JPS60134133A - Method of controlling operation of air conditioner - Google Patents

Method of controlling operation of air conditioner

Info

Publication number
JPS60134133A
JPS60134133A JP58246098A JP24609883A JPS60134133A JP S60134133 A JPS60134133 A JP S60134133A JP 58246098 A JP58246098 A JP 58246098A JP 24609883 A JP24609883 A JP 24609883A JP S60134133 A JPS60134133 A JP S60134133A
Authority
JP
Japan
Prior art keywords
temperature
set value
compressor
room temperature
blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58246098A
Other languages
Japanese (ja)
Other versions
JPH0140258B2 (en
Inventor
Hiroyuki Takeuchi
武内 裕幸
Shigeru Matsuda
茂 松田
Shinji Naka
中 信二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58246098A priority Critical patent/JPS60134133A/en
Publication of JPS60134133A publication Critical patent/JPS60134133A/en
Publication of JPH0140258B2 publication Critical patent/JPH0140258B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent cold air feeling of a person due to the lowering of blow- off temperature and appropriately adjust air flow quantity to elevate air-conditioning efficiency by periodically detectin the blow-off temperature and controlling the capacities of an indoor blower and a compressor. CONSTITUTION:Set temperatures of a first set value T1 < a second set value T2 < a third set value T3 are provided in the blow-off temperature. The air conditioner comprises detection means for detecting the room temperature and detection means for detecting the blow-off temperature. In the case where the detected room temperature is within the range of the set temperature, when the blow- off temperature decreases and becomes lower than the first set value T1, the compressor frequency is lowered by a step. When the blow-off temperature rises up and exceeds the second set value T2, the frequency is controlled to be restored to the original state. Further, when the blow-off temperature exceeds the third set value T3 and the fourth set value T4, corrections are added to the indoor fan motor so that the rotational speed is raised by one step, and when the blow-off temperature is lowered, the rotational speed is lowered at a one step lower temperature, whereby the blow-off temperature is controlled to keep a value between the first set value T1 and the fourth set value T4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機の能力制御を行う運転制御方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an operation control method for controlling the capacity of an air conditioner.

従来例の構成とその問題点 従来、能力可変型の圧縮機を用い暖房能力を変化させる
ヒートポンプ式空気調和機において、能力を変更する条
件として室温を検出し第1図に示すように、室温設定値
と室温との差により能力段位を設定し、室温により能力
制御を行っていた。
Conventional configuration and its problems Conventionally, in a heat pump type air conditioner that uses a variable capacity compressor to change the heating capacity, the room temperature is detected as a condition for changing the capacity, and the room temperature is set as shown in Figure 1. Capacity levels were set based on the difference between the value and room temperature, and capacity was controlled based on room temperature.

すなわち、圧縮機の回転数を変化して能力可変を行うも
のでは、最初高回転F4で運転し、室温が上昇して設定
値−13℃に到達すると、一段回転数の低い回転数Fs
3で運転し、さらに室温が上昇し設定値に到達したら、
もう一段低い回転数F2で運転し、さらに室温が上昇し
て設定値十12℃に到達すると最低回転数F、で運転す
る。
In other words, in a compressor whose capacity is varied by changing the rotational speed of the compressor, it is first operated at a high rotational speed F4, and when the room temperature rises and reaches the set value of -13°C, the rotational speed of the first stage is changed to a lower rotational speed Fs.
Operate at 3, and when the room temperature rises further and reaches the set value,
It operates at a lower rotation speed F2, and when the room temperature rises further and reaches the set value of 112 degrees Celsius, it operates at the lowest rotation speed F.

そしてそれぞれの回転数で運転しているときに室温が下
降した場合、室温が一卜昇していった時の回転数変化温
度より一段低い温度で回転数を一段づつ上げて行う。す
なわち設定温度12℃で回転数をF1→F2に、寸だ設
定温度−13Cで回転数をF2→F3に、さらに設定温
度−14℃で回転数をF3→F4という−ように回転数
を上げて行く。
If the room temperature drops while operating at each rotational speed, the rotational speed is increased one step at a time at a temperature one step lower than the rotational speed change temperature when the room temperature rises by one degree. In other words, when the set temperature is 12℃, the rotation speed goes from F1 to F2, when the set temperature is -13C, the rotation speed goes from F2 to F3, and when the set temperature is -14℃, the rotation speed goes from F3 to F4. Go.

1だ、最低回転数F1でもさらに室温が上列した場合、
設定温庶子t1℃で圧縮機を停止し、室温が設定値寸で
下がった時圧縮機を再びF2の回転数で運転する。
1, if the room temperature rises further even at the lowest rotation speed F1,
The compressor is stopped at the set temperature t1°C, and when the room temperature drops to the set value, the compressor is operated again at the rotation speed of F2.

