示
すものである。
Step (V) of the first stage of the present invention is a purge step in which the second stage waste gas with extremely low carbon dioxide content is introduced under reduced pressure, and is an advantageous method for desorption of carbon dioxide. This shows the rationality of the system, which is the effective use of resources.

本発明の第2段階における工程(1)は吸着塔に第1段
階製品ガスを導入する吸着塔の加圧工程である、本発明
では回収すべきガスは易吸着成分であるので高い吸着圧
は必要ではなく、1kg / cd G程度の吸着圧で
十分であり、それより低い吸着圧であっても良い。
Step (1) in the second stage of the present invention is an adsorption tower pressurization step in which the first stage product gas is introduced into the adsorption tower.In the present invention, the gas to be recovered is an easily adsorbed component, so a high adsorption pressure is required. It is not necessary, and an adsorption pressure of about 1 kg/cd G is sufficient, and a lower adsorption pressure may be used.

工程(mlは吸着(1)工程である。吸着塔出口におけ
る易吸着成分(−酸化炭素ガス、二酸化炭素ガス)の濃
度が吸着塔入口における易吸着成分の温度と等しくなっ
た点というのは、吸着剤の破過の終了を意味する、回収
すべき成分が易吸着成分であり所定の吸着剤量のもとで
十分に多(の製品ガスを回収するためには破過終了或は
破過終了後においてもなおかつ吸着剤に残存する吸着サ
イトに易吸着成分を吸着させることが必要であり、破過
終了後も一定の第1段階製品ガス量を流すかまたは一定
時間第1段階製品ガスを供給する必要がある、あるいは
破過終了に達する少し前まで吸着を行なうにとどめても
、製品ガス純度の点ではかまわない場合もある。
Step (ml is the adsorption (1) step. The point at which the concentration of easily adsorbed components (-carbon oxide gas, carbon dioxide gas) at the outlet of the adsorption tower becomes equal to the temperature of the easily adsorbed components at the inlet of the adsorption tower is This means the end of breakthrough of the adsorbent.If the component to be recovered is an easily adsorbed component, and in order to recover a sufficiently large amount of product gas under a predetermined amount of adsorbent, the end of breakthrough or breakthrough is required. It is necessary to adsorb easily adsorbable components to the adsorption sites remaining in the adsorbent even after the completion of breakthrough. In some cases, it may be acceptable in terms of product gas purity to perform adsorption until a little before the supply is required or the end of breakthrough is reached.

工程(至)は吸着(11工程が終った吸着塔内の圧力な
減少させ、吸着剤と吸着剤の空隙にある難吸着成分を該
吸着降外に廃棄するために行うものである。
Step (to) is carried out to reduce the pressure in the adsorption tower after the adsorption step (step 11) and to dispose of the difficult-to-adsorb components present in the gap between the adsorbent and the adsorbent to the outside of the adsorption.

この操作は該吸着塔圧力を大気圧まで減少させるかまた
は大気圧以上の適当な圧力で中止させるかもしくは大気
圧以下で製品ガス回収を終った他の吸着塔に均圧させて
もかまわない。尚、製品ガス回収の終った吸着塔への減
圧ガスの導入は任意である。
This operation may be performed by reducing the adsorption tower pressure to atmospheric pressure, or stopping at an appropriate pressure above atmospheric pressure, or equalizing the pressure in another adsorption tower which has completed product gas recovery below atmospheric pressure. Note that it is optional to introduce reduced pressure gas into the adsorption tower after product gas recovery.

工程(5)は減圧工程が終った吸着塔を減圧排気装置(
例えば真空ポンプ、ブロワ−、エゼクタ等)を用いて吸
着剤に吸着されている易吸着成分を脱着させ製品ガスと
して回収する回収工程 工程(Vlは製品ガス回収が終った吸着塔と吸着(11
工程が終った吸着塔とを連結して後者の吸着塔からの減
圧ガスによって前者の吸着塔を加圧する。
Step (5) is to remove the adsorption tower after the decompression process by using a decompression exhaust device (
For example, the recovery process step (Vl is the adsorption tower and adsorption (11
The former adsorption tower is pressurized by the reduced pressure gas from the latter adsorption tower.

この加圧圧力ある。いは本工程の省略は工程(ホ)によ
って決められる。
There is this pressure. Or, the omission of this step is determined by the step (e).

本発明で使用できる吸着剤として、天然或は改質又は合
成ゼオライト系のものが挙げられる。
Adsorbents that can be used in the present invention include those based on natural, modified or synthetic zeolites.

