JPS60134134A - Method of controlling operation of air conditioner - Google Patents

Method of controlling operation of air conditioner

Info

Publication number
JPS60134134A
JPS60134134A JP58246099A JP24609983A JPS60134134A JP S60134134 A JPS60134134 A JP S60134134A JP 58246099 A JP58246099 A JP 58246099A JP 24609983 A JP24609983 A JP 24609983A JP S60134134 A JPS60134134 A JP S60134134A
Authority
JP
Japan
Prior art keywords
temperature
blow
compressor
fan motor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58246099A
Other languages
Japanese (ja)
Other versions
JPH0417332B2 (en
Inventor
Hiroyuki Takeuchi
武内 裕幸
Shigeru Matsuda
茂 松田
Shinji Naka
中 信二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58246099A priority Critical patent/JPS60134134A/en
Publication of JPS60134134A publication Critical patent/JPS60134134A/en
Publication of JPH0417332B2 publication Critical patent/JPH0417332B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent cold air feeling of a person due to the lowering of blow-off temperature and appropriately adjust air blow-quantity to increase air-conditioning efficiency by providing an air quantity control region controlling the indoor air quantity within a blow-out temperature range and an ability control region controlling the compression function to control the capacities of the blower and the compressor on indoor side. CONSTITUTION:The air quantity control region controlling indoor air quantity within the blow-off temperature range and the capacity control region controllin the compressor capacity are provided. When the temperature control is carried out, a compressor motor operates at a frequency as it is during the operation up to the blow-off temperature of 37 deg.C, when the blow-off temperature is lower than 37 deg.C, the frequency is lowered by 10Hz. Once the blow-off is lower than 37 deg.C, the frequency is increased, and when the blow-off temperature exceeds 40 deg.C, the frequency is restored to the original state. The fan motor is operated at a rotational speed of 900rpm up to the blow- off temperature of 40 deg.C, and the rotational speed of the fan motor is increased by 200rpm when the blow-off temperature exceeds 40 deg.C. Further, when the blow-off temperature rises up and exceeds 48 deg.C, the rotational speed is decreased by 200rpm. In the case where the blow-off temperature is lowered, when the blow-off temperature become lower than 40 deg.C, the rotational speed is lowered by 200rpm.

Description

【発明の詳細な説明】 産業上の利用分野 不発〒は空気調和機の能力制御を行う運転制御方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The industrial application field relates to an operation control method for controlling the capacity of an air conditioner.

従来例の構成とその問題点 従来、能力可変型の圧縮機を用い暖房能力を変化させる
ヒートポンプ式空気調和機において、能力を変更する条
件として室温を検出し、第1図に示すように、室温設定
値と室温との差によシ能力段位を設定し、室温により能
力制御を行っていた。
Conventional configuration and its problems Conventionally, in a heat pump air conditioner that uses a variable capacity compressor to change the heating capacity, the room temperature is detected as a condition for changing the capacity. The capacity level was set based on the difference between the set value and the room temperature, and the capacity was controlled based on the room temperature.

すなわち、圧縮機の回転数を変化して能力可変を行うも
のでは、最初高回転F4で運転し、室温が上昇して設定
値−t3℃に到達すると、一段回転数の低い回転数F3
 で運転し、さらに室温が上昇し設定値に到達したら、
もう一段低い回転数F2で運転し、さらに室温が上昇し
て設定値+t2℃に到達すると最低回転数F1 で運転
する。
In other words, in a compressor whose capacity is varied by changing the rotational speed of the compressor, it is first operated at a high rotational speed F4, and when the room temperature rises and reaches the set value -t3°C, the rotational speed is changed to a lower rotational speed F3 in the first step.
When the room temperature rises further and reaches the set value,
It operates at a lower rotation speed F2, and when the room temperature rises further and reaches the set value +t2°C, it operates at the lowest rotation speed F1.

そしてそれぞれの回転数で運転しているときに室温が下
降した場合、室温が上昇していった時の回転数変化温度
より一段低い温度で回転数を一段づつ上げて行う。すな
わち設定温度t2℃で回転数をF1→F2に、また設定
温度−t3で回転数をF2→F3に、さらに設定温度−
t4℃で回転数をF3→F4というように回転数を上げ
て行く。また、最低回転数F1 でもさらに室温が上昇
した場合、設定温度子11℃で圧縮機を停止し、室温が
設定値まで下がった時圧縮機を再びF2 の回転数で運
転する。
If the room temperature drops while operating at each rotation speed, the rotation speed is increased one step at a time at a temperature one step lower than the rotation speed change temperature when the room temperature rises. In other words, at the set temperature t2℃, the rotation speed changes from F1 to F2, and at the set temperature -t3, the rotation speed changes from F2 to F3, and further at the set temperature -
At t4°C, increase the rotation speed from F3 to F4. If the room temperature further rises even at the minimum rotation speed F1, the compressor is stopped at the set temperature of 11° C., and when the room temperature falls to the set value, the compressor is operated again at the rotation speed of F2.

