JPS6012403B2 - Swivel chute control device for blast furnace - Google Patents

Swivel chute control device for blast furnace

Info

Publication number
JPS6012403B2
JPS6012403B2 JP52141888A JP14188877A JPS6012403B2 JP S6012403 B2 JPS6012403 B2 JP S6012403B2 JP 52141888 A JP52141888 A JP 52141888A JP 14188877 A JP14188877 A JP 14188877A JP S6012403 B2 JPS6012403 B2 JP S6012403B2
Authority
JP
Japan
Prior art keywords
signal
raw material
blast furnace
chute
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52141888A
Other languages
Japanese (ja)
Other versions
JPS5428710A (en
Inventor
雅彦 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP52141888A priority Critical patent/JPS6012403B2/en
Publication of JPS5428710A publication Critical patent/JPS5428710A/en
Publication of JPS6012403B2 publication Critical patent/JPS6012403B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 この発明はベル・レス・トップ方式の高炉用旋タ回シュ
ートの制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a bellless top type blast furnace rotor chute.

第1図はベル・レス・トップ方式の高炉の炉頂部分の端
面図、第2図はこの発明の高炉用旋回シュート制御装置
の一実施例を示す構成図、第3図は旋回シュートの俺仰
角度制御の演算方式図であ0る。第1図において101
は高炉本体、102,103は各々高炉内にすでに装入
されているコークス又は鉱石等の原料層、104は高炉
内に装入された原料のレベルを計測するストックライン
レベタル計測装置であって、レベル計測後は原料の装入
にじやまにならないようになっている。
Fig. 1 is an end view of the top portion of a bell-less top type blast furnace, Fig. 2 is a configuration diagram showing an embodiment of the swing chute control device for a blast furnace of the present invention, and Fig. 3 is an end view of the top portion of the swing chute. It is a calculation method diagram of elevation angle control. 101 in Figure 1
102 and 103 are layers of raw material such as coke or ore that have already been charged into the blast furnace, and 104 is a stock line level measuring device that measures the level of the raw material charged into the blast furnace. After level measurement, there is no delay in charging raw materials.

105,106は炉頂ホッパで、炉頂に設けられ図示さ
れてし・ない原料運搬装置により送り込まれた原料を一
時貯える。
Furnace top hoppers 105 and 106 are provided at the top of the furnace and temporarily store the raw materials sent in by a raw material conveying device (not shown).

107及び108は炉頂ホツパー105及び106の出
口にそれぞれ取付けられているフラツプバルブ、109
及び110はそれぞれ炉頂ホッパ105及び106内の
原料、111は炉頂ホッパよりフラップバルブ107,
108を通じて装入される原料を炉内に散布する旋回シ
ュートで、図示されていない旋回駆動装置によりA軸を
中心とした旋回を行わせる。
Flap valves 107 and 108 are installed at the outlets of the furnace top hoppers 105 and 106, respectively;
and 110 are raw materials in the furnace top hoppers 105 and 106, respectively, and 111 is a flap valve 107,
A rotating chute for distributing the raw material charged through 108 into the furnace is rotated about the A axis by a rotating drive device (not shown).

又図示されていない肘仰角駆動装置によりC点を中心と
した侭仰が行われるようになっている。第2図において
201は備仰角制御装置で、第1図における旋回シュー
ト111をC点を中心として角度○だけ脇仰を行わせる
Further, an elbow elevation angle driving device (not shown) allows the user to move up and down around point C. In FIG. 2, reference numeral 201 denotes an elevation angle control device that causes the swinging chute 111 in FIG.

201Aは図示されていない原料装入制御装置に送出さ
れる始動角度設定完了信号。
201A is a starting angle setting completion signal sent to a raw material charging control device (not shown).

202は旋回制御装置で、A軸を中心として旋回を行わ
せる。
Reference numeral 202 denotes a turning control device for turning around the A axis.

203は傭仰角演算装置で、伸仰角制御装置201へ、
設定散布区域及び設定散布円数に応じ船仰角度を指令す
る。
203 is an elevation angle calculation device, which is connected to the elevation angle control device 201;
Command the ship elevation angle according to the set spray area and set number of spray circles.

203Aは伸仰角度演算装置203から豚仰制御装置2
01へ送られる角度信号、204は演算装置で、伸仰角
度演算装置203が必要とする散布円位置及び定数を演
算する。
203A is the extension angle calculation device 203 to the pig elevation control device 2;
Angle signal 204 is sent to 01, and 204 is a calculation device that calculates the scattering circle position and constant required by the extension angle calculation device 203.

