JPS6012203A - Manufacture of chevron-shaped material of titanium or titanium alloy - Google Patents

Manufacture of chevron-shaped material of titanium or titanium alloy

Info

Publication number
JPS6012203A
JPS6012203A JP11883283A JP11883283A JPS6012203A JP S6012203 A JPS6012203 A JP S6012203A JP 11883283 A JP11883283 A JP 11883283A JP 11883283 A JP11883283 A JP 11883283A JP S6012203 A JPS6012203 A JP S6012203A
Authority
JP
Japan
Prior art keywords
rolling
shaped
alloy
caliber
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11883283A
Other languages
Japanese (ja)
Inventor
Akisada Saitou
斎藤 昭禎
Tsuyoshi Sanada
真田 強
Shigeru Yamada
茂 山田
Yoshio Kobayashi
良夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP11883283A priority Critical patent/JPS6012203A/en
Publication of JPS6012203A publication Critical patent/JPS6012203A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/09L-sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To manufacture a chevron-shaped material efficiently at a low cost by heating a sheet-shaped blank rolling material of Ti alloy and using in sequence a butterfly-shaped preforming caliber, provided to a roll and having a specific dimensional shape, and a finishing caliber for the purpose of rolling the material continuously under the specific conditions. CONSTITUTION:After heating a sheet-shaped blank rolling material of Ti or Ti alloy; the blank material is continuously rolled under the conditions of a 750- 820 deg. rolling temperature, a >=35% cumulative draft, 0.5-1.0m/sec. rolling speed at a roll peripheral speed, and two passes (one pass for each caliber) the number of rolling passes, by using, in sequence, a butterfly-shaped preforming caliber, provided to a roll and having a dimensional shape of a 90-100 deg. vertex angle theta and a 0.30-0.55 width W/height H, and a finishing caliber. In this way, a chevron-shaped material of Ti or Ti alloy, consisting of Ti or Ti alloy and having stable quality, is obtained at a low cost.

Description

【発明の詳細な説明】 この発明は、アングル部を有するTi及びTi合金山形
材を、軽圧下圧延にて能率良く、かつ低コストで製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing Ti and Ti alloy angle shaped members having angle portions efficiently and at low cost by light reduction rolling.

近年、各種建造物や機械装置類等の構造物に様々な金属
形材の使用がなされるようになってきたが、このような
形材は、従来、必要な圧下量を確保して正確な形状を実
現するために全て角又は丸ビレットが出発素材とされて
おシ、第1図(a) 、 (b)或いは(c)に示され
る如き圧延スケジュールによる高圧下率の多パス圧延を
施されて製造されるのが普通であった。
In recent years, various metal shapes have come to be used in structures such as buildings and machinery. Conventionally, such shapes have been made by ensuring the required amount of reduction and accurate rolling. In order to realize the shape, all square or round billets are used as starting materials and subjected to multi-pass rolling at a high reduction rate according to the rolling schedule shown in Fig. 1(a), (b) or (c). It was common for them to be manufactured using