このような制御を行った時、圧縮機は停止せずに、最低
回転数F1 でほとんど連続運転となるよう回転数が設
定されている。
When such control is performed, the rotation speed is set so that the compressor does not stop and operates almost continuously at the minimum rotation speed F1.

この場合、室温が設定値+11 ℃に近づくに従い圧縮
機能力を下げて暖房能力を下げ、負荷に合った暖房を行
うものであるが、従来は圧縮機能力を下げると吹き出し
温度が低下するので、人体に冷風感を与え、そのような
運転が長時間続く欠点を有していた。
In this case, as the room temperature approaches the set value +11°C, the compression function is lowered to lower the heating capacity and provide heating that matches the load, but conventionally, when the compression function is lowered, the blowout temperature decreases. This had the disadvantage that it gave a feeling of cold air to the human body and that such driving continued for a long time.

また吹き出し温度を検出し、吹き出し温度が低下すると
、吹き出し風が居住空間に入るのを防止し、冷風感を感
じさせないように、吹き出し風の方向を変更している制
御もあるが、この場合は、サーモスタットによる圧縮機
が停止した時および立ち上り時の吹き出し温度の低い時
を主に対象としており、圧縮機の安定運転中に居住空間
への吹き出しを行わない場合、空白温度分布も悪化する
ので、圧縮機能力が低下できるものには、かえって快適
性を悪くし、空調効率を悪化させていた。
There is also a control system that detects the temperature of the air outlet and changes the direction of the air outlet when the temperature drops to prevent the air from entering the living space and to prevent the feeling of cold air. , is mainly targeted at times when the compressor is stopped by the thermostat and when the blowout temperature is low at startup.If the blowout is not carried out into the living space during stable operation of the compressor, the blank temperature distribution will also deteriorate. Those that can reduce the compression function actually worsen comfort and air conditioning efficiency.

発明の目的 本発明は上記従来の欠点を解消するもので、吹き出し温
度の低下により人体に冷風感を与えることを防止し、ま
た風量を適正化して空調効率を上げるべく、室内側送風
機および圧縮機の能力を制御することを目的としている
Purpose of the Invention The present invention solves the above-mentioned conventional drawbacks, and aims to improve the indoor blower and compressor in order to prevent the feeling of cold air to the human body due to a decrease in the blowout temperature, and to optimize the air volume and increase air conditioning efficiency. The purpose is to control the ability of

発明の構成 この目的を達成するために本発明は第2図に示すように
、室温検出手段、吹出温度検出手段、室内設定温度記憶
手段、圧縮機運転周波数記憶手段。
Structure of the Invention To achieve this object, the present invention, as shown in FIG. 2, includes a room temperature detection means, a blowout temperature detection means, an indoor set temperature storage means, and a compressor operating frequency storage means.

圧縮機運転周波数制御手段、圧縮機出力手段および能力
可変型圧縮機を有し、さらに室内ファンモータ運転回転
数記憶手段、吹出設定温度記憶手段。
It has a compressor operating frequency control means, a compressor output means, and a variable capacity compressor, and further includes an indoor fan motor operating rotation speed storage means and a blowout setting temperature storage means.

ファンモータ制御手段、ファンモータ出力手段および室
内フ7ンモTりを有し、暖房運転時、吹出温度に第1の
設定値T1〈第2の設定値T2〈第3の設定値T3 と
なる設定温度を設け、吹出温度を連続的に検出し、吹出
温度が第1の設定値T1を下回ったら圧縮機の能力を少
なくとも一段上げ、また吹き出し温度が第2の設定値T
2および第3の設定値T3 を越えたら、室内ファンモ
ータの能力をそれぞれ少なくとも一段上げるようにして
風量を順次切換え、また圧縮機能力および室内ノア/モ
ータ能力かもとの状態に復帰するときは一段高いあるい
は一段低い設定温度で切換わるようにして空調効率を上
げるようにしだものである。
It has a fan motor control means, a fan motor output means, and an indoor fan controller, and during heating operation, the outlet temperature is set so that the first set value T1 < the second set value T2 < the third set value T3 temperature is set, the blowout temperature is continuously detected, and when the blowout temperature falls below the first set value T1, the capacity of the compressor is increased by at least one step, and the blowout temperature is set to the second set value T.
When the second and third set values T3 are exceeded, the capacity of the indoor fan motors is increased by at least one step and the air volume is switched sequentially, and the compression function power and the indoor fan/motor capacity are also increased by one step to return to the original state. It is designed to increase air conditioning efficiency by switching at a higher or lower set temperature.

