JPH0311653Y2 - - Google Patents

Info

Publication number
JPH0311653Y2
JPH0311653Y2 JP1985143717U JP14371785U JPH0311653Y2 JP H0311653 Y2 JPH0311653 Y2 JP H0311653Y2 JP 1985143717 U JP1985143717 U JP 1985143717U JP 14371785 U JP14371785 U JP 14371785U JP H0311653 Y2 JPH0311653 Y2 JP H0311653Y2
Authority
JP
Japan
Prior art keywords
temperature
indoor
weak
compressor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985143717U
Other languages
Japanese (ja)
Other versions
JPS6252839U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985143717U priority Critical patent/JPH0311653Y2/ja
Publication of JPS6252839U publication Critical patent/JPS6252839U/ja
Application granted granted Critical
Publication of JPH0311653Y2 publication Critical patent/JPH0311653Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、暖房運転時に室内フアンによる室内
送風量を弱風に設定し、室内温度が設定温度近傍
に達するまでは圧縮機の回転数が大きい高能力運
転とし、室内温度が設定温度近傍に達したら圧縮
機の回転数が小さい低能力運転として室温調節を
行い、過負荷時には室温調節に優先して圧縮機の
回転数を小さくして過負荷保護を行う空気調和機
に関するものである。
[Detailed explanation of the invention] [Industrial application field] This invention sets the indoor air flow rate by the indoor fan to a weak airflow during heating operation, and the rotation speed of the compressor is kept low until the indoor temperature reaches around the set temperature. When the indoor temperature reaches around the set temperature, the room temperature is controlled as a low capacity operation with a low compressor rotation speed, and in the event of an overload, the compressor rotation speed is prioritized over room temperature control to reduce the overload. This invention relates to an air conditioner that performs load protection.

[従来技術] 一般に、この種空気調和機では、室内フアンに
よる室内送風量が強風、中風、弱風の3段階に設
定され、従来、この「弱風」量の設定は、暖房運
転において、室内温度が低いときや圧縮機回転数
が低い低能力運転のときに吹き出し空気量が多す
ぎて冷風感を与えないようにする点と、室内温度
が高くなつて圧縮機の圧力が高くなつたときに、
吹き出し空気量が少なすぎて過負荷保護動作が働
き、圧縮機の回転数が低下して暖房能力が低下し
ないようにする点とを考慮して、両者の妥協点的
な風量に設定されていた。
[Prior art] Generally, in this type of air conditioner, the amount of indoor air blown by the indoor fan is set to three levels: strong air, medium air, and weak air. When the temperature is low or during low capacity operation with low compressor rotation speed, the amount of air blown out is too large and the feeling of cold air is not felt. When the indoor temperature is high and the compressor pressure is high. To,
The air volume was set as a compromise between the two, taking into consideration the need to prevent overload protection from activating if the amount of blown air is too small, which would reduce the rotational speed of the compressor and reduce the heating capacity. .

[考案が解決しようとする問題点] 上述のように、従来の「弱風」量の設定は冷風
感を与えないように風量を少なく設定する要請
と、暖房能力が低下しないように風量を多く設定
する要請との相反する要請の妥協によつて決めら
れていたので、中途半端な設定となり、一方の要
請を満足するように風量設定すると他方の要請を
満足することができず、両方の要請を共に満足す
ることができないという問題点があつた。
[Problems that the invention aims to solve] As mentioned above, the conventional "low air" setting requires setting the air volume low so as not to give a feeling of cold air, and setting the air volume high so as not to reduce the heating capacity. Since the decision was made by a compromise between conflicting requirements, the settings were half-hearted, and if the air volume was set to satisfy one requirement, it would not be possible to satisfy the other, and both requirements would not be satisfied. There was a problem that both of them could not be satisfied.

本考案は上述の問題点に鑑みなされたもので、
暖房運転時において、冷風感を与えず、しかも暖
房能力の低下を招かないようにした空気調和機を
提供することを目的とするものである。
This idea was created in view of the above-mentioned problems.
It is an object of the present invention to provide an air conditioner that does not give a feeling of cold air during heating operation and does not cause a decrease in heating capacity.