このような制御を行った時、圧縮機は停止せずに最低回
転数F1でほとんど連続運転となるように回転数が設定
されている。
When such control is performed, the rotation speed is set so that the compressor does not stop and operates almost continuously at the minimum rotation speed F1.

この場合、室温が設定値+11℃ に近づくに従い圧縮
機能力を下げて暖房能力を下げ、負荷に合った暖房を行
うものであるが、従来は圧縮機能力を下げると吹き出し
温度が低下するので、人体に冷風感を与え、そのような
運転が長時間続く欠点を有していた。
In this case, as the room temperature approaches the set value +11°C, the compression function is lowered to lower the heating capacity and provide heating that matches the load, but conventionally, when the compression function is lowered, the blowout temperature decreases. This had the disadvantage that it gave a feeling of cold air to the human body and that such driving continued for a long time.

壕だ吹き出し温度を検出し、吹き出し温度が低下すると
、吹き出し風が居住空間に入るのを防止し、冷風感を感
じさせないように、吹き出し風の方向を変更している制
御もあるが、この場合は、サーモスタットによる圧縮機
か停止しlic If!rおよび立ち上り時の吹き出し
温度の低い時を主に対象とし7ており、圧縮機の安定運
転中に居住空間への吹き出しを行わない場合、室内温度
分布も悪化するので、圧縮機能力が低下できるものには
、かえって快適性を悪くし、空調効率を悪化させていた
Some controls detect the temperature of the air outlet in the trench and, when the temperature drops, change the direction of the air outlet to prevent the air from entering the living space and prevent the user from feeling cold. If the compressor is stopped by the thermostat, the lic If! This is mainly targeted at times when the air temperature is low during the start-up period, and if the air is not blown into the living space during stable operation of the compressor, the indoor temperature distribution will also deteriorate, resulting in a reduction in the compression function. On the contrary, it was making the comfort worse and the air conditioning efficiency worse.

発明の目的 本発明は上記従来の欠点を解消するもので、吹き出し温
度の低下により人体に冷風感を与えることを防止し、寸
だ風量を適市化し空調効率を上げるべく、室内側送風機
および圧縮機の能力を制御することを目的としている。
Purpose of the Invention The present invention solves the above-mentioned conventional drawbacks, and aims to improve the indoor blower and compressor in order to prevent the feeling of cold air to the human body due to a decrease in the blowout temperature, to optimize the air volume, and to increase the air conditioning efficiency. Its purpose is to control the machine's capabilities.

発明の構成 この目的を達成するために本発明は第2図に示す21:
うに室温検出手段、吹出温度検出手段、室内設定温度記
憶手段、圧縮機運転周波数記憶手段、圧縮機運転周波数
制御手段、圧縮機出力手段および能力可変型圧縮機を有
し、さらに室内ファンモータ運転回転数記憶手段、吹出
設定温度記憶手段、ファンモータ制御手段、ファンモー
タ出力手段および室内ファンモータを有し、暖房運転時
室温が設定温度範囲内にあるとき、吹出温度に第1の設
定値T1<第2の設定値T2〈第3の設定値T3となる
設定温度を設け、吹出温度を周期的に検出し、吹き出し
温度が第1の設定値T1を下回ったら圧縮機の能力を少
なくとも一段上げ、寸だ吹き出し温度が第2の設定値T
2および第3の設定値T3を越えたら・室内ファンモー
タの會ヒブフをそれぞれ少なくとも一段上けるようにし
て風量を順次切換え、壕だ圧縮機能力および室内ファン
モータ能力かもとの状態に復帰するときは一段高いちる
いは一段低い設定温度で切換わるようにして空調効率を
上げるものである。
Structure of the Invention To achieve this object, the present invention is shown in FIG.
It has a room temperature detection means, a blowout temperature detection means, an indoor set temperature storage means, a compressor operation frequency storage means, a compressor operation frequency control means, a compressor output means, and a variable capacity compressor, and further includes an indoor fan motor operation rotation. It has a number storage means, a blowout set temperature storage means, a fan motor control means, a fan motor output means, and an indoor fan motor, and when the room temperature is within the set temperature range during heating operation, the blowout temperature is set to a first set value T1< A set temperature is set such that the second set value T2 < the third set value T3, the blowout temperature is periodically detected, and when the blowout temperature falls below the first set value T1, the capacity of the compressor is increased by at least one level, The temperature of the air outlet is set to the second set value T.
When the second and third set values T3 are exceeded, the air volume is sequentially changed by increasing the indoor fan motor's ratio by at least one step, and the trench compression function and indoor fan motor capacity are restored to their original state. This increases air conditioning efficiency by switching between higher and lower set temperatures.