本発明の別の態様として、吸着(1)工程が終わった後
、次工程前に吸着塔内の圧力をある圧力まで減圧させ、
減圧(1)工程を附加する方法もある。この工程は吸着
塔内の吸着塔出口側の難吸着成分の多い部分を吸着塔外
へ廃棄するためである。この3 場合吸着圧(ゲージ圧)の■〜T程度の圧力に低下させ
るまで、ガスを廃棄するのが好ましい。
As another aspect of the present invention, after the adsorption (1) step is finished, the pressure inside the adsorption tower is reduced to a certain pressure before the next step,
There is also a method of adding a pressure reduction (1) step. This step is for discarding the portion of the adsorption tower containing a large amount of difficult-to-adsorb components on the adsorption tower outlet side to the outside of the adsorption tower. In this case, it is preferable to discard the gas until the adsorption pressure (gauge pressure) is reduced to about 1 to T.

以下本発明の代表的な具体例である転炉排ガス中の窒素
ガス二酸化炭素ガスを除去し、−叡化炭素を分離回収す
る方法に基づいて、本発明の詳細な説明するが本発明の
方法は、これらの具体例に限定されるものではない。
Hereinafter, the present invention will be explained in detail based on a typical example of the present invention, which is a method for removing nitrogen gas and carbon dioxide gas from converter exhaust gas and separating and recovering carbon fluoride.The method of the present invention is not limited to these specific examples.

第1図は吸着法により連続的に転炉排ガスから二酸化炭
素と窒素砺除去し、−酸化炭素ガスを分離濃縮する70
−シートである。
Figure 1 shows how carbon dioxide and nitrogen gas are continuously removed from the converter exhaust gas using the adsorption method, and carbon oxide gas is separated and concentrated.
-It is a sheet.

吸着塔A、Bは二酸化炭素を選択的に吸着する吸着剤が
収納されている。吸着塔A、Bi減圧排気装置を用いて
減圧排気を5 Q Q Torr以下好まL <ハ30
 Torrまで行い、今吸着塔Aに原料ガスを加圧導入
、減圧状態より昇圧させるためバルゾ1を開く。この時
バルジ1以外はすべて閉の状態になっている。
Adsorption towers A and B house adsorbents that selectively adsorb carbon dioxide. Adsorption tower A, evacuation under reduced pressure using a Bi decompression exhaust device, preferably less than 5 Q Q Torr L < 30
Torr, and now the raw material gas is introduced into the adsorption tower A under pressure, and the valve 1 is opened to increase the pressure from the reduced pressure state. At this time, all the bulges except bulge 1 are closed.

吸着塔Bはこのステップでは、まだ減圧状態を保持して
いる。吸着塔Aは昇圧後、吸着圧力0.01kg / 
c、rl Gから3.3 kg / crl G、好ま
しくは0.2kg/cdGから2、Okg/ cfIG
の吸着圧力を保つようにバルブ2が開かれ二酸化炭素と
一酸化炭素その他の含有ガスも一部は吸着剤に吸着し、
残りは吸着塔の他の端部より排出する。一定時間或は一
定ガス量の吸着工程終了後原料供給バルブ1及び出ロバ
ルズ2は閉じバルブ6を開き、吸着塔Aの塔内圧力を大
気圧附近まで減圧放圧させる。吸着塔Aが大気圧附近に
なるとバルブ6は閉じられ吸着塔下部よりバルブ4を開
にして減圧排気装置40を用いて減圧排気を行い吸着剤
に吸着している二酸化炭素成分を脱着させる・この際の
排気圧力は600Torr以下好ましくは3 Q To
rrまで行う。減圧排気が終了するとバルブ5を開にす
る(この時手動バルブ14でパージガス量を調節する。
Adsorption tower B still maintains a reduced pressure state in this step. Adsorption tower A has an adsorption pressure of 0.01 kg /
c, rl G to 3.3 kg/crl G, preferably 0.2 kg/cdG to 2, Okg/cfIG
Valve 2 is opened to maintain the adsorption pressure of
The remainder is discharged from the other end of the adsorption tower. After the adsorption process for a certain time or a certain amount of gas is completed, the raw material supply valve 1 and the output valves 2 are closed and the valve 6 is opened to reduce the internal pressure of the adsorption tower A to near atmospheric pressure. When the adsorption tower A reaches near atmospheric pressure, the valve 6 is closed, and the valve 4 is opened from the bottom of the adsorption tower to perform depressurization using the decompression exhaust device 40 to desorb the carbon dioxide component adsorbed on the adsorbent. The exhaust pressure at the time is 600 Torr or less, preferably 3 Q To
Continue until rr. When the evacuation is completed, the valve 5 is opened (at this time, the amount of purge gas is adjusted using the manual valve 14).