実施例の説明 以下、本発明の一実施例を添付図面の第3図〜第9図を
参考に説明する。ここで本実施例では、圧縮機の能力変
更を圧縮機に供給する電源周波数を変更して行い、また
室内側送風機の能力変更も同時に行う場合として説明す
る。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 3 to 9 of the accompanying drawings. In this embodiment, a case will be described in which the capacity of the compressor is changed by changing the frequency of the power supply supplied to the compressor, and the capacity of the indoor blower is also changed at the same time.

捷ず第3図により圧縮機回路における概略の制御フ頴ツ
ク回路構成について説明する。
With reference to FIG. 3, a general control circuit configuration in the compressor circuit will be explained.

第3図において、1は室温を検出するサーミスタ、2は
A/D変換器、3は吹き出し温度を検出するサーミスタ
、4はA/D変換器、5はCPU、6はプログラマブル
カウンタ、了は発振器、8はインバータ制御器、9はイ
ンノく一タ、10は圧縮機モτりを示す。
In Fig. 3, 1 is a thermistor that detects room temperature, 2 is an A/D converter, 3 is a thermistor that detects air outlet temperature, 4 is an A/D converter, 5 is a CPU, 6 is a programmable counter, and 2 is an oscillator. , 8 is an inverter controller, 9 is an inverter, and 10 is a compressor controller.

次にその動作を説明する。Next, its operation will be explained.

室温はサーミスタ1により抵抗値へして検出され、A/
D変換器2によりデジタルデータとじてCPUe;に送
り込まれる。一方吹き出し温度は、サーミスタ3により
抵抗値として検出され、A/D変換器4によりデジタル
データとしてCPU5に送り込まれる。CPU5では、
A/D変換器2より送られたデジタノげ一夕と、A/D
変換゛器4より送られたデジタルデータを、第6図、第
6図による周波数の割り振りと比較し、運転周波数を決
定しプログラマブルカウンタ6へ運転周波数のアドレス
信号を出す。プログラマブルカウンタ6は、CPU6よ
り出力されたアドレス信号によって発振器7から出た基
準周波数信号を分周し、インノく一夕制御器8へ運転周
波数信号を出す。インノ<−タ制御器8ではプログラマ
ブルカウンタ6からの運転周波数信号にもとづき、イン
ノく一夕9の波形制御信号を出す。インバータ9は、交
流電源入力を一旦直流に変換し、インバータ制御器8か
らの制御信号により、直流電源を運転周波数の交流電源
として、圧縮機モータ10へ送り圧縮機(図示せず)を
運転する。
The room temperature is detected as a resistance value by thermistor 1, and A/
The data is sent to the CPUe as digital data by the D converter 2. On the other hand, the blowout temperature is detected as a resistance value by the thermistor 3, and sent to the CPU 5 as digital data by the A/D converter 4. In CPU5,
Digital data sent from A/D converter 2 and A/D
The digital data sent from the converter 4 is compared with the frequency allocation shown in FIG. The programmable counter 6 divides the reference frequency signal output from the oscillator 7 according to the address signal output from the CPU 6, and outputs an operating frequency signal to the intelligent controller 8. The controller 8 outputs a waveform control signal based on the operating frequency signal from the programmable counter 6. The inverter 9 once converts the AC power input into DC power, and according to the control signal from the inverter controller 8, sends the DC power as AC power at the operating frequency to the compressor motor 10 to operate the compressor (not shown). .

次に第4図により室内側ファンモータの能力変更を行う
場合の概略の制御ブロック回路構成について説明する。
Next, a schematic control block circuit configuration for changing the capacity of the indoor fan motor will be described with reference to FIG. 4.

 ゛ 同図において、11はリレー、12はファンモータを示
す。
゛In the figure, 11 is a relay, and 12 is a fan motor.

次にその動作を説明する。Next, its operation will be explained.

吹き出し温度はサーミスタ3により抵抗値として検出さ
れA/D変換器4によりデジタルデータとしてCPU6
に送り込まれる。CPUesでは前記デジタルデータを
第7図によるファンモータ能力の割り振りと比較し、運
転能力を決定して指定されたリレー11を閉じるよう信
−号を出力する。
The blowout temperature is detected as a resistance value by the thermistor 3, and is sent to the CPU 6 as digital data by the A/D converter 4.
sent to. The CPUes compares the digital data with the fan motor capacity allocation shown in FIG. 7, determines the operating capacity, and outputs a signal to close the designated relay 11.

ファンモータ12は、リレー11によって形成された電
気回路により指定された回転数で運転する。
The fan motor 12 operates at a specified rotation speed by an electric circuit formed by the relay 11.