実施例の説明 以下本発明の一実施例を添イ附図面の第3図〜第9図を
参考に説明する。とこで本実施例では、圧縮機の能力変
更を圧縮機に供給する電源周波数を変更して行い、また
室内側送風機の能力変更も同時に行う場合として説明す
る。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 3 to 9 of the accompanying drawings. In this embodiment, a case will be described in which the capacity of the compressor is changed by changing the frequency of the power supply supplied to the compressor, and the capacity of the indoor blower is also changed at the same time.

まず第3図により圧縮機回路における概略の制御ブロッ
ク回路構成について説明する。
First, a schematic control block circuit configuration in the compressor circuit will be explained with reference to FIG.

第3図において、1は室温を検出するサーミスタ、2は
A/D変換器、3は吹き出し温度を検出するサーミスタ
、4ばA/D変換器1,5はCPU、6はプログラマブ
ルカウンタ、7は発振器、8はインバータ制御器、9は
インバータ、10は圧縮機モータを示す。
In FIG. 3, 1 is a thermistor for detecting room temperature, 2 is an A/D converter, 3 is a thermistor for detecting air outlet temperature, 4 is A/D converter 1 and 5 are CPUs, 6 is a programmable counter, and 7 is a thermistor for detecting air temperature. An oscillator, 8 an inverter controller, 9 an inverter, and 10 a compressor motor.

次にその動作を説明する。Next, its operation will be explained.

室温はサーミスタ1により抵抗値として検出され、A/
D変換器2によりデジタルデータとしてCPU6に送り
込まれる。一方吹き出し温度は、サーミスタ3により抵
抗値として検出され、A/D変換器4によりデジタルデ
ータとしてcpusに送り込まれる。CPU5では、A
/D変換器2より添ら桑たデジ・タルデータと1.A/
D変換器4より送ら5れたデジタルデータを、第6図、
第6図に゛よる周波数の割り娠りと比1夕し、運転周波
数を決定しプログラマブルカウンタ6へ運転周波数のア
ドレス信号を出す。プログラマブルカウンタ6はCPU
5より出力されたアドレス信号によって発振器7プ)ら
出た基準周波数信号を分周し、インノく一タ制御器8へ
運転周波数信号を出す。インバータ制御器8ではプログ
ラマブルカウンタ6からの・運転周波数信号にもとづき
、インバータ90波形制御信号を出す。インバータ9は
、交流電゛源入力を一旦直流に変換し、インバータ制御
器8からの制御信号により直流電源を運転周波数の交流
電源として、圧縮機モータ10へ送り圧縮機(図示せず
)を運転する。
Room temperature is detected as a resistance value by thermistor 1, and A/
The D converter 2 sends the data to the CPU 6 as digital data. On the other hand, the blowout temperature is detected as a resistance value by the thermistor 3, and sent to the CPU as digital data by the A/D converter 4. In CPU5, A
/Digital data added from D converter 2 and 1. A/
The digital data sent from the D converter 4 is shown in FIG.
The operating frequency is determined by comparing with the frequency interruption shown in FIG. 6, and an address signal of the operating frequency is output to the programmable counter 6. Programmable counter 6 is CPU
The reference frequency signal output from the oscillator 7 is divided by the address signal output from the oscillator 5, and an operating frequency signal is output to the inverter controller 8. The inverter controller 8 outputs an inverter 90 waveform control signal based on the operating frequency signal from the programmable counter 6. The inverter 9 once converts the AC power input into DC power, and according to the control signal from the inverter controller 8, the DC power is sent to the compressor motor 10 as AC power at the operating frequency to operate the compressor (not shown). .

次に第4図により室内側ファンモータの能力変更を行う
場合の概略の制御プロヅメ回路構成について説明する。
Next, a schematic control program circuit configuration for changing the capacity of the indoor fan motor will be described with reference to FIG.

7 同図において、11はリレー、12はファンモータを示
す。
7 In the figure, 11 indicates a relay, and 12 indicates a fan motor.

次にその動作を靭明する。Next, we will explain its operation in detail.

吹き出し温度はサーミスタ3により抵抗値として検出さ
れA/D変換器4によりデジタルデータとしてCPt)
sに送り込まれる。CPU6では前記デジタルデータを
第7図によるファンモータ能力の割り振りと比較し、運
転能力を決定して指定されたリレー11を閉じるよう信
号を出力する。
The blowout temperature is detected as a resistance value by the thermistor 3, and is converted into digital data by the A/D converter 4 (CPt).
sent to s. The CPU 6 compares the digital data with the fan motor capacity allocation shown in FIG. 7, determines the operating capacity, and outputs a signal to close the designated relay 11.