[問題を解決するための手段] 本考案による空気調和機は、室内フアンによる
室内送風量を弱い弱風から強い弱風に増加しても
冷風感を与えない温度を第2設定温度として記憶
するメモリと、前記室温検出センサーによる室内
温度と前記メモリの第2設定温度とを比較する比
較手段と、この比較手段の比較出力に基づいて前
記室内フアンによる室内送風量を弱い弱風から強
い弱風に増加する風量増加手段とを具備してなる
ことを特微とするものである。
[Means for Solving the Problem] The air conditioner according to the present invention stores a temperature that does not give a feeling of cold air even if the indoor air flow rate from the indoor fan is increased from a weak weak wind to a strong weak wind as a second set temperature. a memory, a comparison means for comparing the indoor temperature detected by the room temperature detection sensor and a second set temperature of the memory, and a comparison means for adjusting the amount of indoor air blown by the indoor fan from a weak weak wind to a strong weak wind based on the comparison output of the comparison means. The present invention is characterized by comprising means for increasing air volume.

[作用] 暖房運転時および室内フアンの「弱風」設定時
において、室内温度が第2設定温度より低いとき
は、比較手段の比較出力がないので、室内フアン
は「弱い弱風」で冷風感を与えず、圧縮機は高能
力運転で室温調節を行なう。室内温度が第2設定
温度に達すると、比較出力の出力側に比較出力が
現れ、この比較出力に基づいて風量増加手段が室
内フアンの回転数を増加して、室内送風量を弱い
弱風から強い弱風に増加して熱交換を促進し、圧
縮機の圧力上昇が抑制される。このため、過負荷
保護動作が働かず、圧縮機は高能力運転を継続
し、暖房能力の低下を招かない。しかも、第2設
定温度は、室内送風量を弱い弱風から強い弱風に
増加しても冷風感を与えない温度に設定されてい
るので、風量増加による冷風感を与えることがな
い。
[Function] During heating operation and when the indoor fan is set to "weak wind", when the indoor temperature is lower than the second set temperature, there is no comparison output from the comparison means, so the indoor fan produces a "weak breeze" and gives a feeling of cold air. The compressor operates at high capacity to control the room temperature. When the indoor temperature reaches the second set temperature, a comparison output appears on the output side of the comparison output, and based on this comparison output, the air volume increasing means increases the rotation speed of the indoor fan to change the indoor air flow from weak to weak air. Strong and weak winds increase to promote heat exchange and suppress compressor pressure rise. Therefore, the overload protection operation does not work, the compressor continues to operate at high capacity, and the heating capacity does not deteriorate. Moreover, the second set temperature is set at a temperature that does not give a feeling of cold air even if the indoor air flow rate is increased from a weak breeze to a strong weak breeze, so an increase in the air volume does not give a feeling of cold air.