)ことによって第2段階処理装置吸着(1+工程からの
廃棄ガスを利用して吸着剤から脱着しきれずに吸着して
いる二酸化炭素をパージガスとの同伴脱着により吸着剤
より追い出す。この減圧排気パージが終了するとバルブ
4とバルブ5は閉じられ、バルブ6を開にして製品ガス
でもって吸着塔内に吸着圧力まで加圧を行う。
) By using the second stage treatment device adsorption (using the waste gas from the 1+ step, the adsorbed carbon dioxide that has not been completely desorbed from the adsorbent is expelled from the adsorbent by entrainment desorption with the purge gas. This reduced pressure exhaust purge When the process is finished, valves 4 and 5 are closed, valve 6 is opened, and the product gas is used to pressurize the adsorption tower to the adsorption pressure.

上記操作をそれぞれの吸着塔において順次繰返すことに
よって連続的に吸着剤にCo2を吸着させ除去しようと
するものである。第一段階のPSA装置で二酸化炭素が
除去されたガスは第二段階のPSA装置でもって水素・
窒素を除去し一酸化炭素の濃度を高濃度に濃縮分離しよ
うとするものでその方法は吸着塔G、D、E、’ Fは
易吸着成分(ここでは−酸化炭素と二酸化炭素)を選択
的に吸着する吸着剤が収納されている。吸着塔C,D。
By sequentially repeating the above operations in each adsorption tower, Co2 is continuously adsorbed and removed by the adsorbent. The gas from which carbon dioxide has been removed in the first-stage PSA device is then converted into hydrogen and hydrogen in the second-stage PSA device.
The purpose is to remove nitrogen and concentrate and separate carbon monoxide to a high concentration.The method is to use adsorption towers G, D, E, and F to selectively remove easily adsorbed components (in this case, carbon oxide and carbon dioxide). Contains an adsorbent that adsorbs on. Adsorption towers C and D.

E、Fを減圧排気装置(例えば真空ポンプ等)66を用
いて減圧排気を300 Torr以下好ましくは3 Q
 Torrまで行い、今吸着塔Cに原料ガス(第一段階
のPSA装置で二酸化炭素を除去したもの)を加圧導入
するために再生済の減圧状態より昇圧させるためバルブ
16を開くことによって行う。
E and F are depressurized and evacuated using a decompression exhaust device (e.g., a vacuum pump, etc.) 66 to a pressure of 300 Torr or less, preferably 3Q.
Torr, and now the valve 16 is opened to increase the pressure from the regenerated reduced pressure state in order to introduce the raw material gas (from which carbon dioxide has been removed in the first stage PSA device) into the adsorption tower C under pressure.

このときの昇圧速度はノぐルブ15によって調節される
。昇圧後ノくルブ17.18を開にすると同時にバルブ
16は閉とし該混合ガスが吸着塔内を通過する。このと
き吸着剤に易吸着成分である一酸化炭素と二酸化炭素が
吸着され、他のガスkま吸着塔内を通過し一部は脱C0
2PSA装置のノξ−ジガスとして使用される。残りは
水素、−酸化炭素力−まだかなり含まれているので燃料
ガス等に再利用するためにタンク68′に回収する。
The pressure increase rate at this time is adjusted by the noggle 15. After increasing the pressure, the knobs 17 and 18 are opened and at the same time the valve 16 is closed and the mixed gas passes through the adsorption tower. At this time, carbon monoxide and carbon dioxide, which are easily adsorbed components, are adsorbed by the adsorbent, and other gases pass through the adsorption tower, where some of the carbon dioxide is removed.
It is used as a nozzle gas in 2PSA equipment. The remainder, which still contains a considerable amount of hydrogen and carbon oxide, is collected in tank 68' for reuse as fuel gas or the like.