しかしながら、このような従来法にあっては、■ 素材
の断面積が大きく、従って圧延に際して長い加熱時間を
必要とするので加熱炉が大型に、なシ、エネルギー使用
量や無公害化費用が膨大になる、 ■ 成形罠高圧下を必要とするので、Ti又はTi合金
等のような比較的変形抵抗が高く、変形能の低い材料の
形材成形が極めて困難である、■ 素材の単重が圧延長
さや炉内寸法等で制限され、圧延材1本函ルの切捨て代
が多くなるので、歩留シが悪い、 ■ ロール関係の付帯装置や部品等が多く必要であシ、
孔替えやサイズ替えのための段取りロス時間が多い、 ■ 製品サイズ毎に各スタンドの孔替えやロール替えを
しなけれにならない上、これらの取替え作業が容易では
ないので、圧延設備の実稼働率が極めて低く、また、必
要ロール数も多くなってロール費用が嵩む、 ■ 孔替えやロール替えの際に、各スタンドの孔型形状
不良やセツティング不良等が発生しやすく、製品形状に
バラツキを生じ易い、 ■ スタンド数が多く、しかも作業環境が繁雑となるの
で、操業人員を多く必要とする、■ ノ4ス工程が多い
ので圧延終止温度が低くなシ、従ってそのままでの再結
晶ができないので圧延完了後の熱処理が必要である、 ■ 圧延肌や形状のバラツキを生じ易く、熱処理、矯正
、ショツトブラスト及び酸洗等の精整工程が必要である
、 等の問題があシ、その解決策愛未だ見出せないのが現状
であった。
However, in this conventional method, ■ The cross-sectional area of the material is large, and therefore a long heating time is required during rolling, which requires a large heating furnace, and the energy consumption and pollution-free costs are enormous. ■ Since forming traps require high pressure, it is extremely difficult to form shapes of materials such as Ti or Ti alloys, which have relatively high deformation resistance and low deformability.■ The unit weight of the material is It is limited by the rolling length and furnace internal dimensions, and the cutting allowance for one box of rolled material is large, so the yield is poor. ■ Many roll-related ancillary equipment and parts are required;
There is a lot of setup loss time due to hole changes and size changes.■ It is necessary to change the holes and rolls on each stand for each product size, and these replacement tasks are not easy, so the actual operating rate of the rolling equipment is reduced. In addition, the number of required rolls increases, which increases roll costs. ■ When changing holes or changing rolls, it is easy for each stand to have poor hole shape or poor setting, leading to variations in product shape. ■ The number of stands is large and the working environment is complicated, so a large number of operating personnel are required. ■ The end-of-rolling temperature is low because there are many steps, so recrystallization as it is is not possible. Therefore, heat treatment is required after rolling is completed, ■ Variations in rolled surface and shape are likely to occur, and refining processes such as heat treatment, straightening, shot blasting, and pickling are required. The current situation was that I still couldn't find a plan.

ところで、このような従来の形材製造法における問題点
全認識すれば、形材の製造に際し、その出発素材を板材
とすることによシ直ちに、小さな圧下量でかつ少ないパ
ス回数にて所望の製品が得られるとの錯覚に陥る恐れが
あるが、板状素材から形材を製造しようとしても、素材
肉厚が薄い関係上必要な圧下量を確保することができず
、従って熱間圧延形材最大の特徴であるところの頂角部
まで完全に肉の充満した正しい形状の製品を得ることは
不可能であると一般に考えられており、現に、板状素材
から形材を製造することに関する報告はこれまで皆無で
あったのである。
By the way, if we are aware of all the problems with the conventional shape manufacturing method, it is possible to quickly produce the desired shape with a small reduction amount and a small number of passes by using a plate as the starting material when manufacturing the shape. There is a risk of falling into the illusion that a product can be obtained, but even if you try to manufacture a shape from a plate-shaped material, it will not be possible to secure the necessary reduction amount because the material is thin, and therefore hot-rolled shapes will not be produced. It is generally believed that it is impossible to obtain a product with the correct shape that is completely filled with meat up to the top corner, which is the most distinctive feature of the material. There have been no reports so far.

もつとも、いわゆる冷間ロール成形法により、板材を出
発素材としてアングル材を製造すること扛以前から実施
されているが、この方法では、素材が薄肉材料でしかも
成形性の良好なものに限られる上、実質的な圧下をとも
なわな吟曲は加工が行われるのみでh4ので、やハクア
ングルの頂角部が丸まってしまい、熱rIIJB:延形
材の如き尖鋭な稜角部を有する製品を得ることができな
いもので+ゝ あった。
Of course, the so-called cold roll forming method has been practiced since before the advent of Japan, using plate materials as starting materials, but this method is limited to thin-walled materials with good formability. , Since the bending process that involves substantial reduction is only performed in h4, the apex corner of the square angle is rounded, and heat rIIJB: To obtain a product with a sharp ridge corner like a rolled material. There was something that I couldn't do.