[実施例] 第1図は本考案の一実施例を示すもので、この
図において、1は交流電源、2は室内フアンであ
る。前記室内フアン2の共通電源端子は前記交流
電源1の一側に接続され、強風用、中風用、強い
弱風用および弱い弱風用のタツプ線31,32,3
,34は、それぞれ第1,第2,第3おそび第4
リレースイツチ41,42,43,44の常開接点5
,52,53,54に接続され、前記第4リレース
イツチ44の可動片64側の共通端子74は前記交
流電源1の他誕側に接続されている。前記第1リ
レースイツチ41の可動片61側の共通端子71
前記2リレースイツチ42の常閉接点82に接続さ
れ、前記第2リレースイツチ42の可動片62側の
共通端子72は前記第3リレースイツチ43の常閉
接点83に接続され、前記第3リレースイツチ43
の可動片63側の共通端子73は前記第4リレース
イツチ44の常閉接点84に接続されている。前記
第1,第2,第3,および第4リレースイツチ4
,42,43,44はそれぞれ第1,第2,第3,
および第4リレーコイル91,92,93,94によ
つて作動し、これらのリレコイル91,92,93
4はドライバ回路10からの駈動信号によつて
択一的に励磁作動するように構成されている。1
1はサーミスタを主体としてなる室内温度検出用
の室温検出センサーで、この室温検出センサー1
1の出力側はA−D変換回路12を介してマイコ
ン13の入力側に結合されている。14は熱交換
器の温度を測定することによつて圧縮機の圧力等
を検出するセンサーや運転電流を検出する誘導コ
イルなどを主体とした過負荷を検出する過負荷検
出センサーで、この過負荷検出センサー14の出
力側は過負荷検知回路15を介して前記マイコン
13の入力側に結合されている。16は前記マイ
コン13に、電源のオン、オフ信号や冷暖房の切
換信号や強風F1、中風F2、弱風(強い弱風のF3
と弱い弱風のF4のいずれか一方)を設定する制
御信号や、ユーザー側において設定する室温制御
用の第1設定温度T1(例えば20℃)用のデータ信
号などを送出するリモコンである。前記第1設定
温度T1とは別に、メーカー側において、第2設
定温度T2(例えば18℃)が予めマイコンに設定さ
れる。17は前記マイコン13の制御ブログラム
や前記第1、第2設定温度T1,T2などを記憶す
るメモリである。
[Embodiment] FIG. 1 shows an embodiment of the present invention. In this figure, 1 is an AC power supply and 2 is an indoor fan. The common power terminal of the indoor fan 2 is connected to one side of the AC power supply 1, and tap wires 3 1 , 3 2 , 3 for strong wind, medium wind, strong weak wind, and weak weak wind are connected to one side of the AC power supply 1 .
3 , 3 4 are the first, second, third and fourth respectively.
Normally open contacts 5 of relay switches 4 1 , 4 2 , 4 3 , 4 4
1 , 5 2 , 5 3 , and 5 4 , and a common terminal 7 4 on the movable piece 6 4 side of the fourth relay switch 4 4 is connected to the other side of the AC power source 1 . The common terminal 71 on the movable piece 61 side of the first relay switch 41 is connected to the normally closed contact 82 of the second relay switch 42 , and the common terminal 71 on the movable piece 62 side of the second relay switch 42 is connected to the normally closed contact 82 of the second relay switch 42 . The terminal 72 is connected to the normally closed contact 83 of the third relay switch 43 , and the terminal 72 is connected to the normally closed contact 83 of the third relay switch 43.
The common terminal 73 on the movable piece 63 side is connected to the normally closed contact 84 of the fourth relay switch 44 . The first, second, third, and fourth relay switches 4
1 , 4 2 , 4 3 , 4 4 are the first, second, third, and third, respectively.
and the fourth relay coils 9 1 , 9 2 , 9 3 , 9 4 , these relay coils 9 1 , 9 2 , 9 3 ,
94 is configured to be selectively excited by a cantering signal from the driver circuit 10. 1
1 is a room temperature detection sensor for detecting indoor temperature, which is mainly composed of a thermistor; this room temperature detection sensor 1
The output side of 1 is coupled to the input side of a microcomputer 13 via an A/D conversion circuit 12. Reference numeral 14 is an overload detection sensor that detects an overload, mainly using a sensor that detects the pressure of the compressor by measuring the temperature of the heat exchanger, an induction coil that detects the operating current, etc. The output side of the detection sensor 14 is coupled to the input side of the microcomputer 13 via an overload detection circuit 15. 16 sends to the microcomputer 13 power on/off signals, air conditioning/heating switching signals, strong wind F 1 , medium wind F 2 , weak wind (strong weak wind F 3
This is a remote controller that sends out control signals to set the temperature (either one of F4 and F4 ) and data signals for the first set temperature T1 (e.g. 20°C) for room temperature control set by the user. . Separately from the first set temperature T 1 , a second set temperature T 2 (for example, 18° C.) is previously set in the microcomputer by the manufacturer. A memory 17 stores the control program of the microcomputer 13 and the first and second set temperatures T 1 and T 2 .