204Aは演算装置204より俺仰角演算装置203へ
送られる散布円位置信号、204Bは同じく定数信号、
205,206,207,208,209,210,2
11,212,213及び214は図示されていない高
炉原料装入制御装置からの信号で、205は演算指令信
号、206は装入される原料の銘柄信号、207は装入
原料の重量、208はストックラインレベル計測値、2
09は散布開始位置、210は散布終了位置、211は
散布円数、212は旋回シュート回転数信号、213は
炉頂ホツパのフラツプバルブ開信号及び214は炉頂ホ
ッパのフラップバルプ閉信号である。
204A is a scatter circle position signal sent from the calculation device 204 to the elevation angle calculation device 203, 204B is a constant signal,
205, 206, 207, 208, 209, 210, 2
11, 212, 213, and 214 are signals from a blast furnace raw material charging control device (not shown), 205 is a calculation command signal, 206 is a brand signal of the raw material to be charged, 207 is the weight of the charged raw material, and 208 is a signal from a blast furnace raw material charging control device (not shown). Stock line level measurement value, 2
09 is a spraying start position, 210 is a spraying end position, 211 is the number of spraying circles, 212 is a rotating chute rotation speed signal, 213 is a flap valve open signal for the furnace top hopper, and 214 is a flap valve close signal for the furnace top hopper.

次に動作について第1図を用いて説明する。高炉に原料
を装入する場合、図示されていない原料袋入制御装置か
らの装入指令信号により、炉頂ホツパ105のフラツプ
バルブ107が開くと炉頂ホツパーより原料が旋回シュ
ート111に流れ込み旋回シュート1 1 1がA軸の
廻りを一定速で旋回し、各傾斜角において一定回転づつ
旋回し、炉の内壁側から中心A軸方向へ同D円状に原料
M2を散布していく。そして次々に同機な方法で原料M
1,M2を散布し積層していく。この場合各原料の炉内
における層の厚さをX均等に散布しなければならない。
この発明はこの炉内における原料の散布を、散布せんと
する炉内水平面上の任意の区間及びその区間内での任意
の散布同0円数に対し、各散布同心円上に於て単位面積
当りの散布量を均等に制御し、平均的にみて層厚を均等
に行うことのできる高炉用旋回シュート制御装置を提供
するものである。
Next, the operation will be explained using FIG. 1. When charging raw materials into a blast furnace, when the flap valve 107 of the furnace top hopper 105 is opened in response to a charging command signal from a raw material bagging control device (not shown), the raw materials flow from the furnace top hopper into the rotating chute 111. 1 1 rotates around the A axis at a constant speed, rotates at a constant rotation rate at each inclination angle, and scatters the raw material M2 in the same D circular shape from the inner wall side of the furnace toward the center A axis direction. Then, one after another, the raw material M is
1, Spray M2 and stack. In this case, the thickness of each raw material layer in the furnace must be uniformly distributed by X.
This invention allows the distribution of raw materials in the furnace to be performed per unit area on each distribution concentric circle for any section on the horizontal plane inside the furnace to be distributed and for any number of 0 yen for distribution within that section. To provide a rotating chute control device for a blast furnace which can uniformly control the amount of sprayed material and make the layer thickness uniform on average.

第1図において高炉半径をD、装入原料を炉内に装入す
る開始時点のストックラインレベル(旋回シュートの俺
仰する中心点Cから炉内既装入原料上端迄の距離)の計
測値を日、旋回シュートの運転時の仰角0、炉内壁側か
ら装入原料の落下点迄の距離をyとする。
In Fig. 1, the radius of the blast furnace is D, and the measured value of the stock line level (distance from the center point C of the rotating chute to the top of the raw material already charged in the furnace) at the start of charging the charging material into the furnace. The angle of elevation during operation of the rotating chute is 0, and the distance from the inner wall of the furnace to the point where the charged material falls is y.

各同じ円に対する旋回シュートの水平旋回数を同一とす
れば、単位面積当りの散布量を一定にする為には、各同
′D円間の面積の減少率を一定にすれば良いことになる
。まずyの点に於ける面積Sを求めると次の式が成立す
る。Sニ打(D一y)2 ……{1}今D
−y=Dゾ了=交 ……■とおく。
If the number of horizontal turns of the rotating chute for each same circle is the same, then in order to keep the amount of spray per unit area constant, it is sufficient to keep the reduction rate of the area between each same 'D circle constant. . First, when calculating the area S at the point y, the following equation holds true. S double stroke (D one y) 2 ...{1} Now D
-y=Dzory=intersection......■.