一定時間或は一定ガス量の吸着工程終了後原料供給バル
ブ18及び出ロバルプ17は閉じ、吸着塔りへの連結パ
イプにあるバルブ19を開き、吸着塔Cの塔内圧力を大
気圧附近まで減圧放圧させ吸着塔りの吸着剤に減圧放圧
されたガス中の易吸着成分を吸着させる。吸着塔Aが大
気圧附近になるとバルブ19を閉じ吸着塔下部のノミル
プ20を開にし、減圧排気装置66を用いて減圧排気を
行い吸着剤に吸着している易吸着成分を脱着させる。
After the adsorption process for a certain time or a certain amount of gas is completed, the raw material supply valve 18 and the output valve 17 are closed, and the valve 19 in the connecting pipe to the adsorption tower is opened to reduce the internal pressure of the adsorption tower C to near atmospheric pressure. The pressure is released and the adsorbent in the adsorption tower adsorbs easily adsorbable components in the gas that has been depressurized and released. When the adsorption tower A reaches atmospheric pressure, the valve 19 is closed, the nomilp 20 at the bottom of the adsorption tower is opened, and the depressurization is performed using the decompression exhaust device 66 to desorb easily adsorbable components adsorbed on the adsorbent.

この際の排気圧力は300 Torr好ましくは30T
orrまで行って易吸着成分であるCoを製品ガスとし
て回収するものである。
The exhaust pressure at this time is 300 Torr, preferably 30T.
orr and recover Co, which is an easily adsorbed component, as a product gas.

上記操作をそれぞれの吸着塔において順次繰返すことに
よって連続的に吸着剤に易吸着成分であるCOガスを吸
着させて分離精製することが出来る0 上記の様に第一段階の脱C○2装置と第二段階のパージ
工程を省略した脱N2装置を組合せることによって以下
の実施例に示すように、パージ工程を採用している脱N
2装置単独で一酸化炭素を濃縮分離して精製した時より
もCO2の濃度をいちじるしく減少させることが出来、
−酸化炭素濃度を高めることができた。さらに製品ガス
回収量を増大させることもできた。
By repeating the above operations sequentially in each adsorption tower, CO gas, which is an easily adsorbed component, can be continuously adsorbed onto the adsorbent for separation and purification. By combining a denitrification device that omits the second-stage purge process, as shown in the example below, the denitrification system employs a purge process.
The concentration of CO2 can be significantly reduced compared to when carbon monoxide is concentrated and separated using two devices alone.
- It was possible to increase the carbon oxide concentration. Furthermore, it was also possible to increase the amount of product gas recovered.

実施例1 以下本発明をさらに具体的に説明するため、転炉排カス
(GO=865%Co2=6.6%N2=6,6%H2
=6.6%)の精製を試みた。
Example 1 Hereinafter, in order to explain the present invention more specifically, converter waste waste (GO = 865% Co2 = 6.6% N2 = 6.6% H2
= 6.6%).

精製工程として既述の如(一段目に脱Co2装置の「吸
着−減圧、放圧−排気−パージー製品加圧」と二段目の
脱N2装置の「原料加圧−吸!(1)−減圧排気−減圧
吸着([1−加圧」の精製サイクルにもととづいて実施
した。
The purification process is as described above (the first stage is "adsorption - depressurization, pressure release - exhaust - pressurization of purged product" in the CO2 removal equipment, and the "raw material pressurization - suction! (1) -" in the second stage N2 removal equipment). It was carried out based on the purification cycle of vacuum evacuation-vacuum adsorption ([1-pressurization]).

一段目の脱C02PSA装置には活性化したゼオハープ
(50kg1/B//−(レット)を充填した鋼製の吸
着塔(12X1.7m)二段目の脱N2 装置にも活性
化したゼオン・−プ(166kg1/8“ペレット)を
充填した鋼製の吸着塔(16X2.4m)を減圧排気1
Q [I To、rrと6 Q Torrにそれぞれ排
気した後上記の転炉排ガスを塔の下部より導入して転炉
排ガスの精製を実施した。供給ガス量46、5 M に
対し精製−酸化炭素ガス量は26.7M で、このとき
の回収率は649%テアツタ。
The first stage C02 removal PSA device is a steel adsorption tower (12 x 1.7 m) filled with activated ZeoHarp (50kg1/B//- (ret)).The second stage N2 removal device also has activated Zeon. A steel adsorption tower (16 x 2.4 m) filled with pellets (166 kg 1/8" pellets) was evacuated under reduced pressure.
After exhausting to Q [I To, rr and 6 Q Torr, respectively, the above converter exhaust gas was introduced from the lower part of the tower to purify the converter exhaust gas. The amount of gas supplied was 46.5 M, while the amount of purified carbon oxide gas was 26.7 M, and the recovery rate at this time was 649%.