前記マイコン13の出力側には、インバータ制
御回路18を経、インバータ回路19を介して圧
縮機20が結合されている。この圧縮機20は図
示しない利用側熱交換器、受液器、膨張弁、熱源
側熱交換器と冷凍サイクルを構成するものであ
る。前記マイコン13は室温検出センサー11で
検出された室内温度Tが第1設定温度T1近傍に
達するまでは圧縮機20の回転数を大きく(例え
ば最大)して高能力運転とし、TがT1近傍に達
した後は圧縮機20の回転数を小さくして低能力
運転とするための制御信号を送出して室温調節を
行うとともに、過負荷検出センサー14からの検
出信号で、前記室温調節に優先して圧縮機20の
回転数を減少するための制御信号を送出して過負
荷保護を行うように構成されている。さらに前記
マイコン13は室温検出センサー11で検出され
た室内温度Tと第2設定温度T2とを比較する比
較手段を具備するとともに前記比較手段の比較出
力に基づいて、前記ドライバ回路10に所定の制
御信号を送出し、第4リレーコイル94の励磁を
解除し、かつ第3リレーコイル93を励磁し、室
内フアン2の回転数を増加して、室内送風量を弱
い弱風F4から強い弱風F3に増加せしめる風量増
加手段の一部を構成している。
A compressor 20 is connected to the output side of the microcomputer 13 via an inverter control circuit 18 and an inverter circuit 19 . The compressor 20 constitutes a refrigeration cycle with a user side heat exchanger, a liquid receiver, an expansion valve, and a heat source side heat exchanger (not shown). The microcomputer 13 increases the rotation speed of the compressor 20 (for example, to the maximum) until the indoor temperature T detected by the room temperature detection sensor 11 reaches around the first set temperature T 1 to operate at high capacity, so that T reaches T 1 . After reaching the vicinity, the room temperature is adjusted by sending a control signal to reduce the rotation speed of the compressor 20 to operate at a low capacity, and at the same time, a detection signal from the overload detection sensor 14 is used to adjust the room temperature. It is configured to perform overload protection by sending out a control signal for reducing the rotation speed of the compressor 20 with priority. Furthermore, the microcomputer 13 is equipped with a comparison means for comparing the indoor temperature T detected by the room temperature detection sensor 11 and a second set temperature T2 , and also sets the driver circuit 10 to a predetermined value based on the comparison output of the comparison means. A control signal is sent, the fourth relay coil 94 is de-energized, the third relay coil 93 is excited, the rotation speed of the indoor fan 2 is increased, and the amount of indoor air is changed from weak wind F4 to weak wind F4 . It constitutes a part of the wind volume increasing means to increase the strong weak wind F3 .

つぎに第2図を用いて前記実施例の暖房運転動
作について説明する。
Next, the heating operation of the embodiment will be explained using FIG. 2.

(イ) 予めリモコン16により、第1、第2設定温
度T1(例えば20℃)、T2(例えば18℃)が設定さ
れ、この第1、第2設定温度T1、T2はメモリ
17に記憶される。
(b) The first and second set temperatures T 1 (for example, 20°C) and T 2 (for example, 18°C) are set in advance by the remote control 16, and the first and second set temperatures T 1 and T 2 are stored in the memory 17. is memorized.