次に第5図により室温による電源周波数の割り振りを示
す。
Next, FIG. 5 shows the allocation of the power supply frequency depending on the room temperature.

同図においてTs をサーモスタットによる室温設定値
とし、−0,6℃、+o、s℃、+1℃、 +1.:e
s℃、+2℃、+3℃、および+4℃に境界線を設け、
室温上昇時には最初100Hzで運転し、Ts−0,6
℃を越えたら90Hzに、18℃を越えたら80H,に
とそれぞれ勿換える。さらに室温が上昇しTs+4℃を
越えたら牛縮機を停止する。
In the same figure, Ts is the room temperature setting value set by the thermostat, -0.6°C, +o, s°C, +1°C, +1. :e
Borders are established at s°C, +2°C, +3°C, and +4°C,
When the room temperature rises, it is first operated at 100Hz, and Ts-0.6
If the temperature exceeds 18°C, change to 90Hz, and if it exceeds 18°C, change to 80H. When the room temperature rises further and exceeds Ts+4°C, the cow shrinking machine is stopped.

圧縮機が停止して復帰する場合は室温がTll+1.5
℃を下回ったときで、60田で運転を始める。また各周
波数で運転中室温が下降した場合、上昇時と同様の温度
境界線を越えたら一段低い周波数で運転する。
When the compressor stops and restarts, the room temperature is Tll + 1.5
When the temperature drops below ℃, operation will begin at 60 dens. Also, if the room temperature drops during operation at each frequency, and if it crosses the same temperature boundary line as when it rises, it will operate at a lower frequency.

また斜線部分の温度範囲、すなわち室温がT8+1.6
℃を越える場合、吹き出し温度コントロールを行う範囲
としている。
Also, the temperature range in the shaded area, that is, the room temperature is T8+1.6
If the temperature exceeds ℃, the temperature of the air outlet will be controlled.

第6図は吹き出し温度コントロールを行うときの圧縮機
モータの周波数変更の割り振りを示している。すなわち
吹き出し温度が37℃までは現在運転中の周波数そのま
まで運転し、吹き出し温度が37℃を下回った時は10
田周波数を下げ、一旦37℃を下回った後上昇し、40
℃を越えた時周波数をもとの状態にもどすように設定し
ている。
FIG. 6 shows the allocation of frequency changes of the compressor motor when controlling the blowout temperature. In other words, until the air outlet temperature reaches 37°C, the current operating frequency remains the same, and when the air outlet temperature falls below 37°C, the frequency is set to 10.
The temperature was lowered, and after once falling below 37℃, it rose to 40℃.
The frequency is set to return to its original state when the temperature exceeds ℃.

第6図は同様に吹き出し温度コントロールを行うときの
ファンモータの回転数変更の割り振りを示している。す
なわち吹き出し温度が40℃までは90Orpmで運転
し、40℃を越えたら回転数を200 rpm上げ、さ
らに吹き出し温度が上昇し48℃を越えたらもう20 
Orpm回転数を上げる。
Similarly, FIG. 6 shows the allocation of changes in the rotation speed of the fan motor when controlling the air outlet temperature. In other words, it operates at 90 rpm until the blowout temperature reaches 40℃, increases the rotation speed by 200 rpm when the blowout temperature exceeds 40℃, and then increases the rotation speed by 200 rpm when the blowout temperature rises further and exceeds 48℃.
Orpm Increase the rotation speed.

一方逆に吹き出し温度下降時は、吹き出し温度上昇時よ
り一段低い温度で回転数を一段ずつ下げる。すなわち吹
き出し温度が44℃を下回ったら200zpm回転数を
下げ、さらに温度が4Q℃を下回ったらもう200 y
pm回転数を下げるよう設定している。
On the other hand, when the temperature of the air outlet decreases, the rotational speed is lowered one step at a time at a temperature one step lower than when the temperature of the air outlet increases. In other words, when the blowout temperature falls below 44°C, the rotation speed is reduced by 200zpm, and when the temperature falls further below 4Q°C, the rotation speed is reduced by another 200y.
It is set to lower the pm rotation speed.

第9図に本実施例のフローチャートを示す。FIG. 9 shows a flowchart of this embodiment.

はじめに吸込温度を検出し、これをtl として読み込
む。tl を各室温設定値と比較し条件の合ったところ
の温度範囲で運転周波数が決定される。
First, the suction temperature is detected and read as tl. tl is compared with each room temperature setting value, and the operating frequency is determined within the temperature range where the conditions are met.