本発明者等は、上述のような各種事項をふまえた上で、
従来の形材製造法における如き諸問題を生ずることなく
、特にTi及びTi合金等の比較的加工性の悪い金属山
形材を高能率で、かつ低コストで製造する方法を見出す
べく、試行錯誤を繰シ返しながら実験・研究を重ねた結
果、 圧延の予備成形孔型、圧延温度、圧下率、及び圧延スピ
ードがそれぞれ特定の範囲内になるように厳密に、かつ
総合的に管理することによって、@ Ti−?Ti合金
等の高変形抵抗・低変形能の材料であっても、例えばホ
ットコイルから必要幅にスリットした条材の如き板状材
を素材とし、かつ仕上孔型を含めて2パス圧延を施すの
みで、頂角部先端にまで材料が充満した正確な形状の山
形材を連続的に得ることができ、しかも、直接焼なまし
現象を利用して成形後の格別な熱処理なしに良好な材質
性状を達成することが可能である、七の思いもかけない
知見を得るに至ったのである。
The present inventors have taken into account the various matters mentioned above, and
Through trial and error, we have tried to find a method for manufacturing metal angle shapes, which are relatively difficult to work with, such as Ti and Ti alloys, with high efficiency and at low cost, without causing the problems of conventional shape manufacturing methods. As a result of repeated experiments and research, by strictly and comprehensively controlling the rolling preforming hole type, rolling temperature, rolling reduction ratio, and rolling speed within specific ranges, @ Ti-? Even for materials with high deformation resistance and low deformability, such as Ti alloys, for example, the raw material is a plate material such as a strip material slit to the required width from a hot coil, and it is rolled in two passes including the finishing hole. By using a chisel, it is possible to continuously obtain accurately shaped chevrons filled with material up to the tips of the apex corners.Moreover, by using the direct annealing phenomenon, it is possible to obtain good material quality without special heat treatment after forming. Seven unexpected discoveries were made that made it possible to achieve the desired properties.

この発明は、上記知見に基づいてなされたものであって
、 板状のTi又はTi合金圧延素材を加、熱した後、ロー
ルに付設した 頂角:90〜100°。
This invention has been made based on the above findings, and after heating a plate-shaped Ti or Ti alloy rolled material, the apex angle attached to the roll is 90 to 100°.

幅/高さ: 0.30〜0.55 の寸法形状を有するバタフライ型の予備成形孔型と、仕
上げ孔型と’tM次用いて、 圧延温度ニア50〜820℃。
Width/Height: 0.30-0.55 Using a butterfly-type preforming hole mold, finishing hole mold and 'tM, rolling temperature near 50-820℃.

累積圧下率:35%以上。Cumulative reduction rate: 35% or more.

圧延速度:ロール周速度で0.5〜] 、Om/ se
e。
Rolling speed: 0.5~], Om/se at roll circumferential speed
e.

ロール/デス回数:2パス(予備成形孔型並びに仕上孔
型のそれぞれ1)母スず つ〕 の条件で連続的に圧延することによって、多くの747
回数を必要とすることなく、正確な形状の、そして再結
晶が十分になされた良好な性状のTi又はTi合全金山
形相得る点に特徴を有するものである。
Number of rolls/deaths: 2 passes (one pass each for the preforming hole mold and the finishing hole mold) By rolling continuously under the following conditions, many 747
This method is characterized in that it is possible to obtain a gold mountain-shaped phase of Ti or Ti alloy with an accurate shape, sufficient recrystallization, and good properties without the need for repeated crystallization.

なお、バタフライ型の予備成形孔型とは、第2図に示さ
れるように、両辺の先端部がわずかにはね上った形状の
溝を有するものを言い、頂角は第2図におけるθで、幅
はWで、そして高さはHでそれぞれ表わされるものであ
る。予備成形孔型として、このようなバタフライ型を使
用することにより安定な作朶性を確保できるのである。
Note that the butterfly-type preformed hole type is one that has a groove with the tips of both sides slightly raised, as shown in Figure 2, and the apex angle is θ in Figure 2. The width is represented by W, and the height is represented by H. By using such a butterfly mold as the preforming hole mold, stable workability can be ensured.

また、仕上孔型としては、当然のことながら、第3図に
使用される如き製品断面と同じ形状の溝を有する型が使
用される。
Further, as a finishing hole mold, a mold having grooves having the same shape as the cross section of the product as shown in FIG. 3 is used, as a matter of course.

次に、この発明の山形材の製造方法において、圧延条件
を前記の如く数値限定した理由を説明する。
Next, the reason why the rolling conditions are numerically limited as described above in the method for manufacturing an angle-shaped material of the present invention will be explained.

