JPH0414438Y2 - - Google Patents

Info

Publication number
JPH0414438Y2
JPH0414438Y2 JP1986120927U JP12092786U JPH0414438Y2 JP H0414438 Y2 JPH0414438 Y2 JP H0414438Y2 JP 1986120927 U JP1986120927 U JP 1986120927U JP 12092786 U JP12092786 U JP 12092786U JP H0414438 Y2 JPH0414438 Y2 JP H0414438Y2
Authority
JP
Japan
Prior art keywords
furnace
chute
distribution
hopper
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986120927U
Other languages
Japanese (ja)
Other versions
JPS6327456U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986120927U priority Critical patent/JPH0414438Y2/ja
Publication of JPS6327456U publication Critical patent/JPS6327456U/ja
Application granted granted Critical
Publication of JPH0414438Y2 publication Critical patent/JPH0414438Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、粒径分布を持つ原料を炉上部から装
入する竪型精錬炉のベルレス装入装置に関する。
[Detailed Description of the Invention] (Industrial Field of Application) The present invention relates to a bellless charging device for a vertical smelting furnace that charges raw materials having a particle size distribution from the upper part of the furnace.

(従来の技術) 向流竪型精錬炉(例えば溶鉱炉)での通気効率
を含めた安定操業の為には適切なガス流分布であ
る事が必要である。
(Prior Art) For stable operation including ventilation efficiency in a countercurrent vertical smelting furnace (for example, a blast furnace), it is necessary to have an appropriate gas flow distribution.

その為、炉内原料分布の制御性及び分布の自由
度を向上させる得る竪型炉の炉頂装入装置をして
ベルレス型が採用されている。
For this reason, a bellless type furnace top charging device has been adopted for a vertical furnace, which improves the controllability and freedom of distribution of raw materials in the furnace.

このベルレス装入装置は第4図に示す如く竪型
炉1の炉頂中心に炉軸周りの円運動と炉軸に対す
る傾斜角運動が同時に可能な分配シユート3を設
置し、その上部に設置されたホツパー6から原料
7を排出し分配シユート3の運動によつて所定の
位置に落下させる装置である。図中2は分配シユ
ート駆動装置、4は集合シユート、5は下部シー
ル弁、8は上部シール弁である。
As shown in Fig. 4, this bellless charging device has a distribution chute 3 installed at the center of the top of a vertical furnace 1 that is capable of simultaneous circular movement around the furnace axis and tilt angle movement with respect to the furnace axis. This device discharges the raw material 7 from the hopper 6 and drops it to a predetermined position by the movement of the distribution chute 3. In the figure, 2 is a distribution chute drive device, 4 is a collection chute, 5 is a lower seal valve, and 8 is an upper seal valve.

しかしながら上記ベルレス方式は、ベル方式に
比し排出速度が小さく分配シユート3の傾動ノツ
チを細かく制御する事により、炉半径方向の制御
精度・自由度は向上するが、第4図のホツパー6
が軸対称位置に設置され、これを炉内装入毎に切
り替えて使用する為、円周方向の落下位置の偏差
が大きくなる。すなわち第5図に於て側ホツパ
ーから排出された原料は図中の実線に示される様
な流下をし、側ホツパーから排出される原料は
破線に示される様な流下線をたどつて炉内分配シ
ユート3上に落下する。
However, the bellless method described above has a lower discharge speed than the bell method, and by finely controlling the tilting notch of the distribution chute 3, the control accuracy and degree of freedom in the furnace radial direction are improved.
are installed in axially symmetrical positions, and are switched and used each time they are inserted into the furnace, resulting in a large deviation in the falling position in the circumferential direction. In other words, in Figure 5, the raw material discharged from the side hopper flows down as shown by the solid line in the figure, and the raw material discharged from the side hopper flows into the furnace following the flow line as shown by the broken line. It falls onto the distribution chute 3.