ここでtlがT11+4℃以上の場合、00Mフラグに
Oを代入し、またtlがT、+1.5℃より下回った場
合、00Mフラグに1を代入する。そしてC0Mフラグ
が1のとき圧縮機は運転し、また0のとき圧縮機は停止
する。tlがTs+1.5℃以上でTs+4℃を下回っ
ているときは前回の00Mフラグの値より判断して圧縮
機を運転または停止させる。
Here, if tl is T11+4°C or higher, O is assigned to the 00M flag, and if tl is lower than T, +1.5°C, 1 is assigned to the 00M flag. The compressor operates when the C0M flag is 1, and stops when the C0M flag is 0. When tl is higher than Ts+1.5°C and lower than Ts+4°C, the compressor is operated or stopped based on the previous value of the 00M flag.

次に吹き小温度を検出し、吹き小温度制御を開始する。Next, the low blow temperature is detected and the low blow temperature control is started.

t2 に吹き小温度を読み込み、t2が37℃以下の場
合AIフラグに1を代入し、また、t2が40℃以上の
場合茄1フラグにOを代入する。
The blow temperature is read at t2, and when t2 is 37°C or lower, 1 is assigned to the AI flag, and when t2 is 40°C or higher, O is assigned to the eggplant flag.

そして扁1フラグが1のとき設定周波数に+1○賜加え
、またQのとき、設定周波数のままで圧縮機を運転する
When the flat 1 flag is 1, +1○ is added to the set frequency, and when it is Q, the compressor is operated at the set frequency.

次に12が40℃以下の場合&2フラグに1を代入し、
44℃以上の場合○を代入する。
Next, if 12 is below 40℃, assign 1 to &2 flag,
If the temperature is 44℃ or higher, substitute ○.

同様に12が44℃を下回った場合、A3フラグに1を
代入し、48℃以上の場合0を代入する。
Similarly, when 12 is below 44°C, 1 is assigned to the A3 flag, and when it is above 48°C, 0 is assigned.

そして扁2、および扁3フラグの値からファンモータの
回転数が決定される。すなわち茄2フラグが1のとき1
100 rpmで、また扁2フラグが0で&3フラグが
1のとき1300rpmで、さらに蔦2フラグ海および
扁3フラグがともに0の場合、16○Orpm で運転
される。t2 が40℃を越え、しかも44℃を下回っ
ている場合、あるいは44℃以上で48℃を下回ってい
る場合の扁2フラグおよび煮3フラグは前回のフラグ値
のままでこれによシフアンモータの回転数が決定される
Then, the rotation speed of the fan motor is determined from the values of the flat 2 and flat 3 flags. In other words, 1 when the egg 2 flag is 1.
It is operated at 100 rpm, and when the flat 2 flag is 0 and the &3 flag is 1, it is 1300 rpm, and when both the tsuta 2 flag and the 3 flag are 0, it is operated at 160 rpm. If t2 exceeds 40°C and is below 44°C, or if it is above 44°C and below 48°C, the flat 2 flag and the boil 3 flag will remain at their previous flag values and the rotation of the shift fan motor will continue. number is determined.

ファンモータ運転制御後はフローチャートのスタート点
へもどシ、再び吸込温度を検出するという操作をくり返
す。
After controlling the fan motor operation, return to the starting point of the flowchart and repeat the operation of detecting the suction temperature again.

次に第8図のタイミングチャートにより本実施例の制御
方法の動作を説明する。
Next, the operation of the control method of this embodiment will be explained with reference to the timing chart of FIG.

同図において時間t0にスタートし、その室温はTs−
o、s ℃以下であるだめ第5図による周波 。
In the figure, starting at time t0, the room temperature is Ts-
The frequency according to Fig. 5 must be less than o, s °C.

数割り振りで100Hz運転するのであるが、吹き出し
温度が37℃以下であるため、同時に吹き出し温度制御
も行い第6図より周波数は1ol−kl昇して110比
に、寸だファンモータは第7図より1l100rpの回
転数で運転する。
The fan motor is operated at a frequency of 100 Hz, but since the air outlet temperature is below 37°C, the air outlet temperature is controlled at the same time, and as shown in Figure 6, the frequency is increased by 1 ol-kl to a ratio of 110, and the fan motor is as shown in Figure 7. The engine is operated at a rotation speed of 1 l and 100 rpm.

時間t1 で吹き出し温度が40℃に達すると通常の第
5図による周波数割り振りで運転するため周波数は1○
0庵に落ちる。時間t2およびt3で吹き出し温度が4
4℃および48℃に達すると第7図よりファンモータ回
転数はそれぞれ2o。
When the blowout temperature reaches 40°C at time t1, the frequency is 1○ because the operation is performed with the normal frequency allocation according to Figure 5.
Fall into 0-an. The blowout temperature is 4 at times t2 and t3.
When the temperature reaches 4°C and 48°C, the fan motor rotation speed is 2o, respectively, as shown in Fig. 7.

rpm上昇し1300 tpmおよび1500 rpm
で運転を行う。
RPM increases to 1300 tpm and 1500 rpm
Drive with.