(a) 予備成形孔形の形状 予備成形孔型の形状は、製品品質の目安となる頂角部先
端の材料充満tg:(山形アングル部における尖鋭な稜
角形成を左右するもので、ビン角充満性とも呼ばれてい
る)に最も大きな影響を与える要素であるが、その程度
は孔型の頂角、及び高さに対する幅の比(幅/高さ)に
よって#よは左右される。そして、孔型の頂角が90〜
100°。
(a) Shape of the preformed hole The shape of the preformed hole is determined by the material filling at the tip of the apex corner, tg, which is a measure of product quality. This is the factor that has the greatest influence on the height (also called the height), and its degree depends on the apex angle of the hole and the ratio of the width to the height (width/height). And the apex angle of the hole shape is 90 ~
100°.

幅/高さの値が0.30〜0.55の範囲から外れると
必要圧下率が高くなり、板状素材を使用する場合にはピ
ン角の充満した正確な形状の製品kl仔ることができな
くなる。
If the width/height value is outside the range of 0.30 to 0.55, the required reduction rate will increase, and when using a plate material, the product may have an accurate shape with full pin angles. become unable.

(b) 圧延温度 山形材の圧延においては、従来、圧延温度〃工高い程ビ
ン角充満性が良好であると考えられていたが、Ti又は
Ti合金の板状材を出発素材とした場合には、圧延温度
が高過ぎると摩擦係数が小さくなって材料が延伸方向に
延びてしまい、山形材の頂角部先端、即ちピン角に充満
しなくなる。そして、圧延温度を820℃以下とすれば
このような不都合を生ずることがない。一方、圧延温度
が750℃未満になると、やはりビン角方向への材料の
流れが少なくなって該ピン角の充満75ヌ期待できなく
なる上、圧延終了後の直接焼なまし効果≠(期待できな
くなってしまう。
(b) Rolling Temperature In the rolling of angle-shaped materials, it was previously thought that the higher the rolling temperature, the better the bin angle filling property. If the rolling temperature is too high, the friction coefficient becomes small and the material stretches in the stretching direction, so that the tip of the apex corner of the chevron, that is, the pin corner, is no longer filled. If the rolling temperature is set to 820° C. or lower, such inconveniences will not occur. On the other hand, when the rolling temperature is lower than 750°C, the flow of material in the direction of the pin angle decreases, making it impossible to expect the pin angle to be filled with 75 mm, and the direct annealing effect after rolling is no longer expected. I end up.

このようなことから、圧延温度を750〜820℃と定
めた。 “ (c) 圧下率、及びパス回数 累積圧下率性、第4図に示されるように、素材肉厚をt
l、製品肉厚をtlとすると、式%式%() で表わされるものであるが、本発明における他の条件が
WhfC,されていれば、実際に使用されるTi及びT
i合金の圧延山形材の中でも最も薄肉の部類に入る3闘
厚製品の場合で、35%以上の累積圧下率を加えるのみ
でビン角:IRv十分に充満することができ、2パスに
て仕上げることが可能である。もちろん、製品板厚が大
きくなれば高い圧下率を必要とするが、その関係は第5
図(JIS第2種相当純Ti材に関するもの)に示され
る通シである。
For this reason, the rolling temperature was set at 750 to 820°C. (c) Rolling reduction rate and cumulative rolling reduction rate of the number of passes, as shown in Figure 4, the material thickness is
If the other conditions in the present invention are WhfC, then the actual Ti and T
In the case of a 3-thickness product, which is one of the thinnest among the rolled angle shapes of i-alloy, the bin angle: IRv can be sufficiently filled just by applying a cumulative reduction rate of 35% or more, and it can be finished in two passes. Is possible. Of course, as the product thickness increases, a higher rolling reduction rate is required, but this relationship is
This is the passage shown in the figure (related to pure Ti material equivalent to JIS Class 2).

このように累積圧下率が35%未満では、ピン角充満度
の良好な製品を得ることができないので、累積圧下率’
i35%i上と定め、この圧下率は2パス圧延を十分に
可能とするので、ノやス回数を2ノ臂スと定めた。
If the cumulative rolling reduction rate is less than 35%, it is not possible to obtain a product with a good degree of pin angle filling, so the cumulative rolling reduction rate '
The rolling reduction rate was determined to be 35% i or higher, and since this rolling reduction sufficiently enabled two-pass rolling, the number of rolls was determined to be two passes.