この結果分配シユート3上を流下する距離は、
排出中ホツパー6と炉内分配シユート3の相対位
置により常に変化する事となる。例えば第4図に
於て、分配シユート3の位置が排出ホツパー6に
対し、ホツパーに正対する場合と反対に位置する
時とで最大lの距離だけ、分配シユート3上を流
下する距離が変化する事となり、結果としてこの
流下距離の差の分分配シユート3先端での速度が
変化し、原料粒子の炉内落下位置が分配シユート
3の旋回とともに円周方向で周期的な偏りをもつ
事となる。
As a result, the distance flowing down the distribution chute 3 is:
During discharge, the relative position between the hopper 6 and the in-furnace distribution chute 3 constantly changes. For example, in FIG. 4, the distance that the water flows down the distribution chute 3 changes by a maximum distance l depending on whether the distribution chute 3 is located directly opposite the discharge hopper 6 or opposite to the discharge hopper. As a result, the velocity at the tip of the distribution chute 3 changes by the difference in the flow distance, and the falling position of the raw material particles in the furnace has a periodic deviation in the circumferential direction as the distribution chute 3 rotates. .

このように、Vpの落下速度で分配シユート3
に落下した原料は、分配シユート3上を転動乃至
滑りながら分配シユート3先端で速度Vpに達し
た後分配シユート3を離れ、自由落下して装入物
表面に到達する。
In this way, the distribution chute 3 with a falling speed of V p
The raw material that has fallen down reaches a velocity V p at the tip of the distribution chute 3 while rolling or sliding on the distribution chute 3, and then leaves the distribution chute 3 and freely falls to reach the surface of the charge.

したがつて、分配シユート3先端での速度は次
式によつて表わされる V2 P=V2 0+2・S・gsim〓(sinθ−μcosθ)
……(1)式 ここで、 Vp:分配シユート落下点での傾斜角θの初期
速度 (m/sec) S:分配シユート上の流下距離 (m) θ:分配シユートの水平に対する傾斜角度
(deg) μ:摩擦係数 (−) g:重力加速度 (9.8m/sec) したがつて円周方向での落下軌跡を安定させる
為には、Sを一定にする必要があり、その為には
集合シユート4先端での水平速度ベクトルを零に
する必要がある。
Therefore, the velocity at the tip of the distribution chute 3 is expressed by the following formula: V 2 P = V 2 0 + 2・S・gsim〓(sinθ−μcosθ)
...Equation (1) Where, V p : Initial velocity of inclination angle θ at distribution chute falling point (m/sec) S : Downfall distance on distribution chute (m) θ : Inclination angle of distribution chute with respect to horizontal
(deg) μ: Friction coefficient (-) g: Gravitational acceleration (9.8m/sec) Therefore, in order to stabilize the falling trajectory in the circumferential direction, it is necessary to keep S constant. It is necessary to make the horizontal velocity vector at the tip of the collective chute 4 zero.

その為、例えば特開昭56−86785号公報に示す
ように集合シユート上で原料を一担貯留しながら
排出する事により水平方向の速度ベクトルを除去
する手段を用いるか、あるいは特開昭56−87613
号公報のように排出口を炉軸に一致させる為、原
料を炉内装入ホツパーと受入れホツパーとに分
け、中心軸を炉軸に合わせて積み重ね水平速度ベ
クトルを零にする等の手段が提案されている。
Therefore, for example, as shown in Japanese Patent Application Laid-Open No. 56-86785, a method is used to remove the horizontal velocity vector by storing and discharging the raw material in one lump on a collection chute, or 87613
In order to align the discharge port with the furnace axis, as in the publication, a method has been proposed, such as dividing the raw material into a furnace-input hopper and a receiving hopper, and stacking them with the central axis aligned with the furnace axis to make the horizontal velocity vector zero. ing.

しかしながら、これらの装置は、設備的に分配
シユート重量及びそれに伴なう旋回駆動力の増加
や装置の全体高さの増加等の問題がある。
However, these devices have problems in terms of equipment, such as an increase in the weight of the distribution chute and the resulting swing driving force, and an increase in the overall height of the device.

更に粒度偏析の問題が充分に解決出来ず、分布
制御上の問題も十分でない等の欠点を有してい
る。
Further, it has drawbacks such as the problem of particle size segregation cannot be solved satisfactorily and the problem of distribution control cannot be solved satisfactorily.

(考案が解決しようとする問題点) 本考案は、対向するホツパーの排出口を炉軸に
可能な限り近付け、これに伴ない対向ホツパーの
形状も非対称偏芯ホツパーとする事により、円周
方向装入物分布の均一化を可能とする装入装置の
提供にある。
(Problem to be solved by the invention) This invention brings the discharge ports of the opposing hoppers as close as possible to the furnace axis, and accordingly, the shape of the opposing hoppers is also made into an asymmetrical eccentric hopper. An object of the present invention is to provide a charging device that enables uniformity of charge distribution.