ファンモータ12は、リレー11によって形成された電
気回路により指定された同転数で運転する3゜次に第5
図により室温による電源周波数の割り振りを示す。
The fan motor 12 operates at the same rotation speed specified by the electric circuit formed by the relay 11.
The figure shows the power frequency allocation according to room temperature.

同図において、T8をサーモスクノトによる室温設定値
とし、−0,5”C、+0.5 ”C、+1°′C5−
H,6”C、+2”C、十s°°c、および+4゛cに
境界線を設け、室温上昇時には最初100Hzで運転し
、T −o、ts ”Cを越えたら90 Hzに、T6
°°Cを越、えたら8’9 Hzにとそれぞれ切換える
。さらに室温か上昇しTs+4 ”Cを越えたら圧縮機
を停止する。
In the same figure, T8 is the room temperature setting value set by thermosknot, -0.5"C, +0.5"C, +1°'C5-
Set boundary lines at H, 6"C, +2"C, 10s°C, and +4゛C, and operate at 100Hz at first when the room temperature rises, and then switch to 90Hz when the temperature exceeds T6"C.
If the temperature exceeds °C, switch to 8'9 Hz. When the room temperature rises further and exceeds Ts+4''C, the compressor is stopped.

圧縮機が停止して物帰する場合は室温がT8十1.5 
”Cを下回ったときで、60 Hzで運転を始める。ま
た各周波数で運転中室温が下降した場合、上昇時と同様
の温度境界線を越えたら一段低い周波数で運転する。
When the compressor stops and you return home, the room temperature is T81.5.
When the temperature drops below C, operation starts at 60 Hz.Also, if the room temperature falls during operation at each frequency, and if it crosses the same temperature boundary line as when rising, it will start operating at a lower frequency.

また斜線部分の温度範囲、すなわち室温がT6+1.5
“Cを越える場合、吹き出し温度コントロールを行う範
囲としている。
Also, the temperature range in the shaded area, that is, the room temperature is T6 + 1.5
“If it exceeds C, the temperature of the air outlet will be controlled.

第6図は吹き出し温度コントロールを行うときの圧縮機
モータの周波数変更の割り振りを示している。すなわち
吹き出し温度が37“Cまでは現在運転中の周波数その
ままで運転し、吹き出し温度が37”°Cを下回った時
は10H2周波数を下げ、一旦37 ”Cを下回った後
上昇し4o“°Cを越えた時周波数をもとの状態にもど
すように設定している。
FIG. 6 shows the allocation of frequency changes of the compressor motor when controlling the blowout temperature. In other words, until the temperature of the air outlet reaches 37"C, it will operate at the current operating frequency, and when the temperature of the air outlet drops below 37"C, the 10H2 frequency will be lowered, and once it falls below 37"C, it will increase to 4o"C. The frequency is set to return to its original state when it exceeds the limit.

第7図は同様に吹き出し温度コントロールを行うときの
ファンモータの回転数変更の割り振りを示している。す
なわち吹き出し温度が40 ”Cまでは90Orpmで
運転し、40”Cを越えたら回転数を200 ipm上
げ、さらに吹き出し温度が上昇し48“Cを越えたらも
う20 Orpm回転数を上げる。
Similarly, FIG. 7 shows the allocation of fan motor rotational speed changes when controlling the air outlet temperature. That is, the engine is operated at 90 rpm until the temperature of the outlet reaches 40"C, and when it exceeds 40"C, the rotation speed is increased by 200 ipm, and when the temperature of the outlet further rises and exceeds 48"C, the rotation speed is increased by another 20 orpm.

一方逆に吹き出し温度下降時は、吹き出し温度上昇時よ
シ一段低い温度で回転数を一段ずつ下げる。すなわち吹
き出し温度、が44“Cを下回ったら20 Orpm回
転数を下げ、さらに温度が40 ”Cを下回ったらもう
20 Orpm回転数を下げるよう設定している。
On the other hand, when the temperature of the air outlet decreases, the rotational speed is lowered one step at a time at a temperature that is one step lower than when the temperature of the air outlet increases. That is, the setting is such that when the blowout temperature falls below 44"C, the rotational speed is reduced by 20 Orpm, and when the temperature falls further below 40"C, the rotational speed is reduced by another 20Orpm.

次に第8図のタイミングチャートにより本実施例の制御
方法の動作を説明する。
Next, the operation of the control method of this embodiment will be explained with reference to the timing chart of FIG.

同図において時間t0にスタートし、その時室温はTs
−o・6゛C以下であるため第4図による周波数割り振
りで1”OOHz運転し室温制御を行う。
In the same figure, it starts at time t0, and at that time the room temperature is Ts
Since the temperature is below -0.6°C, the room temperature is controlled by operating at 1''OOHz with the frequency allocation shown in FIG.