精製後のガス組成は次の通りであった。The gas composition after purification was as follows.

ガス組成CO= 97.8% CO2−0,3 N2= 1.9 実施例2 実施例1と同一装置を用いて下記実験条件で転炉排ガス
を用いた精製・分離を行った結果である。
Gas composition CO = 97.8% CO2-0.3 N2 = 1.9 Example 2 These are the results of purification and separation using converter exhaust gas under the following experimental conditions using the same equipment as in Example 1.

実験条件 ガス組成 C0=83%C02=5%N2−6%H2−
6% 操作温度 25℃ 吸着剤 脱C02PSA装置・・・・MS−13X脱N
 2 n ・・・・MS−5A 吸着圧力 10kg/ff1G 真空排気を100’l
’orr及び60Torr で脱着を行い製品ガスの一
酸化炭素の濃縮・精製を実施した。供給ガス量61.3
m3に対し精製−酸化炭素ガス量は68.1m3で一酸
化炭素の回収率は72.9%であった。
Experimental conditions Gas composition C0=83%C02=5%N2-6%H2-
6% Operating temperature 25℃ Adsorbent C02 PSA equipment...MS-13X deN
2 n...MS-5A Adsorption pressure 10kg/ff1G Vacuum exhaust 100'l
Desorption was performed at a pressure of 'orr and 60 Torr to concentrate and purify the product gas carbon monoxide. Supply gas amount 61.3
The amount of purified carbon oxide gas was 68.1 m3 per m3, and the recovery rate of carbon monoxide was 72.9%.

精製後のガス組成は C0=97.4% C02= 0.3% N2= 2.3% 本発明の実施態様を示すと次のようになる。The gas composition after purification is C0=97.4% C02=0.3% N2=2.3% The embodiments of the present invention are as follows.

1、 少なくとも二酸化炭素、−酸化炭素及び窒素を含
む原料ガスから、純度の良い一酸化炭素ガスを圧力変動
式吸着分離法により精゛製分類する方法において、二段
階吸着操作を用い、その方法は、 (a) 第1段階の吸着操作は原料ガス中の二酸化炭素
に対して選択性を有する吸着物質を充填した2つ以上の
吸着塔を使用し、各吸着塔で少な(とも吸着および脱着
を繰返す圧力変動式吸着分離によってその原料ガスから
二酸化炭素を除去することからなり、そして、(b) 
第2段階の吸着操作は、第1段階の吸着工程から排出さ
れたガス(以下、第1段階製品ガスという)中の一酸化
炭素に対して選択性を有する吸着物質を充填した2つ以
上の吸着塔を用い、第1段階製品ガスにより吸着塔を加
圧し、次いで第1段階製品ガスを吸着塔に流して吸着剤
に易吸着成分を吸着させ、次いで該吸着塔の塔内圧力を
減少させて、この間に放出されるガス全部又は一部は製
品ガス回 ・収を終った他の吸着塔に導入し、次いで、
該吸着塔を大気圧以下に排気する間に排出される易吸着
成分に富むガスを製品ガスとして回収する操作を定期的
に吸着塔間のガスの流れを変えて繰返すことを特徴とし
た一酸化炭素の精製・分離方法。
1. A method for refining and classifying high-purity carbon monoxide gas from a raw material gas containing at least carbon dioxide, carbon oxide, and nitrogen using a pressure fluctuation type adsorption separation method, which uses a two-stage adsorption operation, and the method (a) The first stage adsorption operation uses two or more adsorption towers filled with an adsorbent material that is selective to carbon dioxide in the raw material gas. removing carbon dioxide from the feed gas by repeated pressure swing adsorptive separation; and (b)
The second stage adsorption operation is carried out using two or more adsorbents filled with an adsorbent material that is selective to carbon monoxide in the gas discharged from the first stage adsorption process (hereinafter referred to as the first stage product gas). Using an adsorption tower, pressurize the adsorption tower with the first stage product gas, then flow the first stage product gas into the adsorption tower to cause the adsorbent to adsorb easily adsorbable components, and then reduce the internal pressure of the adsorption tower. All or part of the gas released during this period is introduced into another adsorption tower that has completed product gas recovery and recovery, and then
Monoxidation characterized by periodically changing the gas flow between the adsorption towers and repeating the operation of recovering gas rich in easily adsorbable components discharged while the adsorption tower is evacuated to below atmospheric pressure as a product gas. Carbon purification and separation method.