(問題点を解決するための手段) 以下本考案による竪型精錬炉の炉頂装入装置を
図に基づいて述べる。
(Means for Solving the Problems) The top charging device for a vertical smelting furnace according to the present invention will be described below with reference to the drawings.

第1図は本考案による竪型精錬炉の炉頂装入装
置の断面図を示す。
FIG. 1 shows a sectional view of a top charging device for a vertical smelting furnace according to the present invention.

第1図において竪型炉1の上部には駆動装置2
に連設保持された分配シユート3が旋回自在に設
けてあり、該分配シユート3の上部には集合シユ
ート4が設けてある。
In Fig. 1, a drive device 2 is located at the top of the vertical furnace 1.
A distribution chute 3 is rotatably provided, and a collection chute 4 is provided above the distribution chute 3.

この集合シユート4の上部には原料炉頂ホツパ
ー9とその排出口13が一体に設けてある。
At the top of the collecting chute 4, a raw material furnace top hopper 9 and its discharge port 13 are integrally provided.

原料炉頂ホツパー9は中心軸12に対して非対
称であり、しかも原料炉頂ホツパー9の中心軸1
2と排出口13の中心軸14とを異軸とし、且
つ、排出口13の中心軸14を竪型炉1の炉心に
近接させてある。
The raw material furnace top hopper 9 is asymmetrical with respect to the central axis 12, and the central axis 1 of the raw material furnace top hopper 9 is asymmetrical with respect to the central axis 12.
2 and the central axis 14 of the discharge port 13 are different axes, and the central axis 14 of the discharge port 13 is located close to the core of the vertical furnace 1.

この原料炉頂ホツパー9は炉心を挾んで左右そ
れぞれに設けてあり、前述の受入シユート10の
装入口11がそれぞれの原料炉頂ホツパー9に連
通固設してあり、該受入シユート10上のベルト
コンベア15から原料が供給される。
These raw material furnace top hoppers 9 are provided on the left and right sides of the reactor core, and the charging ports 11 of the aforementioned receiving chute 10 are fixedly connected to the respective raw material furnace top hoppers 9, and the belts on the receiving chute 10 are connected to each other. Raw materials are supplied from a conveyor 15.

(作用) 次に、まず受入シユート10から排出される原
料の主流落下軌跡が、排出口13の中心軸14に
近い位置に配されると、主流軌跡が原料炉頂ホツ
パー9内のパーコレーシヨンによつて細粒比率が
高い為、細粒が優先的に排出される事となり、排
出初期と後期とで著しい粒度分布の変化が現れ
る。その為装入口11は、炉軸に対し排出口13
中心軸14より更に離した位置に配することによ
り解消する。
(Function) Next, first, when the mainstream falling locus of the raw material discharged from the receiving chute 10 is placed close to the central axis 14 of the discharge port 13, the mainstream locus is aligned with the percolation in the raw material furnace top hopper 9. Since the proportion of fine particles is high, fine particles are preferentially discharged, and a significant change in particle size distribution appears between the early and late stages of discharge. Therefore, the charging inlet 11 is located at the outlet 13 relative to the furnace shaft.
This problem can be solved by arranging it at a position further away from the central axis 14.

排出口13は炉軸に近接させる事により、集合
シユート4の上でのパーコレーシヨン、水平速度
ベクトルの増加を抑制し、円周方向の分布を均一
にする。
By placing the discharge port 13 close to the furnace axis, percolation on the collective chute 4 and an increase in the horizontal velocity vector are suppressed, and the distribution in the circumferential direction is made uniform.

(実施例) さらに本考案の効果を実機5分1のモデルで実
験した例で説明する。
(Example) Furthermore, the effects of the present invention will be explained using an example in which an experiment was performed using a model that is one-fifth the size of the actual machine.

第2図は、モデル実験で得られた円周方向の粒
度偏析の結果を示したものである。
FIG. 2 shows the results of grain size segregation in the circumferential direction obtained in a model experiment.