時間t1で室温がT、 −0,6”Cに到達し90Hz
運転に切り換わる。さらに室温が上昇し時間t2でT8
に到達し80Hz運転に入り、以下同様にして時間t 
およびt4で室温がそれぞれT +0.5゜T8 +1
に到達し、周波数がそれぞれ70 Hz 。
At time t1, the room temperature reaches T, -0.6"C and the frequency is 90Hz.
Switch to driving. The room temperature further rises and T8 at time t2
reaches 80Hz operation, and in the same manner, the time t
and at t4, the room temperature is T +0.5°T8 +1, respectively.
and the frequency is 70 Hz.

60出で運転する。そして時間t5で室温がT +1.
5 に達し50H2運転に入ると同時に吹き出し温度制
御を開始し、吹き出し温度センサーにより吹き出し温度
を検出しはじめる。
Driving at 60. Then, at time t5, the room temperature becomes T +1.
5 and enters 50H2 operation, the air outlet temperature control is started and the air outlet temperature sensor starts detecting the air outlet temperature.

この場合吹き出し温度は4o”°Cと44”Cの間にあ
るので第6図より圧縮機は現在の周波数のま寸運転し、
寸だ第7図よりファンモータは1l100rpで運転し
はじめる。
In this case, the blowout temperature is between 4o"°C and 44"C, so from Figure 6, the compressor operates at the current frequency,
As shown in Figure 7, the fan motor starts operating at 1l100rpm.

そして吹き出し温度が徐々に下降し時間t7で37 ”
Cに達したとき第6図より圧縮機の周波数を10 Hz
上げる。その後吹き出し温度は徐々に上層化時間t9で
40゛CK達したとき圧縮機の周波数は第6図による周
波数割り振妙に従い30H2寸で下がる。
Then, the blowout temperature gradually decreases to 37 at time t7.
When reaching C, the frequency of the compressor is changed to 10 Hz from Figure 6.
increase. Thereafter, when the blowing temperature gradually reaches 40°CK at the rising time t9, the frequency of the compressor decreases to 30H2 according to the frequency distribution shown in FIG.

一方吹き出し温度がさらに」ニ昇を続け、時間t およ
びtllでそれぞれ4A”’C,48“°Cに達しO タトキ、ファンモータの回転数を第7図により20 O
rpmずつ上げ、それぞれ1300 rpm 、および
1500rpmで運転する。
On the other hand, the blowout temperature continued to rise further, reaching 4A"'C and 48"C at times t and tll, respectively.
Increase the rpm in increments and run at 1300 rpm and 1500 rpm, respectively.

また室温が徐々に上昇を続け、時間t12でT8+4°
Cに達したとき、第5図に示す室温制御により圧縮機は
停止し、またファンモータは900rpm運転に切り換
わる。時間t13で室温がTs+1.5”Cまで下がる
と圧縮機は第5図による設定周波数6oHzで運転を再
開し、また時間t14で吹出温度制御を再開し、ファン
モータは1l100rpで運転を始める。
Also, the room temperature continues to rise gradually, and at time t12, T8+4°
When the temperature reaches C, the compressor is stopped by the room temperature control shown in FIG. 5, and the fan motor is switched to 900 rpm operation. When the room temperature drops to Ts+1.5''C at time t13, the compressor resumes operation at the set frequency of 6oHz as shown in FIG. 5, and at time t14, the blowout temperature control is resumed and the fan motor starts operating at 1l100rpm.

ここで従来の吹き出し温度制御を行なわない場合、第8
図の時間t7以後点線で示すように吹き出し温度が37
“°C以下に下がりやすくなり、寸だ室温もTs+ 3
”°CとT8+4“Cの間で長時間安定する場合が多く
なる。
If conventional blowout temperature control is not performed here, the eighth
As shown by the dotted line after time t7 in the figure, the blowout temperature is 37.
“It becomes easier to drop below °C, and the room temperature is almost Ts+ 3.
It is often stable for a long time between "°C" and T8+4"C.

第9図に本実施例のフローチャートを示す。FIG. 9 shows a flowchart of this embodiment.

はじめに吸込温度を検出しこれを11として読み込む。First, the suction temperature is detected and read as 11.

 tlを各室温設定値と比較し条件の合ったところの温
度範囲で運転周波数が決定される。
tl is compared with each room temperature setting value, and the operating frequency is determined in the temperature range where the conditions are met.

ここで11がTs+4 ”C以上の場合、00Mフラグ
に0を代入しまた1つがTs−1−1,5°°Cより下
回った場合、CO1vIフラグに1を代入する。そして
00Mフラグが1のとき圧縮機は運転し、また0のとき
圧縮機は停止する。tlがT、 +1.5 ”C以上で
T5+4′Cを下回っているときは前回の00Mフラグ
の値より判断して圧縮機を運転または停止させる。
Here, if 11 is greater than or equal to Ts+4''C, 0 is assigned to the 00M flag, and if 1 is below Ts-1-1,5°C, 1 is assigned to the CO1vI flag.Then, the 00M flag is set to 1. When tl is 0, the compressor operates, and when tl is 0, the compressor is stopped.When tl is T, +1.5''C or more and less than T5+4'C, the compressor is started based on the previous value of the 00M flag. Start or stop.