2、第1段階操作の方≠が、第1段階製品ガスによる吸
着塔加圧、原料ガスを吸着塔に流して主として二酸化炭
素を吸着させる吸着工程、吸着塔を犬2気圧附近まで減
圧する工程、次いで吸着塔を大気圧以下に排気する工程
、そして第2段階吸着工程からの廃棄ガスを吸着塔に導
入して行なうパージ工程を順次、定期的に吸着塔を切り
替えて繰返し、二酸化炭素を吸着除去することである上
記(1)の方法。
2. The first stage operation is a step of pressurizing the adsorption tower with the first stage product gas, an adsorption step in which the raw material gas is passed through the adsorption tower to mainly adsorb carbon dioxide, and a step in which the adsorption tower is depressurized to around 2 atmospheres. Next, the adsorption tower is evacuated to below atmospheric pressure, and the waste gas from the second stage adsorption process is introduced into the adsorption tower, which is a purge step, which is repeated in sequence by periodically switching the adsorption tower to adsorb carbon dioxide. The method of (1) above is to remove.

6、第2段階操作の方法が吸着塔の圧力を減少させる工
程において排出されるガスのうち、排出後期のガスのみ
を製品ガス回収の終った他の吸着塔に導入することであ
る上記(1)の方法。
6. The method of the second stage operation is to introduce only the gas discharged in the latter stage of the gas discharged in the step of reducing the pressure of the adsorption tower into another adsorption tower after product gas recovery. )the method of.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の方法を実施するための好ましい態様のフロ
ーシートを示す。 特許出願人 川崎製鉄株式会社
The figure shows a flow sheet of a preferred embodiment for carrying out the method of the invention. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 (1)二段階吸着操作により、少なくとも二酸化炭素、
−酸化炭素及び窒素を含む原料ガス中の一酸化炭素を濃
縮する方法において。 (α)その第1段階の吸着操作は二酸化炭素に対して選
択性を有する吸着物質を充填した2つ以上の吸着塔を使
用し、その方法は各吸着塔で吸着および脱着を繰返す圧
力変動式吸着分離によってその原料ガスから二酸化炭素
を除去することからなり、そして、 (b) 第2段階の吸着操作は、第1段階の吸着工程か
ら排出されたガス(以下、第1段階製品ガスという)中
の一酸化炭素に対して選択性を有する吸着物質を充填し
た2つ以上の吸着塔を使用し、その方法は (1)第1段階製品ガスにより吸着塔を加圧する加圧工
程 (11)さらに第1段階製品ガスを吸着塔に流して吸着
塔出口における易吸着成分の濃度が吸着塔入口における
易吸着成分の濃度に達するまで、或いは達した後適当な
ガス量または時間の間第1段階製品ガスを流しつづける
か又は両者の濃度が等しくなる点の少し前まで第1段階
製品ガスを流して吸着剤に易吸着成分を吸着させる吸着
(11工程、 :1iil 吸着(1)工程終了後その吸着塔と排気脱
着が終った吸着塔とを連結し、前者の吸着塔からガスを
後者の吸着塔に導入し、前者の吸着塔の圧力を降下させ
る減圧放圧工程、 (1切 減圧放圧工程馨終った吸着塔を大気圧以下に排
気して吸着剤に吸着されている易吸着成分を脱着させ製
品ガスを回収する回収工程、及び、 (v)製品ガス回収が終った吸着塔と吸着工程が終った
吸着塔とを連結して後者の吸着塔からの減圧放圧ガスを
前者の吸着塔に導入して易吸着成分を吸着させる吸着(
II)工程、からなり、定期的に吸着塔間の流れを変え
て、上記操作を繰返すことを特徴とした方法。 (2)前記第1段階の吸着操作は (1)第1段階製品ガスによる吸着塔を加圧する加圧工
程、 (11)原料ガスを吸着塔に流して主として二酸化炭素
を吸着物質に吸着させる吸着工程、(++:1 次いで
吸着塔を大気圧附近まで減圧する減圧工程、 (1v)次いで吸着塔を減圧排気機器により排気する排
気工程、そして (v) 次いで第2段階からの廃棄ガスを利用するパー
ジ工程 から成り、定期的に吸着塔間の流れを変えて、上記操作
を繰返すことからなる特許請求の範囲第1項記載の方法
。 (3)二段階吸着操作により、少な(とも二酸化炭素、
−W化炭素及び窒素を含む原料ガス中の一酸化炭素を濃
縮する方法において、 (α)その第1段階の吸着操作は二酸化炭素に対して選
択性を有する吸着物質を充填した2つ以上の吸着塔を使
用し、その方法は各吸着塔で吸着および脱着を繰返す圧
力変動式吸着分離によってその原料ガスから二酸化炭素
を除去することからなり、そして、 (hl 第2段階の吸着操作は、第1段階製品ガス中の
一酸化炭素に対して選択性を有する吸着物質を充填した
2つ以上の吸着塔を使用し、その方法は (1) 第1段階製品ガスにより吸着塔を加圧する加圧
工程 (11)さらに第1段階製品ガスを吸着塔に流して吸着
塔出口における易吸着成分の濃度が吸着塔入口における
易吸着成分の濃度に達するまで、或いは達した後適当な
ガス量、または時間の間第1段階製品ガスを流しつづけ
るか又は両者の濃度が等しくなる点の少し前まで第1段
階製品ガスを流して吸着剤に易吸着成分を吸着させる吸
着(11工程、 (ili) 吸着工程終了後、吸着塔内の圧力をある圧
力まで減圧する減圧(1)工程、 (1■)吸着(11工程終了後その吸着塔と排気脱着が
終った吸着塔とを連結し、前者の吸着塔からガスを後者
の吸着塔に導入し、前者の吸着塔の圧力を大気圧又は大
気圧近くまで降下させる減圧放圧工程、 M 減圧放圧工程を終った吸着塔を大気圧以下に排気し
て吸着剤に吸着されている易吸着成分を脱着させ製品ガ
スを回収する回収工程、及び、 (Vl)製品ガス回収が終った吸着塔と吸着工程が終っ
た吸着塔とを連結して後者の吸着塔からの減圧放任ガス
を前者の吸着塔に導入して易吸着成分を吸着させる吸着
(旬工程、 から成り、定期的に吸着塔間の流れを変えて、上記操作
を繰返すことを特徴とした方法。 (4)前記第1段階の吸着操作は (1)第1段階製品ガスによる吸着塔を加圧する加圧工
程、 (II)原料ガスを吸着塔に流して主として二酸化炭素
を吸着物質に吸着させる吸着工程、(iill 次いで
吸着塔を大気圧附近まで減圧する減圧工程、 (1v)次いで吸着塔を減圧排気機器により排気する排
気工程、そして、 M 次いで第2段階からの廃棄ガスを利用するパージ工
程 から成り、定期的に吸着塔間の流れを変えて、上記操作
を繰返すことから成る特許請求の範囲第6項に記載の方
法。
[Claims] (1) By a two-stage adsorption operation, at least carbon dioxide,
- In a method for concentrating carbon monoxide in a raw material gas containing carbon oxide and nitrogen. (α) The first stage adsorption operation uses two or more adsorption towers filled with an adsorbent material that is selective to carbon dioxide, and the method is a pressure fluctuation method in which adsorption and desorption are repeated in each adsorption tower. (b) The second stage adsorption operation consists of removing carbon dioxide from the raw material gas by adsorption separation; The method uses two or more adsorption towers filled with an adsorption material that is selective to carbon monoxide, and the method includes (1) a pressurizing step of pressurizing the adsorption tower with the first stage product gas; (11) Furthermore, the first stage product gas is passed through the adsorption tower until the concentration of easily adsorbed components at the outlet of the adsorption tower reaches the concentration of easily adsorbed components at the inlet of the adsorption tower, or after reaching the concentration of the easily adsorbed components, the first stage is continued for an appropriate amount of gas or time. Adsorption (step 11, in which easily adsorbable components are adsorbed on the adsorbent by continuing to flow the product gas or flowing the product gas until just before the concentration of both becomes equal) A depressurization and depressurization process in which the adsorption tower and the adsorption tower after exhaust desorption are connected, gas is introduced from the former adsorption tower to the latter adsorption tower, and the pressure in the former adsorption tower is lowered (1-off depressurization and depressurization) A recovery process in which the adsorption tower after the process is exhausted is evacuated to below atmospheric pressure to desorb easily adsorbed components adsorbed by the adsorbent and product gas is recovered; and (v) the adsorption tower after product gas recovery and adsorption. The adsorption tower is connected to the adsorption tower after the process has been completed, and the depressurized gas from the latter adsorption tower is introduced into the former adsorption tower to adsorb easily adsorbable components.