粒度偏析の程度は縦軸に粒度偏析指数として表
わされているが、この指数は以下の様に算出して
いる。すなわち、第2図中の凡例に示される様な
等容積に二分する仕切板を設けたサンプリング箱
を円周方向8ケ所に置き、原料を旋回分配シユー
トで分配した後、仕切板で分けられた、A,B部
分の重量:粒度、A+Bの重量・粒度を測定算出
する。上記の計算を円周8ケ所のサンプリングボ
ツクスについて行ない、そのmax.min.値から粒
度偏析指数を算出する。
The degree of grain size segregation is expressed as a grain size segregation index on the vertical axis, and this index is calculated as follows. That is, as shown in the legend in Figure 2, sampling boxes equipped with partition plates dividing the volume into two equal volumes were placed at eight locations in the circumferential direction, and after the raw materials were distributed by a rotating distribution chute, they were divided by the partition plates. , Weight and particle size of portions A and B, and the weight and particle size of A+B are measured and calculated. The above calculation is performed for eight sampling boxes around the circumference, and the particle size segregation index is calculated from the max.min. values.

すなわち 落下流粒度偏析指数=(du *−dL)max.−(du *
−dL *)min 上層流粒度偏析指数=du *max.−du *min 但し du *=du/dT,dL *=dL/dT ここで du:上層流平均粒径(mm)dL:下層流平均粒径
(mm) dT:(上層+下層)平均粒径(mm) 第2図で縦軸は上記粒度偏析指数を表わし、横
軸は炉軸(二分配シユート旋回軸)〜排出口中心
間の距離を表わしている。すなわち従来型の520
mm(実機2.6m)から距離を小さくするに従つて
粒度偏析指数は低下し、200mm(実機1m)で最小
となつている。
That is, falling flow particle size segregation index = (d u * − d L ) max. − (d u *
−d L * ) min Upper flow particle size segregation index = d u * max.−d u * min However, d u * = d u / d T , d L * = d L / d T where d u : Upper flow average Particle size (mm) d L : Lower flow average particle size (mm) d T : (Upper layer + lower layer) average particle size (mm) In Figure 2, the vertical axis represents the above particle size segregation index, and the horizontal axis represents the furnace axis ( It represents the distance between the two-way distribution chute pivot axis) and the center of the outlet. i.e. conventional 520
The particle size segregation index decreases as the distance decreases from mm (actual machine 2.6 m), reaching its minimum at 200 mm (actual machine 1 m).

第3図は、円周方向の落下流の安定性を表わし
て、前述のサンプル箱のサンプル採取重量と、炉
軸(分配シユート旋回軸)と排出口中心間の距離
との関係で表現したものである。もし落下軌跡が
不安定であればある程、サンプ重量差は拡大する
事となるが、第3図では、炉軸〜排出口間距離が
小さくなると最大と最小との差が少なくなり、
200mmの距離で最小となる関係が得られた。
Figure 3 shows the stability of the falling flow in the circumferential direction, expressed by the relationship between the sample collection weight of the sample box mentioned above and the distance between the furnace axis (distribution chute rotation axis) and the center of the discharge port. It is. If the falling trajectory is unstable, the difference in sump weight will increase, but in Figure 3, as the distance between the furnace axis and the outlet becomes smaller, the difference between the maximum and minimum becomes smaller.
The minimum relationship was obtained at a distance of 200 mm.