但しOS×SIであり、×は散布同心円数に対する同心
円の位置を示すファクターで、今例えば4つの同心円に
より炉の内壁側より中心A軸まで散布する場合、Xは0
.25,0.5,0.75,1.0の数値をとる。
However, it is OS x SI, where x is a factor that indicates the position of the concentric circle with respect to the number of concentric circles for spraying. For example, when spraying from the inner wall of the furnace to the center A axis using four concentric circles, X is 0.
.. Take the values 25, 0.5, 0.75, 1.0.

又他の例として5つの同0円により炉半径の中央部より
炉中心部迄散布する場合、×は0.6 0.7,0.8
,0.9.1.0の数値をとる。【21を‘…こ代入す
ると、Sこげび(1−X) ……{3’糊式
を微分すると、叢=げび ‐‐‐・‐・【4
1{41式に於ける右辺は定数であるから、■式のよう
に半径がDゾ1一×(OS×≦1)で変化する場合面積
Sの減少率は一定となることがわかる。
As another example, when spraying from the center of the furnace radius to the center of the furnace using five identical zero circles, × is 0.6 0.7, 0.8
, 0.9.1.0. [Substituting 21 into '...', S Kogebi (1-X) ...{3' Differentiating the glue equation, plexus = Gebi ‐-‐・‐・[4
1 {Since the right side in equation 41 is a constant, it can be seen that when the radius changes by Dzo11×(OS×≦1) as in equation (2), the rate of decrease in area S is constant.

又D−y=Htana(X) ……【5)
(但し0(×)は同心円の位置×に対するシュートの垂
線からの俺仰角)であるから【2}式と【5}式を組合
せ、同D円の位置を×nとすると次の式が得られる。D
ノ1−Xn=Htano(Xn) …・・・【6
’^8(Xn)ニねn一,旨ノでゴ曜 ,..,.
.【7)‘7}式か前記の条件のもとに炉内水平面上の
任意の区間及びその区間内での任意の散布同0円上に於
て単位面積当りの散布量を均等にする為の旋回シュート
の各同心円に於ける仰角を示すものである。
Also, D-y=Htana(X)...[5]
(However, 0(×) is the angle of elevation from the perpendicular line of the chute to the position x of the concentric circle). Therefore, by combining equations [2} and [5} and setting the position of the D circle to xn, the following equation can be obtained. It will be done. D
ノ1-Xn=Htano(Xn) ......[6
'^8 (Xn) Nine n one, Umino de Goyou,. .. 、.
.. [7] Under the formula '7} or the above conditions, in order to equalize the amount of spraying per unit area in any section on the horizontal plane inside the reactor and any spraying within that section. This shows the elevation angle in each concentric circle of the rotating chute.

次に第2図によって以上の結果を用いたこの発明の高炉
用旋回シュートの一実施例の構成を説明する。
Next, the configuration of an embodiment of a rotating chute for a blast furnace of the present invention will be explained using FIG. 2 using the above results.

まず演算装置204に演算指令信号205が与えられる
と、装入される原料の銘柄信号206、装入原料の重量
207、ストックラインレベルの計測値208散布開始
位置209、散布終了位置210、散布円数211及び
旋回シュート回転数信号212を演算装置204は読み
取り、次の演算を行う。
First, when a calculation command signal 205 is given to the calculation device 204, the brand signal 206 of the raw material to be charged, the weight 207 of the raw material to be charged, the measured value of the stock line level 208, the spraying start position 209, the spraying end position 210, and the spraying circle. The calculation device 204 reads the number 211 and the rotating chute rotation speed signal 212, and performs the following calculation.

1 <散布同心円位置×nの演算> 散布開始位置Cs、散布終了位置CT及び散布円数RN
を用い次の式で求まる。
1 <Calculation of spraying concentric circle position x n> Spraying start position Cs, spraying end position CT, and number of spraying circles RN
It can be found using the following formula.