(ロ) つぎに、リモコン16により、室内送風量の
弱風が設定され、t0時において電源のオン信号
が送出されると、マイコン13からの制御信号
により、圧縮機20の回転数Rは第2図dに実
線で示すようにR1(例えば最大)となり、圧縮
機20の圧力Pは同図cに実線で示すように上
昇し、高能力運転となる。このため、室内温度
Tは第2図aに実線で示すように急速に上昇す
る。このとき、室内温度Tは第2設定温度T2
より低いのでマイコン13の比較手段による比
較出力がなく、ドライバ回路10の駆動信号で
第4リレーコイル94のみが励磁される。この
ため、第4リレースイツチ44の可動片64が常
開接点54に接続し、室内フアン2の回転数は
最小値となり、室内送風量Fは第2図dに実線
で示すように弱い弱風F4となる (ハ) t1時に至つて、第2図aに実線で示すように
室内温度Tが第2設定温度T2に達すると、マ
イコン13の比較手段による比較出力に基づ
き、ドライバ回路10が第4リレーコイル94
の励磁を解いて第3リレーコイル93を励磁す
るので、第4リレースイツチ44の可動片64
常閉接点84側に切り換わるとともに、第3リ
レースイツチ43の可動片63が常開接点53
に切り換わる。このため、室内フアン2の回転
数が増加し、室内送風量Fは第2図bに実線で
示すように弱い弱風F4から強い弱風F3に増加
する。したがつて、利用側熱交換器の熱交換が
促進され圧縮機20の圧力Pは、第2図cに実
線で示すように過負荷保護動作域の設定置P1
に達する前に減少し、圧縮機20の回転数Rは
同図dの実線で示すようにR1(最大値)を継続
するので、高能力運転が継続し、室内温度Tは
t1時以後も急速に上昇し暖房能力が低下しな
い。室内送風量が弱い弱風F4から強い弱風F3
に切り換わることによつて、吹き出し空気量が
増加するが、この切り換わり時は室内温度Tが
第2設定温度T2(例えば18℃)に達していると
きなので、ほとんど冷風感を受けることがな
い。
(b) Next, when the remote controller 16 sets the indoor air flow rate to weak air and sends a power-on signal at time t 0 , the rotation speed R of the compressor 20 is set by the control signal from the microcomputer 13. The pressure P of the compressor 20 increases as shown by the solid line in Fig. 2c , and the pressure P of the compressor 20 increases as shown by the solid line in Fig. 2c, resulting in high capacity operation. Therefore, the room temperature T rapidly rises as shown by the solid line in FIG. 2a. At this time, the indoor temperature T is the second set temperature T 2
Since it is lower, there is no comparison output from the comparison means of the microcomputer 13, and only the fourth relay coil 94 is excited by the drive signal of the driver circuit 10. Therefore, the movable piece 64 of the fourth relay switch 44 connects to the normally open contact 54 , the rotational speed of the indoor fan 2 becomes the minimum value, and the indoor air flow rate F becomes as shown by the solid line in Fig. 2d. When the indoor temperature T reaches the second set temperature T 2 as shown by the solid line in Figure 2 a at t 1 o'clock, the weak wind F 4 becomes (c). , the driver circuit 10 is the fourth relay coil 9 4
is de-energized and the third relay coil 93 is energized, so the movable piece 64 of the fourth relay switch 44 switches to the normally closed contact 84 side, and the movable piece 63 of the third relay switch 43 switches to the normally closed contact 84 side. switches to the normally open contact 53 side. Therefore, the rotational speed of the indoor fan 2 increases, and the indoor air blowing amount F increases from a weak weak wind F4 to a strong weak wind F3 , as shown by the solid line in FIG. 2b. Therefore, heat exchange in the heat exchanger on the user side is promoted, and the pressure P of the compressor 20 reaches the setting point P 1 of the overload protection operating range, as shown by the solid line in FIG. 2c.
The rotation speed R of the compressor 20 continues at R 1 (maximum value) as shown by the solid line in d in the figure, so high capacity operation continues and the indoor temperature T decreases.
t Even after 1 o'clock, the heating capacity rises rapidly and the heating capacity does not decrease. Indoor air flow is weak from weak wind F 4 to strong weak wind F 3
The amount of air blown increases by switching to the second set temperature T 2 (for example, 18°C) at the time of this switching, so you will hardly experience the feeling of cold air. do not have.