(考案の効果) 以上述べた如く本考案による装入装置を用いる
ことにより簡単な構成でもつて装入原料の粒度分
布の均一化を実現できるとともに、粒度分布の均
一化によつて高炉の安定化操業を可能にできる等
極めて優れた装入装置でる。
(Effects of the invention) As described above, by using the charging device according to the invention, it is possible to achieve a uniform particle size distribution of the charging raw material with a simple configuration, and the stabilization of the blast furnace is achieved by making the particle size distribution uniform. This is an extremely excellent charging device that enables operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による竪型精錬炉の炉頂装入装
置の断面図、第2図は円周方向の粒度偏析説明
図、第3図は円周方向落下軌跡の安定性説明図、
第4図は従来型のベルレス装入装置の概略図、第
5図はベルレス装入装置内原料流れの模式図及び
傾斜面での粒子の運動式を表わす説明図である。 1は竪型炉、2は分配シユート駆動装置、3は
分配シユート、4は集合シユート、5は下部シー
ル弁、6は原料炉頂ホツパー、7は原料、8は炉
上シール弁、9は本考案による原料炉頂ホツパ
ー、10は受入シユート、11は装入口、13は
排出口、14は中心軸、15はベルトコンベア
ー。
Fig. 1 is a cross-sectional view of the top charging device of a vertical smelting furnace according to the present invention, Fig. 2 is an illustration of grain size segregation in the circumferential direction, and Fig. 3 is an illustration of the stability of the falling trajectory in the circumferential direction.
FIG. 4 is a schematic diagram of a conventional bellless charging device, and FIG. 5 is an explanatory diagram showing a schematic diagram of the flow of raw material in the bellless charging device and a motion equation of particles on an inclined surface. 1 is a vertical furnace, 2 is a distribution chute drive device, 3 is a distribution chute, 4 is a collection chute, 5 is a lower seal valve, 6 is a raw material furnace top hopper, 7 is a raw material, 8 is a furnace seal valve, 9 is a main A devised material furnace top hopper, 10 is a receiving chute, 11 is a charging port, 13 is a discharge port, 14 is a central shaft, and 15 is a belt conveyor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 竪型精錬炉の炉頂より原料を装入するベルレス
装入装置に於て、炉頂装入ホツパーを非対称偏心
ホツパーにするとともに炉頂装入ホツパーの中心
軸と排出口の中心軸とを異軸とし、且つ、排出口
を炉軸に近接せしめたことを特徴とする竪型精錬
炉の炉頂装入装置。
In a bellless charging device that charges raw materials from the top of a vertical smelting furnace, the top charging hopper is an asymmetric eccentric hopper, and the center axis of the top charging hopper and the center axis of the discharge port are different. A furnace top charging device for a vertical refining furnace, characterized in that the shaft is a shaft and the discharge port is located close to the furnace shaft.
JP1986120927U 1986-08-08 1986-08-08 Expired JPH0414438Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986120927U JPH0414438Y2 (en) 1986-08-08 1986-08-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986120927U JPH0414438Y2 (en) 1986-08-08 1986-08-08

Publications (2)

Publication Number Publication Date
JPS6327456U JPS6327456U (en) 1988-02-23
JPH0414438Y2 true JPH0414438Y2 (en) 1992-03-31

Family

ID=31009709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986120927U Expired JPH0414438Y2 (en) 1986-08-08 1986-08-08

Country Status (1)

Country Link
JP (1) JPH0414438Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413619B2 (en) * 2014-10-22 2018-10-31 新日鐵住金株式会社 Raw material charging device for bellless blast furnace, designing method for raw material charging device for bellless blast furnace, and manufacturing method for raw material charging device for bellless blast furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745251Y2 (en) * 1978-06-15 1982-10-05
JPS57116756U (en) * 1981-01-14 1982-07-20

Also Published As

Publication number Publication date
JPS6327456U (en) 1988-02-23

Similar Documents

Publication Publication Date Title
JP2587919B2 (en) Method and apparatus for loading raw material into blast furnace
CN107614707A (en) To the device of blast furnace charging feedstock
JPH0414438Y2 (en)
GB1454278A (en) Descending bed of sub-divided solid material
JPH046761B2 (en)
JP2921777B2 (en) Correction device for material falling state on distribution chute
JP2725318B2 (en) Blast furnace raw material charging method
JPH035595Y2 (en)
JPH07179916A (en) Bell-less type furnace top charging device for vertical furnace
JPS6138901Y2 (en)
JPH0213919Y2 (en)
SU775129A1 (en) Method of charging blast furnace
JPH0616912Y2 (en) Bellless blast furnace charging device
SU763472A1 (en) Shaft furnace chute of loading device
JP3750148B2 (en) Raw material charging method and apparatus for blast furnace
RU2015169C1 (en) Method of controlling distribution of stocks along mouth periphery in blast furnace
JPS6241955Y2 (en)
JPS6339642B2 (en)
JPH0120632Y2 (en)
JPH04308012A (en) Method and device for charging raw material in blast furnace
JPH02305912A (en) Bell-less type raw material charging method for vertical furnace
JPS6129675Y2 (en)
JPS61272304A (en) Method for distributing raw material to be charged
JPH0128086B2 (en)
JPS595725Y2 (en) Furnace top charging device