II) A method characterized in that the above operation is repeated by periodically changing the flow between the adsorption towers. (2) The adsorption operation in the first stage includes (1) a pressurizing step in which the adsorption tower is pressurized by the first stage product gas; (11) adsorption in which the raw material gas is passed through the adsorption tower and mainly carbon dioxide is adsorbed on the adsorbent material; step, (++:1) Next, a depressurization step in which the adsorption tower is depressurized to near atmospheric pressure, (1v) Next, an evacuation step in which the adsorption tower is evacuated by a vacuum evacuation device, and (v) Then, the waste gas from the second stage is utilized. The method according to claim 1, which comprises a purge step, and the above operation is repeated by periodically changing the flow between the adsorption towers.
- In a method for concentrating carbon monoxide in a raw material gas containing hydrogenated carbon and nitrogen, (α) the first stage adsorption operation is carried out using two or more adsorbents filled with an adsorbent material that is selective to carbon dioxide. adsorption towers are used, the method consists of removing carbon dioxide from the feed gas by pressure-swing adsorption separation with repeated adsorption and desorption in each adsorption tower, and (hl The second stage adsorption operation Two or more adsorption towers filled with an adsorbent material that is selective to carbon monoxide in the first stage product gas are used, and the method is (1) pressurizing the adsorption tower with the first stage product gas. Step (11) Furthermore, the first stage product gas is passed through the adsorption tower until the concentration of the easily adsorbed component at the outlet of the adsorption tower reaches the concentration of the easily adsorbed component at the inlet of the adsorption tower, or after reaching the concentration of the easily adsorbed component, an appropriate gas amount or time is passed. Adsorption (11 steps, (ili) adsorption step in which easily adsorbable components are adsorbed on the adsorbent by continuing to flow the first stage product gas for a while or until just before the concentration of both becomes equal) After the completion of the depressurization (1) step, which reduces the pressure inside the adsorption tower to a certain pressure, (1■) Adsorption (11 steps), the adsorption tower is connected to the adsorption tower where exhaust desorption has been completed, and the former adsorption tower is A depressurization and release step in which gas is introduced into the latter adsorption tower and the pressure in the former adsorption tower is lowered to atmospheric pressure or near atmospheric pressure, M. After the depressurization and release step, the adsorption tower is evacuated to below atmospheric pressure. (Vl) A recovery process in which easily adsorbable components adsorbed on the adsorbent are desorbed and product gas is recovered; The adsorption process consists of introducing the gas left under reduced pressure from the tower into the former adsorption tower to adsorb easily adsorbable components, and is characterized by repeating the above operation by periodically changing the flow between the adsorption towers. Method. (4) The adsorption operation in the first stage includes (1) a pressurizing step of pressurizing the adsorption tower with the first stage product gas, (II) flowing the raw material gas into the adsorption tower and mainly adsorbing carbon dioxide on the adsorption material. (iill) Next, a depressurization step in which the adsorption tower is depressurized to near atmospheric pressure; (1v) Next, an evacuation step in which the adsorption tower is evacuated by a vacuum evacuation device; 7. The method according to claim 6, comprising repeating the above operation by periodically changing the flow between the adsorption towers.
JP59012583A 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process Pending JPS60155518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012583A JPS60155518A (en) 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012583A JPS60155518A (en) 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Publications (1)