Xn=CS−型土土2 ……■RN2 <
散布円位置ノッチ進めタイミングの計算>原料の銘柄信
号206により該原料の比重WM2炉頂ホッパ−からあ
らかじめ設定されている単位時間当りの装入体積C、装
入原料の重量207の値Wを読みとり次の演算により総
装入時間Toを求める。
Xn=CS-type soil 2...■RN2<
Calculating the timing of advancing the notch in the position of the scattering circle> Based on the raw material brand signal 206, read the preset charging volume C per unit time and the value W of the weight 207 of the charged raw material from the specific gravity WM2 of the raw material from the top hopper. The total charging time To is determined by the following calculation.

T。T.

=C表; 肌【91次で旋回シュートの単位
時間当りの回転数Noとすると、散布円数はRNである
から各散布円当りの旋回シュート回転数NRは次式で求
まる。
= Table C; skin [91] If the number of revolutions per unit time of the rotating chute is No, then the number of spreading circles is RN, so the number of revolutions NR of the rotating chute per each spreading circle is determined by the following formula.

NR=N。NR=N.

X叢 ‐‐‐‐・‐oo故に旋回シュート回転
数信号Nを計数し、各散布円毎にNRの値に達すれば散
布円位置を1ノツチ進める。3<伸仰角度演算装置に対
する定数登記演算>炉の半径Dはあらかじめ設定されて
いるので、ストックラインレベル計測値208の日から
求められる。
X-plexus ----・-oo Therefore, the rotating chute rotational speed signal N is counted, and when the value of NR is reached for each scattering circle, the scattering circle position is advanced by one notch. 3 <Constant Registration Calculation for Extension Angle Calculation Device> Since the radius D of the furnace is set in advance, it can be calculated from the stock line level measurement value 208.

以上の演算の結果である散布同0円位置Xn及び影値‘
側雌度演算装置203へ轍信号として送られる。
The result of the above calculation is the scattering same 0 yen position Xn and the shadow value'
It is sent as a rut signal to the side rut calculation device 203.

伸仰角度演算装置203は第3図に示す位置一角度信号
演算式に従い、前述のXn側&価こよりその離職嵐、炉
頂ホツパーのフラップバルブ開信号213により、各散
布円毎の角度信号を修仰角制御装置203へ発し、炉頂
ホッパーのフラップバルブ閉信号214によりセットさ
れる。
The elongation angle calculation device 203 calculates the angle signal for each scattering circle according to the position-angle signal calculation formula shown in FIG. It is sent to the elevation angle control device 203 and is set by the flap valve closing signal 214 of the furnace top hopper.

伸仰角制御装置201は、炉頂ホッパーのフラップバル
ブ開信号213により起動し、術仰角度演算203の角
度信号に従い仰角を制御し、炉頂ホッパーのフラップバ
レブ閉信号214により先端を最大にもち上げた位置に
リセットされる。
The extension/elevation angle control device 201 is activated by the flap valve open signal 213 of the furnace top hopper, controls the elevation angle according to the angle signal of the surgical elevation angle calculation 203, and raises the tip to the maximum by the flap valve close signal 214 of the furnace top hopper. reset to position.

旋回制御装置202は炉頂ホッパーのフラップバルプ開
信号213により起動し、閉信号214により停止する
。このようにして旋回シュート111は原料を同心円状
に散布してゆき、その原料の単位面積当りの厚さは均一
となる。なお旋回駆動装置の回転数Noは、通常の操業
状態のもとで、最小の装入時間T(M,N)に於ける最
大散布円数に充分均等に散布可能な値で制御されること
が望ましい。
The rotation control device 202 is activated by the top hopper flap valve open signal 213 and stopped by the close signal 214. In this way, the rotating chute 111 spreads the raw material concentrically, and the thickness of the raw material per unit area becomes uniform. Note that the rotational speed No. of the swing drive device must be controlled at a value that enables sufficiently uniform spraying to the maximum number of spray circles at the minimum charging time T (M, N) under normal operating conditions. is desirable.