なお、従来例においては、弱風はほぼF4
近い一定値のみ設定されていたので、室内温度
Tが高くなつたときに利用側熱交換器の熱交換
が促進されずt1時から若干経過したt2時におい
て、圧縮機20の圧力Pは第2図cに点線で示
すように過負荷保護動作域の設定値P1に達す
る。このため、室温調節に優先する過負荷保護
動作が働き、すなわち過負荷検出センサー14
からの検出信号に基づくマイコン13からの制
御信号により、インバータ制御回路18および
インバータ回路19が作動して圧縮機20の回
転数Rが第2図dに点線で示すようにR1から
R2に減少し低能力運転となる。したがつて、
暖房能力が低下し室内温度Tは第2図aに点線
で示すように上昇率が低下する。
In addition, in the conventional example, the weak wind was set only to a constant value close to F 4 , so when the indoor temperature T rose, heat exchange in the user heat exchanger was not promoted, and the temperature decreased slightly from t 1 o'clock. At the elapsed time t 2 , the pressure P in the compressor 20 reaches the set value P 1 of the overload protection operating range, as shown by the dotted line in FIG. 2c. Therefore, an overload protection operation that takes priority over room temperature adjustment works, that is, the overload detection sensor 14
The inverter control circuit 18 and the inverter circuit 19 are activated by the control signal from the microcomputer 13 based on the detection signal from the microcomputer 13, and the rotation speed R of the compressor 20 is changed from R1 to R1 as shown by the dotted line in FIG. 2d.
R is reduced to 2 , resulting in low capacity operation. Therefore,
As the heating capacity decreases, the rate of increase in the indoor temperature T decreases as shown by the dotted line in FIG. 2a.

(ニ) t3時に至つて、室内温度Tが第1設定温度T1
(20℃)の近傍(例えば19.5℃)に達すると、
マイコン13からの所定の制御信号によりイン
バータ制御回路18およびインバータ制御回路
19が作動して圧縮機20の回転数Rが第2図
dに実線で示すようにR1からR3に減少し低能
力運転となる。したがつて圧縮機20の圧力P
も第2図cに実線で示すようにt3時直後に急速
に減少し、以後ほぼ一定となつて過負荷保護動
作域の設定値P1に達することがなく、また、
室内温度Tは同図aに実線で示すように、緩や
かに上昇して第1設定温度T1となり、このT1
を維持する。
(d) At t 3 o'clock, the indoor temperature T reaches the first set temperature T 1
(20℃) (e.g. 19.5℃),
The inverter control circuit 18 and the inverter control circuit 19 are activated by a predetermined control signal from the microcomputer 13, and the rotation speed R of the compressor 20 decreases from R 1 to R 3 as shown by the solid line in FIG. 2d, resulting in low capacity. It becomes driving. Therefore, the pressure P of the compressor 20
As shown by the solid line in Fig. 2c, it rapidly decreases immediately after t 3 , and after that it remains almost constant and never reaches the set value P 1 of the overload protection operating range.
As shown by the solid line in Figure a, the indoor temperature T gradually rises to the first set temperature T1 , and this T1
maintain.

前記実施例においては、ユーザー側で設定さ
れる第1設定温度T1(例えば20℃)が予めメー
カー側で設定される第2設定温度T2(例えば18
℃)より高く、圧縮機の圧力が高くなつて過負
荷保護動作が働きやすい場合について説明した
が、ユーザー側で設定される第1設定温度T1
が第2設定温度T2(18℃)より低い(例えば16
℃)場合には、従来と同様の動作をするが、こ
のときは圧縮機の圧力がそれ程高くならず、過
負荷保護動作が働くことがほとんどない。
In the above embodiment, the first set temperature T 1 (for example, 20°C) set by the user is set in advance by the second set temperature T 2 (for example, 18°C) set by the manufacturer.
℃), the pressure of the compressor becomes high and the overload protection operation is likely to be activated, but the first set temperature T 1 set by the user
is lower than the second set temperature T 2 (18℃) (for example, 16
℃), the same operation as before is performed, but in this case the pressure of the compressor is not so high and the overload protection operation is almost never activated.