Publication Number Publication Date
JPS60155518A true JPS60155518A (en) 1985-08-15

Family

ID=11809371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012583A Pending JPS60155518A (en) 1984-01-26 1984-01-26 Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process

Country Status (1)

Country Link
JP (1) JPS60155518A (en)

Similar Documents

Publication Publication Date Title
US5711926A (en) Pressure swing adsorption system for ammonia synthesis
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
JPS6137968B2 (en)
JPH04227812A (en) Method for recovering nitrogen gas from air
JPH0250041B2 (en)
JPH0429601B2 (en)
GB2155805A (en) Gas separation process and apparatus
CA1238868A (en) Method for obtaining high-purity carbon monoxide
NZ244623A (en) Gas separation by pressure swing adsorption; recovery of a flammable component from a gaseous feed mixture
JPS6137970B2 (en)
US4834956A (en) Process for the production of high purity argon
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPH0112529B2 (en)
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
JPS621767B2 (en)
JPS60155518A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPS621766B2 (en)
JPS60155519A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPH04227018A (en) Manufacture of inert gas of high purity
JPS6097021A (en) Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method
JPS62117612A (en) Regenerating method for adsorption tower
JPH02283608A (en) Method for separating and recovering carbon monoxide
KR102439733B1 (en) Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen
JPS6139087B2 (en)
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method