(d) 圧延速度 従来の高圧下圧延にてTi及びTi合金山形材を製造す
る場合には、圧延速度はピン角充満度にほとんど影響す
ることがなかったが、板状素材を使用する場合には、軽
圧下成形のため圧延スピードによるビン角充満の差が顕
著に現われる。そして、圧延速度がロール周速度で0.
5 m/ B10 を下回っても、1.0m/8ec 
を上回っても、ピン角の充満した満足できる製品を得る
ことが困難になるので、圧延速度を0.5〜1.0 m
/ 1iec と定めた。
(d) Rolling speed When manufacturing Ti and Ti alloy angle shapes by conventional high-reduction rolling, the rolling speed has almost no effect on the degree of fullness of the pin angle, but when using plate-shaped materials, Because of the light rolling process, the difference in bin angle filling due to rolling speed is noticeable. Then, the rolling speed is 0.
Even if it is less than 5 m/B10, 1.0 m/8ec
Even if the rolling speed exceeds 0.5 to 1.0 m, it will be difficult to obtain a satisfactory product with a full pin angle.
/ 1iec.

第6図は、ロール周速を変えた際の製品厚側のピン角充
満必要圧下率を示した線図(JIS第2樵相当純Ti材
に関するもの)であるが、第6図からも0.5〜1.0
m/See の四−ル周速度で圧延すると、低圧下率で
良好な製品を得られることが明らかである。
Figure 6 is a diagram showing the required rolling reduction rate for filling the pin angle on the product thickness side when changing the roll circumferential speed (regarding pure Ti material equivalent to JIS No. 2 woodcutter). .5-1.0
It is clear that a good product can be obtained at a low rolling reduction by rolling at a four-wheel circumferential speed of m/See.

次いで、この発明を実施例により具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実施例 まず、常法によッテ、ht : 5.96重量%、V:
4.10重量% s Fe : O−11重t%、 o
 : 0.1 aA11 % * Ti及びその低不純
物:残り、から成る成分組成のTi −6A1.−4 
V系合金熱延コイルtm造した。
Example First, by a conventional method, ht: 5.96% by weight, V:
4.10% by weight s Fe: O-11% by weight, o
: 0.1 aA11% * Ti and its low impurities: the remainder, Ti-6A1. -4
A V-based alloy hot-rolled coil TM was manufactured.

次にこれをスリットして、幅: 6511111 g厚
さ:4.6 mの帯材とした後、加熱炉で900℃に加
熱し、引続いて第1表に示す条件にて圧延することによ
シ、同じく第1表に示される肉厚の山形材製品を得た。
Next, this was slit to form a strip with a width of 6511111 g and a thickness of 4.6 m, which was then heated to 900°C in a heating furnace and subsequently rolled under the conditions shown in Table 1. Similarly, thick-walled chevron lumber products shown in Table 1 were obtained.

このようにして得られた製品のビン角充満度を胸ぺた結
果′4S第1表に併記した。
The bottle angle filling degree of the product thus obtained is also shown in Table 1 of Chestpetal Results '4S.

第1表に示される結果からも、孔型形状、圧延温胤、累
積圧下率、及び圧延温度が本発明の条件内であれば、板
状素材からでも正確な形状の山形材製品が得られるのに
対して、いずれかの条件が本発明節■から外れていると
所望形状の製品を実現できないことが明らかである。
From the results shown in Table 1, it is clear that as long as the hole shape, rolling temperature, cumulative reduction rate, and rolling temperature are within the conditions of the present invention, angle-shaped lumber products with accurate shapes can be obtained even from plate-shaped materials. On the other hand, it is clear that if any of the conditions deviate from Clause (3) of the present invention, a product with the desired shape cannot be realized.