[考案の効果] 本考案による空気調和機は、上記のように、室
内送風量を弱い弱風から強い弱風に増加しても冷
風感を与えない温度を第2設定温度T2としてメ
モリに記憶し、室内温度Tが第2設定温度T2
達するまでは室内送風量を弱い弱風とし、室内温
度Tが第2設定温度T2に達した後は室内送風量
を弱い弱風から強い弱風に増加するように構成し
た。このため、室内温度Tが第2設定温度T2
り低いときは室内フアンによる送風量は弱い弱風
なので冷風感を与えない。さらに、室内温度Tが
第2設定温度T2に達すると、比較手段の比較出
力に基づく風量増加手段で室内フアンの回転数が
増加して室内送風量が強い弱風F3に増加し、熱
交換器の熱交換が促進され圧縮機の圧力上昇が抑
制されるので、過負荷保護動作が働かないか若し
くは従来より働く回数を少く抑えることができ
る。したがつて圧縮機の高能力運転の継続時間が
従来より長くなり、暖房能力が増大し、室内温度
Tを急速に第1設定温度T1に近づけることがで
きる。すなわち、過負荷保護動作に基づく暖房能
力の低下を抑制することができる。その上、第2
設定温度T2は、室内送風量を弱い弱風から強い
弱風に増加しても冷風感を与えない温度に設定さ
れているので、風量増加による冷風感を与えるこ
とがない。しかも、室内フアンの回転数を増加さ
せるに要する消費電力の増加分(例えば10W)に
比べて、圧縮機の圧力低下に基づく圧縮機の消費
電力の減少分(例えば50W)の方が大きいので、
省エネルギーにもなる。
[Effects of the invention] As described above, the air conditioner according to the invention stores in memory as the second set temperature T 2 a temperature that does not give a feeling of cold air even when the indoor air flow rate is increased from a weak weak wind to a strong weak wind. The indoor air flow rate is set to a weak breeze until the indoor temperature T reaches the second set temperature T2 , and after the indoor temperature T reaches the second set temperature T2 , the indoor air flow rate is changed from weak to strong. It was configured to increase in weak winds. Therefore, when the indoor temperature T is lower than the second set temperature T2 , the amount of air blown by the indoor fan is weak and does not give a feeling of cold air. Further, when the indoor temperature T reaches the second set temperature T2 , the rotational speed of the indoor fan is increased by the air volume increasing means based on the comparison output of the comparison means, and the indoor air flow rate is increased to a strong weak wind F3 . Since heat exchange in the exchanger is promoted and the pressure increase in the compressor is suppressed, the overload protection operation does not work or the number of times it works can be suppressed to a smaller number than in the past. Therefore, the duration of high-capacity operation of the compressor becomes longer than before, the heating capacity increases, and the indoor temperature T can be rapidly brought closer to the first set temperature T1 . That is, it is possible to suppress a decrease in the heating capacity due to the overload protection operation. Moreover, the second
The set temperature T 2 is set at a temperature that does not give a feeling of cold air even if the indoor air flow rate is increased from a weak breeze to a strong weak breeze, so an increase in the air volume does not give a feeling of cold air. Moreover, the decrease in power consumption of the compressor due to the decrease in compressor pressure (for example, 50W) is greater than the increase in power consumption (for example, 10W) required to increase the rotation speed of the indoor fan.
It also saves energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による空気調和機の一実施例に
おける電気回路のブロツク図、第2図は本考案の
動作を説明するための動作説明図である。 2……室内フアン、11……室温検出センサ
ー、13……マイコン(比較手段を含む)、14
……過負荷検出センサー、17……メモリ、20
……圧縮機、T……室内温度、T1……第1設定
温度、T2……第2設定温度、F……室内送風量、
F3……強い弱風、F4……弱い弱風、P……圧縮
機の圧力、R……圧縮機の回転数。
FIG. 1 is a block diagram of an electric circuit in an embodiment of an air conditioner according to the present invention, and FIG. 2 is an operational explanatory diagram for explaining the operation of the present invention. 2... Indoor fan, 11... Room temperature detection sensor, 13... Microcomputer (including comparison means), 14
...Overload detection sensor, 17...Memory, 20
... Compressor, T ... Indoor temperature, T 1 ... First set temperature, T 2 ... Second set temperature, F ... Indoor air flow rate,
F 3 ... Strong weak wind, F 4 ... Weak weak wind, P ... Compressor pressure, R ... Compressor rotation speed.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 暖房運転時に室内フアンによる室内送風量を弱
風に設定し、室温検出センサーで検出された室内
温度が第1設定温度の近傍に達するまでは圧縮機
の回転数が大きい高能力運転とし、室温検出セン
サーで検出された室内温度が第1設定温度の近傍
に達した後は圧縮機の回転数が小さい低能力運転
として室温調節を行ない、過負荷検出センサーか
らの検出信号で前記室温調節に優先して圧縮機の
回転数を減少して過負荷保護を行なうようにした
空気調和機において、前記室内フアンによる室内
送風量を弱い弱風から強い弱風に増加しても冷風
感を与えない温度を第2設定温度として記憶する
メモリと、前記室温検出センサーによる室内温度
と前記メモリの第2設定温度とを比較する比較手
段と、この比較手段の比較出力に基づいて前記室
内フアンによる室内送風量を弱い弱風から強い弱
風に増加する風量増加手段とを具備してなること
を特徴とする空気調和機。
During heating operation, the amount of air blown into the room by the indoor fan is set to a weak airflow, and the compressor is operated at high capacity with a high rotation speed until the indoor temperature detected by the room temperature detection sensor reaches the vicinity of the first set temperature, and the room temperature is detected. After the indoor temperature detected by the sensor reaches the vicinity of the first set temperature, the room temperature is adjusted as a low capacity operation with a low rotational speed of the compressor, and priority is given to the room temperature adjustment based on the detection signal from the overload detection sensor. In an air conditioner in which overload protection is performed by reducing the rotational speed of the compressor, the air conditioner has a temperature that does not give a feeling of cold air even when the amount of indoor air blown by the indoor fan is increased from a weak weak wind to a strong weak wind. a memory for storing a second set temperature; a comparing means for comparing the indoor temperature detected by the room temperature detection sensor with the second set temperature in the memory; An air conditioner characterized by comprising: means for increasing air volume from a weak weak wind to a strong weak wind.
JP1985143717U 1985-09-20 1985-09-20 Expired JPH0311653Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985143717U JPH0311653Y2 (en) 1985-09-20 1985-09-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985143717U JPH0311653Y2 (en) 1985-09-20 1985-09-20