次にtlがT6+1 、s°′C以上でT、+4”Cを
下回っているとき、吹出一温度を検出し吹出温度制御を
開始するが、tlが前記範囲以外にあるときは吹出温度
は検出せずにフローチャートのスタート地点へもどり再
び吸込温度を検出し始めるという操作をくり返す。
Next, when tl is above T6+1,s°'C and below T,+4''C, the blowout temperature is detected and the blowout temperature control is started; however, when tl is outside the above range, the blowout temperature is not detected. Instead, return to the starting point of the flowchart and repeat the operation of starting to detect the suction temperature again.

次に吹出温度制御について説明する。図に示す」:うに
12に吹出温度を読み込みt2が37′C以下の場合N
CNフラグに1を代入し、またt2が4Q′C以上の場
合NO1フラグに○を代入する。
Next, the blowout temperature control will be explained. "As shown in the figure": Read the blowout temperature into the sea urchin 12, and if t2 is 37'C or less, N
1 is assigned to the CN flag, and if t2 is 4Q'C or more, ◯ is assigned to the NO1 flag.

そしてNO1フラグが1のとき設定周波数に+10出加
え、0のとき設定周波数のままで圧縮機は運転される。
When the NO1 flag is 1, +10 is added to the set frequency, and when it is 0, the compressor is operated at the set frequency.

次に12が40”C以下の場合NO2フラグに1を代入
し44°°C以上の場合0を代入する。同様にt2が4
4”Cを下回った場合NO3フラグに1を代入し48′
C以上の場合0を代入する。
Next, if t2 is 40"C or less, 1 is assigned to the NO2 flag, and if t2 is 44"C or higher, 0 is assigned.Similarly, t2 is 4
If it is less than 4"C, assign 1 to the NO3 flag and 48'
If it is C or higher, substitute 0.

そしてNO2およびNO3フラグの値より、ファンモー
タの回転数が決定される。
Then, the number of rotations of the fan motor is determined from the values of the NO2 and NO3 flags.

すなJ2ちN027ラグが1のとき1100 rpmで
、寸だNO2フラグが0でNO3フラグが1のとき13
00丁pmで、さらにNO2フラグおよびNOSフラグ
ともに0の場合15○Orpmで運転される。t2が4
0 ”Cを越えしかも44°゛Cを下回っている場合、
あるいは44”C以上で48“°Cを下回っている場合
のNO2フラグおよびl”J 03フラグの値は前回の
フラグ値そのま寸でこれによりファンモータの回転数が
決定される。
That is, when the J2 N027 lag is 1, it is 1100 rpm, and when the NO2 flag is 0 and the NO3 flag is 1, it is 13
If the NO2 flag and NOS flag are both 0, the engine is operated at 150 rpm. t2 is 4
If it exceeds 0”C and is below 44°C,
Alternatively, when the temperature is higher than 44"C and lower than 48"C, the values of the NO2 flag and the l"J03 flag are the same as the previous flag values, and the rotation speed of the fan motor is determined by these values.

そしてファンモータの運転制御がなされた後はフローチ
ャートのスタート点へもど抄再び吸込温度を検出すると
いう操作をくり返す。
After the operation of the fan motor is controlled, the flowchart returns to the starting point and the operation of detecting the suction temperature is repeated.

従って本実施例では、吹き出し温度制御を行うことりこ
より、吹き出しη++’h度お」:ひ’、+、’3.7
1.、iが低い範囲で長時間運転することが避けられる
Therefore, in this embodiment, from Riko who performs the blowout temperature control, the blowout η++'h degrees O': H', +, '3.7
1. , it is possible to avoid driving for a long time in a low range of i.

なお本実施例では圧縮機の能力可変にインバータによる
周波数変更を利用したものについて説明したが、その他
極数変換による運転速度を変えるもの、あるいはシリン
ダ容積を変化さぜるもの、あるいはバイパスを行い冷媒
の循環量をかえるものでも同様の効果が得られる。また
室内側ファンモータについてはトランジスタモータを使
用したものでも同様の効果が得られる。
In this example, we have described a method that uses frequency change using an inverter to vary the capacity of the compressor, but there are other methods that change the operating speed by changing the number of poles, change the cylinder volume, or change the refrigerant by bypassing the compressor. A similar effect can be obtained by changing the amount of circulation. Furthermore, similar effects can be obtained by using a transistor motor for the indoor fan motor.