なお、この実施例においては、Ti−6Al−4V系の
Ti合金の例しか示されていないけれども、この発明の
方法にお゛いて対象となるTi系材料には格別な制限は
なく、例えば純Ti f始め、現在知られているTi合
金の総てのものは本発明法の圧延において同様な挙動を
示すので、いずれも何の支障もなく本発明の方法に適用
することができるのである。
Although this example shows only an example of a Ti-6Al-4V Ti alloy, there is no particular restriction on the Ti-based material that can be used in the method of the present invention, and for example, pure Ti-based materials can be used. All currently known Ti alloys, including Ti alloys, exhibit similar behavior during rolling according to the present invention, so they can all be applied to the present method without any problems.

上述のように、この発明によれは、 ■ gbを、従来のビレットやプルーム等からスリット
コイル等の板状材に変災することができ、圧延長さを大
幅に長くして切捨材比率を減らし、歩留を格段に向上で
きる、 ■ 製品の品質(外観2寸法、形状、内質等)を安定化
できる、 [相] 設@をライン化することができ、生産性向上と
省力化が図れる、 [株] 熱処理やショットプラスト工程を省略できる、 ■ 圧下量やパス回数が少なくて済むので、設備の簡素
化ができ、難加工相への適用も可能となる、 ■ EAA機ニおいて、ロールセットやガイド調整が容
易となるので、休止ロス特出1を減らすことができる、 等の、工業1優れた効果がもたらされ、品質の安定した
Ti及びTi合金から成る山形劇ヲ安佃1に提供するこ
とが可能となるのでおる。
As mentioned above, according to this invention, it is possible to convert gb from conventional billets, plumes, etc. to plate materials such as slit coils, significantly increasing the rolling length and reducing the cut material ratio. ■ Product quality (external dimensions, shape, internal quality, etc.) can be stabilized, [phase] can be integrated into a production line, improving productivity and saving labor. [Co., Ltd.] It is possible to omit the heat treatment and shot-plast processes. ■ The reduction amount and the number of passes are small, so the equipment can be simplified and it can be applied to difficult-to-process phases. ■ EAA machine This makes it easy to set rolls and adjust guides, which brings about excellent industrial effects such as reducing downtime losses. This makes it possible to provide it to Yasutsuku 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の山形材圧延スケジュールを示すもので
、第1図(a)、第1図(b)及び第1図(c)はそれ
ぞれ別の例の圧延スケジュール、第2図は予備成形用の
バタフライ型孔型の形状を示す模式図、第3図は仕上孔
型の模式図、第4図は本発明方法の山形材圧延スケジュ
ール、第5図は製品厚と必要圧下率との関係を示j線図
、第6図1はロールJ司速と必俊圧下率の関係全示す線
図でおる。 出願人 日本ステンレス株式会社 代理人 富 1)和 夫 #丘〃)1名学2図 禦3図 孝4 胆 二→・・−ノ\−7x” 禦5図 第6図 ・ 製品、17−(mm)
Fig. 1 shows a conventional rolling schedule for angle-shaped materials, Fig. 1(a), Fig. 1(b) and Fig. 1(c) show different rolling schedules, and Fig. 2 shows a preliminary rolling schedule. Fig. 3 is a schematic diagram showing the shape of a butterfly-type hole die for forming, Fig. 4 is a schematic diagram of a finishing hole die, Fig. 4 is a schedule for rolling the chevron material according to the method of the present invention, and Fig. 5 is a diagram showing the relationship between product thickness and required rolling reduction rate. Figure 6 is a diagram showing the relationship between roll J speed and required reduction rate. Applicant Japan Stainless Co., Ltd. Agent Tomi 1) Kazuo #Oka〃) 1 Famous Academics 2 Zuko 3 Zuko 4 Niji→...-ノ\-7x” 禦5Fig.6・Product, 17-( mm)

Claims (1)