Publications (2)

Publication Number Publication Date
JPS6252839U JPS6252839U (en) 1987-04-02
JPH0311653Y2 true JPH0311653Y2 (en) 1991-03-20

Family

ID=31053654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985143717U Expired JPH0311653Y2 (en) 1985-09-20 1985-09-20

Country Status (1)

Country Link
JP (1) JPH0311653Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134134A (en) * 1983-12-23 1985-07-17 Matsushita Electric Ind Co Ltd Method of controlling operation of air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134134A (en) * 1983-12-23 1985-07-17 Matsushita Electric Ind Co Ltd Method of controlling operation of air conditioner

Also Published As

Publication number Publication date
JPS6252839U (en) 1987-04-02

Similar Documents

Publication Publication Date Title
JPS6354567B2 (en)
JPH0311653Y2 (en)
JPS6116898B2 (en)
JPS6116900B2 (en)
JP2611051B2 (en) Air conditioner
JPS6025695B2 (en) Air conditioner control device
JPH025981B2 (en)
JPS61250436A (en) Air conditioner
JP3197748B2 (en) Control device for air conditioner
JPS597899B2 (en) Auxiliary heater energization control device for air conditioners
JPS6228035Y2 (en)
JPS6120451Y2 (en)
JPS6115475Y2 (en)
JPS6115969B2 (en)
JPS5850187Y2 (en) Air conditioner control circuit
JPS6219885Y2 (en)
JPS6154149B2 (en)
JPH0126486Y2 (en)
JPS5920584Y2 (en) air conditioner
JPS586345A (en) Temperature controlling device of air conditioner
JPH0313497B2 (en)
KR840002207B1 (en) Air conditioning
JPS5860143A (en) Control method for operation of air conditioner
JPS5920586Y2 (en) Heat pump air conditioner
JPH07823Y2 (en) Cooling built-in type hot air heater