発明の効果 上記実施例より明らかなように本発明は、能力可変型圧
縮機を用いたヒートポンプ式空気調和機において、室温
を検出する検出手段と、吹き出し温度を検出する検出手
段を有し、吹き出し温度が下降して第1の設定値T1を
下回ったとき圧縮機周波数を少なくとも一段下げ、吹き
出し温度がT1を下回った後上昇して第2の設定値T2
を越えたとき圧縮機周波数をもとの状態に復帰するよう
補正を加え、また同時に室内側ファンモータにおいても
吹き出し温度が第3の設定値T3および第4の設定値T
4をそれぞれ越えたとき、ファンモータ回転数をそれぞ
れ一段上げ、また吹き出し温度下降時は一段低い温度で
回転数を下げるよう補正を加えることにより、吹き出し
温度を第1の設定値T1と第4の設定値T4との間に保
一つように制御を行い、吹き出し温度の低下および上件
が防止でき、人体に冷風感はもとより不快感を力えると
いったことが防止できる。
Effects of the Invention As is clear from the above embodiments, the present invention provides a heat pump air conditioner using a variable capacity compressor, which includes a detection means for detecting the room temperature and a detection means for detecting the temperature of the air outlet. When the temperature decreases and falls below the first set value T1, the compressor frequency is lowered by at least one step, and after the blowout temperature falls below T1, it increases to the second set value T2.
When the temperature exceeds T3, the compressor frequency is corrected to return to its original state, and at the same time, the air outlet temperature of the indoor fan motor is set to the third set value T3 and the fourth set value T.
When the temperature exceeds 4, the fan motor rotation speed is increased by one step, and when the temperature of the air outlet decreases, the rotation speed is lowered by one step. Control is performed to maintain the temperature between the set value T4 and the temperature of the air outlet, thereby preventing a drop in the temperature of the air outlet and other problems, and preventing the human body from feeling cold or feeling uncomfortable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す室温による圧縮機運転回転数の割
り振り図、第2図は本発明の空気調和機の運転制御方法
を機能実現手段で表現したブロック図、第3図および第
4図はそれぞれ本発明を実施す不例の運転制御装置の圧
縮機部とファンモータ部の制御ブロック回路図、第6図
は同実施例における室温による圧縮機運転周波数の割り
振り図、第6図および第7図は同実施例における吹き出
し温度による圧縮機周波数補正図および室内ファンモー
タ回転数補正図、第8図は同実施例における動作例のタ
イミングチャート、第9図a、b、cは同運転制御装置
のフローチャートである。 1.3・・サーミスタ、6 ・・CPU、a・・・・・
インバータ、1o・・・・・・圧縮機モータ、12・・
・ ・ファンモータ。 代理人あ氏名 弁理士 中 尾 敏 男 ほか1名菓 
1121 第2図 第3図 第 5 図 第 6 因 第7図 第 8 図 第 9 図 //71 X、(59図
Fig. 1 is a diagram showing the allocation of compressor operating speed according to room temperature in a conventional example, Fig. 2 is a block diagram expressing the air conditioner operation control method of the present invention using function realizing means, and Figs. 3 and 4. 6 is a control block circuit diagram of a compressor section and a fan motor section of an exceptional operation control device implementing the present invention, and FIG. 6 is an allocation diagram of compressor operating frequency according to room temperature in the same embodiment. Fig. 7 is a compressor frequency correction diagram and indoor fan motor rotation speed correction diagram according to the blowout temperature in the same embodiment, Fig. 8 is a timing chart of an operation example in the same embodiment, and Fig. 9 a, b, and c are the same operation control. 3 is a flowchart of the device. 1.3...Thermistor, 6...CPU, a...
Inverter, 1o...Compressor motor, 12...
・・Fan motor. Name of agent: Patent attorney Toshio Nakao and 1 other name
1121 Figure 2 Figure 3 Figure 5 Figure 6 Cause Figure 7 Figure 8 Figure 9 //71 X, (Figure 59

Claims (1)