時間t4で室温がTs−0,5℃に到達し、90田運転
に切り換わる。
At time t4, the room temperature reaches Ts-0.5°C, and the operation is switched to 90°C.

以下同様にして時間t51 t71 t81 tloお
よびtllで室温がそれぞれT8. T、+ 0.5.
 Ts+1 。
Similarly, at times t51, t71, t81, tlo and tll, the room temperature reaches T8. T, +0.5.
Ts+1.

T+1.5およびT8+2に到達し、周波数がそれぞれ
801−1x 、 70Hz、 、 6○1−1z、6
01−[2,および401七で運転する。この間吹き出
し温度は徐々に下降し、時間t6.およびt9でそれぞ
れ44℃および4o℃に達するためファンモータ回転数
は20Orpm下降しそれぞれ1300 rpm 、お
よび11○0rpm で運転を行う。
T+1.5 and T8+2 are reached, and the frequencies are 801-1x, 70Hz, 6○1-1z, 6, respectively.
Runs on 01-[2, and 4017. During this time, the blowout temperature gradually decreases until time t6. At t9 and t9, the fan motor rotation speed decreases by 20 rpm to reach 44° C. and 4° C., respectively, and operates at 1300 rpm and 1100 rpm, respectively.

そして時間t12で吹き出し温度が37℃を下回ると第
6図の周波数補正により周波数が101−12上昇して
50田で運転し、その後吹き出し温度はゆっくりと上昇
を開始する。時間t14で吹き出し温度が4o℃に達す
ると第6図の周波数補正は解除されるが、このとき室温
は時間t13でT6+3に達し、第5図より周波数は3
0田の領域にあるので501−1xから30庵運転に切
り換わる。
Then, at time t12, when the blowout temperature falls below 37 DEG C., the frequency is increased by 101-12 by the frequency correction shown in FIG. 6, and the operation is performed at 50 degrees, after which the blowout temperature starts to rise slowly. When the temperature of the air outlet reaches 40°C at time t14, the frequency correction shown in Fig. 6 is canceled, but at this time, the room temperature reaches T6+3 at time t13, and from Fig. 5, the frequency is 3°C.
Since it is in the 0 field area, the operation is switched from 501-1x to 30an operation.

さらに時間t15およびt16で吹き出し温度が44℃
および48℃に達しファンモータは、それぞれ1300
 r pm、および150○rpm運転に切り換わる。
Further, at time t15 and t16, the blowout temperature was 44°C.
and the fan motor reaches 1300°C respectively.
rpm, and switches to 150 rpm operation.

−また時間t1□で室温がT8+4に達すると、第5図
より圧縮機は停止し、同時にファンモータは900 r
pmで運転を行う。そして時間t−18で室温がTs+
1.sを下回ると圧縮機は運転を再開するがこのとき吹
き出し温度は37℃を下回っているので周波数は701
−[、となり、またファンモータは1l100rp で
運転を開始する。以後前述と同様の動作を行う。
-Also, when the room temperature reaches T8+4 at time t1□, the compressor stops as shown in Fig. 5, and at the same time the fan motor starts at 900 r.
Run at pm. Then, at time t-18, the room temperature becomes Ts+
1. When the temperature drops below s, the compressor resumes operation, but at this time the blowout temperature is below 37°C, so the frequency is 701.
-[, and the fan motor starts operating at 1l100rpm. Thereafter, operations similar to those described above are performed.

ここで従来の吹き出し温度制御を行なわない場合、第8
図の時間t7以後点線で示すように吹き出し温度が37
℃以下に下がりゃすくなり、また室温もT8+3℃とT
s+4℃の間で長時間安定する場合が多くなる。
If conventional blowout temperature control is not performed here, the eighth
As shown by the dotted line after time t7 in the figure, the blowout temperature is 37.
It becomes difficult to drop below ℃, and the room temperature is T8 + 3℃.
It is often stable for a long time between s+4°C.

従って本実施例では、吹き出し温度制御を行うことによ
り、吹き出し温度および室温が低い範囲で長時間運転す
ることが避けられる。
Therefore, in this embodiment, by controlling the air outlet temperature, it is possible to avoid operating for a long time in a range where the air outlet temperature and the room temperature are low.

なお本実施例では圧縮機の能力可変にインバータによる
周波数変更を利用したものについて説明したが、その他
極数変換による運転速度を変えるもの、あるいはシリン
ダ容積を変化させるもの、あるいはバイパスを行い冷媒
の循環量をかえるものでも同様の効果が得られる。また
室内側ファンモータについてはトランジスタモータを使
用したものでも同様の効果が得られる。
In this example, we have described a method that uses frequency change using an inverter to vary the capacity of the compressor, but there are other methods such as changing the operating speed by changing the number of poles, changing the cylinder volume, or using a bypass to circulate the refrigerant. A similar effect can be obtained by changing the amount. Furthermore, similar effects can be obtained by using a transistor motor for the indoor fan motor.