上述のように、この発明によれば、散布円位置Xnと炉
内蓬Dとシュートの伸仰動作の中心点から炉内の斑装入
原料までの距離日とにより、ホッパ−の排出口に設けた
弁の開いた時点から8(×n)こねn−台ノ下ゴ庵,X
n=CS−n巡な±2をRN演算し、この信号0(×n
)に対応する垂線からの俺仰角シュートを駆動すると同
時に、上記弁の開いた時点からシュートを所定速度で回
転させ、各散布円に対する旋回数を同一にして制御する
ので、検出するのは原料までの距離日だけでよく、シン
プルな制御でもつて、原料を炉内に均一に装入すること
ができる。
As described above, according to the present invention, the distance from the dispersion circle position Xn, the distance inside the furnace D, and the distance from the center point of the elongation movement of the chute to the unevenly charged raw material inside the furnace is determined by the distance from the discharge port of the hopper. From the time the installed valve opens, 8 (× n) kone n - Tainoshita Goan,
n=CS−n times ±2 is calculated by RN, and this signal 0(×n
) At the same time, the chute is rotated at a predetermined speed from the time the valve opens, and the number of revolutions for each scattering circle is the same, so it is possible to detect up to the raw material. With simple control, the raw material can be uniformly charged into the furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はベル・レス・トップ方式の高炉の炉頂部分の断
面図、第2図はこの発明の高炉用旋回シュート制御装置
の一実施例を示す構成図、第3図は旋回シュートの位置
一角度信号演算式図である。 図中101は高炉本体、102,103は高炉内にすで
に装入されている原料、104はストックラインレベル
計測装置、105,106は炉頂ホッパ、107,10
8は炉頂ホッパ出口フラップバルブ、109,110は
炉頂ホッパ内の原料、111は旋回シュート、201は
侭仰制御装置、202は旋回制御装置、203は侭仰角
度演算装置、204は演算装置を示す。 なお、図中同一符号は同一又は相当部分を示す。第1図 第2図 第3図
Fig. 1 is a sectional view of the top of a bell-less top type blast furnace, Fig. 2 is a configuration diagram showing an embodiment of the swing chute control device for a blast furnace of the present invention, and Fig. 3 is the position of the swing chute. FIG. 3 is a diagram of one angle signal calculation formula. In the figure, 101 is the blast furnace main body, 102 and 103 are raw materials already charged in the blast furnace, 104 is a stock line level measuring device, 105 and 106 are furnace top hoppers, and 107 and 10
8 is a furnace top hopper outlet flap valve, 109 and 110 are raw materials in the furnace top hopper, 111 is a rotating chute, 201 is an elevation control device, 202 is a rotation control device, 203 is an elevation angle calculation device, and 204 is a calculation device shows. Note that the same reference numerals in the figures indicate the same or equivalent parts. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 粒状原料を貯溜し溶鉱炉内へ上記粒上原料をその排
出口から排出させるホツパ、このホツパの排出口に設け
られ上記排出口を開閉し上記粒状原料の所望量を排出す
る弁、その一端を中心点にして俯仰し上記中心点を通る
垂線である旋回中心線の回りに旋回し、上記排出口から
の上記粒状原料を上記溶鉱炉の炉口にて上記一端側で受
けその他端側から上記溶鉱炉内に装入するシユート、上
記粒状原料が上記旋回中心線の周囲に複数の同心円状で
、かつ各同心円間の距離が中心から炉壁に向って指数関
数状に変化するように上記シユートにより散布される設
定散布同心円の上記旋回中心線側からn番目の設定散布
同心円位置X_n信号並びに上記溶鉱炉内怪Dと上記中
心点から上記溶鉱炉内の上記原料迄の距離Hから求めた
定数D/H信号を導出する演算装置、この演算装置から
の上記設定散布同心円位置X_n信号と上記定数D/H
信号とにより設定散布円位置X_nに関する信号θ(X
_n)=tan^−^1D/H√(1−X_n)を導出
する俯仰角度演算装置、上記弁の開信号により上記俯仰
角度演算装置からの信号θ(X_n)に対応する上記垂
線からの各俯仰角に上記シユートを駆動し、上記弁の閉
信号により上記シユートを先端を最大にもちあげた位置
にリセツトする俯仰角制御装置、上記弁の開信号により
上記シユートを所定速度で旋回させ上記弁の閉信号によ
り旋回を停止させる旋回制御装置を備えた高炉用旋回シ
ユート制御装置。 但し、 X_n=C_s−(n(C_T−C_s))/
(R_n)R_N:上記粒状原料が上記旋回中心線の周
囲に同心円状に散布される設定 散布同心円数。 C_T:散布終了位置 C_s:散布開始位置。 また、0≦X_n,C_T,C_s≦1
[Scope of Claims] 1. A hopper for storing granular raw material and discharging the granular raw material into a blast furnace from its discharge port, and a hopper provided at the discharge port of the hopper to open and close the discharge port to discharge a desired amount of the granular raw material. The valve is tilted upward with its one end as a center point and rotates around a rotation center line which is a perpendicular line passing through the center point, and receives the granular raw material from the discharge port at the mouth of the blast furnace at the one end side. The chute is charged into the blast furnace from the other end, and the granular raw material is arranged in a plurality of concentric circles around the rotation center line, and the distance between each concentric circle changes exponentially from the center toward the furnace wall. It is determined from the n-th set scattering concentric circle position X_n signal from the turning center line side of the set scattering concentric circle spread by the chute, the distance D in the blast furnace, and the distance H from the center point to the raw material in the blast furnace. A computing device that derives the constant D/H signal, and the above-mentioned set scattering concentric circle position X_n signal from this computing device and the above-mentioned constant D/H.
The signal θ(X
An elevation angle calculation device that derives _n)=tan^−^1D/H√(1−X_n), each of which corresponds to the signal θ(X_n) from the elevation angle calculation device according to the opening signal of the valve. An elevation angle control device that drives the chute at an elevation angle and resets the chute to a position where the tip is raised to the maximum by a closing signal from the valve; A swing chute control device for blast furnaces equipped with a swing control device that stops the swing by a close signal. However, X_n=C_s-(n(C_T-C_s))/
(R_n) R_N: Set number of concentric circles in which the granular raw material is spread concentrically around the center line of rotation. C_T: Spraying end position C_s: Spraying start position. Also, 0≦X_n, C_T, C_s≦1
JP52141888A 1977-11-25 1977-11-25 Swivel chute control device for blast furnace Expired JPS6012403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52141888A JPS6012403B2 (en) 1977-11-25 1977-11-25 Swivel chute control device for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52141888A JPS6012403B2 (en) 1977-11-25 1977-11-25 Swivel chute control device for blast furnace