【特許請求の範囲】 板状のTi又はTi合金圧延素材金加熱した後、ロール
に付設した 頂角=90〜ioo°。 幅/高さ: 0.30〜0.55 の寸法形状を有するバタフライ型の予備成形孔型と、仕
上は孔型とを順次用いて、。 圧延温度−:750〜820”C。 累積圧下率:35%以上。 圧延速度二ロール周速度で0.5〜1.0 m/ se
e。 o −A/ z+ ス回数: 2 ノfス(各孔型キれ
ぞれ1パス) の条件で連続的に圧延することを特徴とするTi又はT
i合金山形材の製造方法。
[Claims] After heating a plate-shaped Ti or Ti alloy rolled material, the apex angle attached to the roll is 90 to ioo°. Width/Height: A butterfly-type preforming hole mold having dimensions and shape of 0.30 to 0.55 and a finishing hole mold are sequentially used. Rolling temperature: 750-820"C. Cumulative rolling reduction: 35% or more. Rolling speed: 0.5-1.0 m/se at two-roll peripheral speed
e. Ti or T characterized by continuous rolling under the following conditions: o -A/z+ Number of passes: 2 nos (1 pass for each hole)
A method for manufacturing an i-alloy angle shape material.
JP11883283A 1983-06-30 1983-06-30 Manufacture of chevron-shaped material of titanium or titanium alloy Pending JPS6012203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11883283A JPS6012203A (en) 1983-06-30 1983-06-30 Manufacture of chevron-shaped material of titanium or titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11883283A JPS6012203A (en) 1983-06-30 1983-06-30 Manufacture of chevron-shaped material of titanium or titanium alloy

Publications (1)

Publication Number Publication Date
JPS6012203A true JPS6012203A (en) 1985-01-22

Family

ID=14746254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11883283A Pending JPS6012203A (en) 1983-06-30 1983-06-30 Manufacture of chevron-shaped material of titanium or titanium alloy

Country Status (1)

Country Link
JP (1) JPS6012203A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230313A (en) * 1987-03-19 1988-09-26 Nippon Sheet Glass Co Ltd Press molding device
JPS63303043A (en) * 1987-05-30 1988-12-09 Aichi Steel Works Ltd Manufacture of angle bar made of ti alloy
JP2019512603A (en) * 2016-04-22 2019-05-16 アーコニック インコーポレイテッドArconic Inc. An improved method of finishing extruded titanium products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230313A (en) * 1987-03-19 1988-09-26 Nippon Sheet Glass Co Ltd Press molding device
JPS63303043A (en) * 1987-05-30 1988-12-09 Aichi Steel Works Ltd Manufacture of angle bar made of ti alloy
JP2019512603A (en) * 2016-04-22 2019-05-16 アーコニック インコーポレイテッドArconic Inc. An improved method of finishing extruded titanium products

Similar Documents

Publication Publication Date Title
CN110819877B (en) Method for producing ultra-pure ferrite stainless steel for decoration by using steckel mill
CN104451284B (en) The H48 aluminium alloy strips of pop can cover 5182 and its production method
CN103302104A (en) Method for manufacturing hot rolled silicon steel
CN109371345B (en) Preparation process of GH4145 alloy strip
JPH09143650A (en) Production of alpha plus beta titanium alloy material reduced in intraplane anisotropy
CN109628803B (en) Aluminum alloy checkered plate in 4017-H2X state and preparation method thereof
CN108165822A (en) A kind of preparation method of low-intensity, easily molded welded tube TA2 cold rolled titanium bands
CN106282766B (en) The 500MPa pickling steel and its production method of low surface roughness
CN105177423B (en) A kind of big wall thickness X65M Pipeline Steel Plates and its manufacture method
CN109226259A (en) A method of improving hot rolling pipeline steel oxidation iron sheet integrality
CN104971940A (en) Screw rolling method and screw rolling device for titanium rod
CN114433638A (en) Method for controlling transverse unevenness of hot-rolled steel plate with thickness specification of less than or equal to 50mm
CN110153199A (en) A kind of controlled rolling method of large scale rod bar
JPS6012203A (en) Manufacture of chevron-shaped material of titanium or titanium alloy
CN113714299B (en) Rolling mill roller cooling method
JPS6224827A (en) Mandrel for expanding tube
SU1748898A1 (en) Method of making angles
JPS59212102A (en) Manufacture of angle stainless steel
CN116673431B (en) Method for producing bar-to-fastener
JPS62124265A (en) Manufacture of ti alloy plate
JPH0466202A (en) Manufacture of channel bar
JPS5933175B2 (en) Manufacturing method of high-tensile wire rod
JPH06198313A (en) Roll for hot finishing mill
JPS61253354A (en) Manufacture of alpha+beta type titanium alloy sheet
JP2002167619A (en) Ferritic stainless steel wire rod and its manufacturing method