発明の効果 上記実施例より明らかなように本発明は、能力可変型圧
縮機を用いたヒートポンプ式空気調和機において、室温
を検出する検出手段と、吹き出し温度を検出する検出手
段を有し、吹き出し温度が下降して第1の設定値T1 
を下回ったとき圧縮機周波数を少なくとも一段下げ、吹
き出し温度がT1を下回った後上昇して第2の設定値T
2を越えたとき圧縮機周波数をもとの状態に復帰するよ
う補正を加え、また同時に室内側ファンモータにおいて
も吹き出し温度が第3の設定値T3 および第4の設定
値T4 をそれぞれ越えたとき、ファンモータ回転数を
それぞれ一段上げ、また吹き出し温度下降時は一段低い
温度で回転数を下げるよう補正を加えることによシ、吹
き出し温度を第1の設定値T と第4の設定値T4 と
の間に保つように制御 御を行い、吹き出し温度の低下および上昇が防止でき、
人体に冷風感はもとより不快感を与えるといったことが
防止できる。
Effects of the Invention As is clear from the above embodiments, the present invention provides a heat pump air conditioner using a variable capacity compressor, which includes a detection means for detecting the room temperature and a detection means for detecting the temperature of the air outlet. The temperature decreases and the first set value T1
When the temperature drops below T1, the compressor frequency is lowered by at least one step, and after the blowout temperature falls below T1, it increases to the second set value T.
2, the compressor frequency is corrected to return to its original state, and at the same time, when the air outlet temperature of the indoor fan motor exceeds the third set value T3 and the fourth set value T4, respectively. , the fan motor rotational speed is increased by one step, and when the airflow temperature decreases, the rotational speed is lowered by one step. It is possible to prevent the blowout temperature from decreasing or increasing by controlling the temperature to maintain it between
It is possible to prevent not only the feeling of cold air but also discomfort from being caused to the human body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す室温による圧縮機運転回転数の割
り振り図、第2図は本発明の空気調和機の運転制御方法
を機能実現手段で表現したブロック図、第3図および第
4図は本発明を実施する運転制御装置の圧縮機部をファ
ンモータ部の制御ブロック回路図、第5図は同実施例に
おける室温による圧縮機長6暴運転周波数の割り振り図
、第6図および第7図は同実施例における吹き出し温度
による圧縮機周波数補正図および室内ファンモータ回転
数補正図、第8図は同実施例における動作例のタイミン
グチャート、第9図a、b、cは同運転制御装置のフロ
ーチャートである。 1.3・・・・・・サーミスタ、5・・・・・・CPU
、9・・・・・・インバータ、10・・・・・・圧縮機
モータ、12・・・・・・ファンモータ〇 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第 2 図 3 因 B4図 第 5 図 :5′;6図 V欠 7図 扼8図 9 図 (a) 第9図 第 9図
Fig. 1 is a diagram showing the allocation of compressor operating speed according to room temperature in a conventional example, Fig. 2 is a block diagram expressing the air conditioner operation control method of the present invention using function realizing means, and Figs. 3 and 4. 5 is a control block circuit diagram of the fan motor section of the compressor section of the operation control device implementing the present invention, FIG. 5 is an allocation diagram of the compressor length 6 runaway frequency depending on the room temperature in the same embodiment, and FIGS. 6 and 7 9 is a compressor frequency correction diagram and an indoor fan motor rotation speed correction diagram according to the blowout temperature in the same embodiment, FIG. 8 is a timing chart of an operation example in the same embodiment, and FIGS. It is a flowchart. 1.3...Thermistor, 5...CPU
, 9...Inverter, 10...Compressor motor, 12...Fan motor〇Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 2 Figure 3 Figure B4 Figure 5: 5'; Figure 6 V missing Figure 7 Figure 8 Figure 9 Figure (a) Figure 9 Figure 9

Claims (1)