Publications (2)

Publication Number Publication Date
JPS5428710A JPS5428710A (en) 1979-03-03
JPS6012403B2 true JPS6012403B2 (en) 1985-04-01

Family

ID=15302488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52141888A Expired JPS6012403B2 (en) 1977-11-25 1977-11-25 Swivel chute control device for blast furnace

Country Status (1)

Country Link
JP (1) JPS6012403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150301A (en) * 1988-11-30 1990-06-08 Morisaki Kogei Kk Sawing aid device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104841B2 (en) * 1990-05-22 1994-12-21 川崎製鉄株式会社 Monitoring method for charging raw material into blast furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952704A (en) * 1972-07-05 1974-05-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952704A (en) * 1972-07-05 1974-05-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150301A (en) * 1988-11-30 1990-06-08 Morisaki Kogei Kk Sawing aid device

Also Published As

Publication number Publication date
JPS5428710A (en) 1979-03-03

Similar Documents

Publication Publication Date Title
CA1263231A (en) Charging installation for a shaft furnace
GB1595359A (en) Apparatus for and process of charging a shaft furnace
JPS61266512A (en) Method for controlling charging to shaft furnace
JPS6012403B2 (en) Swivel chute control device for blast furnace
JPS6012402B2 (en) Swivel chute control device for blast furnace
US4949940A (en) Charging arrangement for shaft furnaces, in particular blast furnaces
JPH046761B2 (en)
JPS6043406B2 (en) Control method of raw material control gate
JPS6017005A (en) Charging method of raw material in bell-less type blast furnace
JPS6077909A (en) Process for opening and closing flow rate regulating valve
JPH0225507A (en) Method and apparatus for charging raw material in bell-less type blast furnace
JPH0128086B2 (en)
JPH02305911A (en) Bell-less type raw material charging method for vertical furnace
JP7343052B2 (en) Blast furnace raw material charging method
JPH07179916A (en) Bell-less type furnace top charging device for vertical furnace
JP4680344B2 (en) Raw material charging method to blast furnace
JPS6065961A (en) Opening adjust method for flow control valve
JP2000119711A (en) Bell-less type raw material charging method in blast furnace
JPH0414438Y2 (en)
JPS63100113A (en) Bell-less charging apparatus in blast furnace
JPS6111215Y2 (en)
JPS6339642B2 (en)
JPH0622664Y2 (en) Top hopper-Internal particle size distribution control device
JPS6220805A (en) Method for charging raw material to blast furnace having bell-less type charger
JP2725318B2 (en) Blast furnace raw material charging method