【特許請求の範囲】[Claims] 能力可変型圧縮機と室温検出手段、室内設定温度記憶手
段および室温と設定温度との比較手段、圧縮機運転周波
数記憶手段および前記周波数判定手段、前記周波数制御
手段、ならびに圧縮機出力手段を有し、また室内ファン
モータと吹出温度検出手段、吹出設定温度記憶手段およ
び設定温度と吹出温度との比較手段、ファンモータ回転
数記憶手段および前記回転数判定手段、ファンモータ回
転数制御手段、およびファン干−タ出力手段、室内設定
温度範囲内判定手段をそれぞれ有し、暖房運転時室温と
吹出温度によシ圧縮機能力および室内ファンモータ能力
を制御するヒートポンプ式空気調和機を構成し、室温検
出手段によって検出した室温が室内設定温度範囲内にあ
るとき吹出温度を周期的に検出し始め、さらに吹出温度
に第1の設定値T1〈第2の設定値T2<第3の設定値
T3となる設定温度を設けて記憶し、吹出温度と前記設
定温度を比較して第1の設定値を下回ったら圧縮機能力
を少なくとも1段上げるよう判定し、また吹出温度が第
2の設定値および第3の設定値を越えたと判断されたら
室内ファンモータ能力をそれぞれ少なくとも1段、上げ
るよう判定し、前記判定結果に応じて圧縮機およびファ
ンモータ能力を制御する空気調和機の運転制御方法。
It has a variable capacity compressor, a room temperature detection means, an indoor set temperature storage means, a room temperature and set temperature comparison means, a compressor operating frequency storage means, the frequency determination means, the frequency control means, and a compressor output means. , an indoor fan motor and a blowout temperature detection means, a blowout set temperature storage means, a means for comparing the set temperature and the blowout temperature, a fan motor rotational speed storage means and the rotational speed determination means, a fan motor rotational speed control means, and a fan dryer. - A heat pump type air conditioner is configured, which has a data output means and an indoor set temperature range determination means, and controls the compression function and indoor fan motor capacity according to the room temperature and outlet temperature during heating operation, and the room temperature detection means. When the detected room temperature is within the indoor set temperature range, the outlet temperature is periodically detected, and the outlet temperature is set so that the first set value T1 < the second set value T2 < the third set value T3. A temperature is set and memorized, the blowout temperature is compared with the set temperature, and if the blowout temperature is lower than the first setpoint, it is determined to increase the compression function by at least one step, and the blowout temperature is set to the second setpoint and the third setpoint. An operation control method for an air conditioner, which determines to increase the capacity of each indoor fan motor by at least one step when it is determined that the set value has been exceeded, and controls the capacity of the compressor and fan motor according to the determination result.
JP58246098A 1983-12-23 1983-12-23 Method of controlling operation of air conditioner Granted JPS60134133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58246098A JPS60134133A (en) 1983-12-23 1983-12-23 Method of controlling operation of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58246098A JPS60134133A (en) 1983-12-23 1983-12-23 Method of controlling operation of air conditioner

Publications (2)

Publication Number Publication Date
JPS60134133A true JPS60134133A (en) 1985-07-17
JPH0140258B2 JPH0140258B2 (en) 1989-08-28

Family

ID=17143455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58246098A Granted JPS60134133A (en) 1983-12-23 1983-12-23 Method of controlling operation of air conditioner

Country Status (1)

Country Link
JP (1) JPS60134133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903502A (en) * 1988-08-26 1990-02-27 Thermo King Corporation Rate of change temperature control for transport refrigeration systems
CN106288235A (en) * 2016-09-30 2017-01-04 广东美的制冷设备有限公司 Energy-saving control method, controller and air-conditioning

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528999U (en) * 1978-08-17 1980-02-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528999U (en) * 1978-08-17 1980-02-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903502A (en) * 1988-08-26 1990-02-27 Thermo King Corporation Rate of change temperature control for transport refrigeration systems
CN106288235A (en) * 2016-09-30 2017-01-04 广东美的制冷设备有限公司 Energy-saving control method, controller and air-conditioning

Also Published As

Publication number Publication date
JPH0140258B2 (en) 1989-08-28

Similar Documents

Publication Publication Date Title
JP2723339B2 (en) Heat pump heating equipment
JPS60134133A (en) Method of controlling operation of air conditioner
KR100214750B1 (en) Air conditioner
JPS60134134A (en) Method of controlling operation of air conditioner
JPS60129548A (en) Operation control device for air conditioner
JP2739865B2 (en) Control device for air conditioner
JPS6256411B2 (en)
JPS6338625B2 (en)
JPS5949440A (en) Control method of operation for air conditioner
JPH07253236A (en) Air conditioner
JPH0428949A (en) Operation control device
JPS5949439A (en) Control method of operation for air conditioner
JPS6029540A (en) Air quantity controlling method for air conditioner
JPS6353450B2 (en)
JPH03129238A (en) Controlling method for air flow of air conditioner
JPH0623879Y2 (en) Air conditioner
JPS6141837A (en) Temperature control device for air conditioner
JPS6179943A (en) Air conditioner
JPS5875637A (en) Control system of heating operation
JPS5952144A (en) Operation control of air conditioner
JPH10110995A (en) Air conditioner
JPS60144551A (en) Method of controlling capacity of air conditioner
JPH10197026A (en) Air conditioner
JPS6155556A (en) Air conditioner
JPS5952143A (en) Operation control of air conditioner