【特許請求の範囲】 一(1)能力可変型圧縮機と室、温検出手段、室内設定
温度叩憶手段および比較手段、圧縮機運転周波数記憶手
段および前記周波数列、定手段、前記周波数制御手段、
圧縮機出力手段を有し、また室内ファ7%−夕と吹出温
度検出手段・竺出設定温度記埠手段および温度比較手段
、ファンモータ回転数記憶手段、ファンモ〜り回転数判
定手段、ファンモータ制御手段、およびノア/モータ出
力手段を有し、さらに暖房運転時室温と吻出温度により
圧縮機能力および室内ファンモータ能力を制御する制御
手段を具備したヒートポンプ式空気調和機を構成し、吹
出温度範囲に室内風量を制御する風量制御域と圧縮機能
力を制御する能力制御域を設けた空気調和機の運転制御
方法。 (2)吹出温度に第1の設定、値T1<第2の設定値T
2<第3の設定値′!3となる投書温度を設けて吹出設
定温度記憶手段へ記憶し、さらに判定手段によシ吹出温
度と設定温度を比較して、第1の設定値を下回ったら圧
縮機能力を少なくとも一段上け、また吹出温度が第2の
設定−値および第3の設定値を越えたと判断されたら室
内ファンモータ能力を手段により励記補足結果に応じて
圧縮機ならびにファンモータの能力を制御するようにし
た特許請求の範囲第1項に記載の空“気調和機の運転制
御方法Q
[Scope of Claims] (1) A variable capacity compressor and a room, a temperature detection means, an indoor set temperature storage means and a comparison means, a compressor operating frequency storage means and the frequency sequence, a constant means, and the frequency control means ,
It also has a compressor output means, an indoor fan 7% - night temperature detection means, an output set temperature recording means, a temperature comparison means, a fan motor rotation speed storage means, a fan motor rotation speed determination means, and a fan motor. A heat pump type air conditioner is configured, which has a control means and a Noah/motor output means, and further includes a control means for controlling the compression function and the indoor fan motor capacity according to the room temperature and the proboscis temperature during heating operation, and the blowout temperature An air conditioner operation control method that includes an air volume control range for controlling indoor air volume and a capacity control range for controlling compression function power. (2) First setting for the blowout temperature, value T1 < second setting value T
2<third set value'! 3 is set and stored in the blowout setting temperature storage means, and further, the judgment means compares the blowout temperature and the set temperature, and if it is lower than the first set value, the compression function is increased by at least one step, Also, a patent that controls the capacity of the compressor and fan motor in accordance with the supplementary results by excitation of the capacity of the indoor fan motor when it is determined that the blowout temperature exceeds the second set value and the third set value. Operation control method Q for an air conditioner according to claim 1
JP58246099A 1983-12-23 1983-12-23 Method of controlling operation of air conditioner Granted JPS60134134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58246099A JPS60134134A (en) 1983-12-23 1983-12-23 Method of controlling operation of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58246099A JPS60134134A (en) 1983-12-23 1983-12-23 Method of controlling operation of air conditioner

Publications (2)

Publication Number Publication Date
JPS60134134A true JPS60134134A (en) 1985-07-17
JPH0417332B2 JPH0417332B2 (en) 1992-03-25

Family

ID=17143472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58246099A Granted JPS60134134A (en) 1983-12-23 1983-12-23 Method of controlling operation of air conditioner

Country Status (1)

Country Link
JP (1) JPS60134134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252839U (en) * 1985-09-20 1987-04-02
JP2010175194A (en) * 2009-01-30 2010-08-12 Daikin Ind Ltd Air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528999U (en) * 1978-08-17 1980-02-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528999U (en) * 1978-08-17 1980-02-25

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252839U (en) * 1985-09-20 1987-04-02
JPH0311653Y2 (en) * 1985-09-20 1991-03-20
JP2010175194A (en) * 2009-01-30 2010-08-12 Daikin Ind Ltd Air conditioner

Also Published As

Publication number Publication date
JPH0417332B2 (en) 1992-03-25

Similar Documents

Publication Publication Date Title
JPS60134134A (en) Method of controlling operation of air conditioner
JPS61208459A (en) Room heating operation of air-conditioning machine
JPS60134133A (en) Method of controlling operation of air conditioner
JPH0449020B2 (en)
JP2739865B2 (en) Control device for air conditioner
JPS5949440A (en) Control method of operation for air conditioner
JPS6256411B2 (en)
JPS5949439A (en) Control method of operation for air conditioner
JP2001065951A (en) Controller for air conditioner
JPS6338625B2 (en)
JPH025981B2 (en)
JPH0428949A (en) Operation control device
JP3993478B2 (en) Fan drive control device for duct type air conditioner
JPH03129238A (en) Controlling method for air flow of air conditioner
JPH0623879Y2 (en) Air conditioner
JPS6353450B2 (en)
KR100665737B1 (en) Compressor operating control method of inverter air conditioner
JPS6179943A (en) Air conditioner
JPH02136641A (en) Operating method for air conditioner
JPS621499B2 (en)
JPH0787786A (en) Motor controller
JPS63231132A (en) Defrosting control of variable capacity type airconditioning machine
JPS5952144A (en) Operation control of air conditioner
JPS60144551A (en) Method of controlling capacity of air conditioner
JPH09126525A (en) Air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term