JPS60121098A - Prevention of hydrogen peeling crack in build-up welding of austenitic stainless steel - Google Patents

Prevention of hydrogen peeling crack in build-up welding of austenitic stainless steel

Info

Publication number
JPS60121098A
JPS60121098A JP22846083A JP22846083A JPS60121098A JP S60121098 A JPS60121098 A JP S60121098A JP 22846083 A JP22846083 A JP 22846083A JP 22846083 A JP22846083 A JP 22846083A JP S60121098 A JPS60121098 A JP S60121098A
Authority
JP
Japan
Prior art keywords
welding
hydrogen
stainless steel
austenitic stainless
build
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22846083A
Other languages
Japanese (ja)
Inventor
Junji Tateishi
立石 順治
Shozaburo Nakano
中野 昭三郎
Koichi Yasuda
功一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22846083A priority Critical patent/JPS60121098A/en
Publication of JPS60121098A publication Critical patent/JPS60121098A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn

Abstract

PURPOSE:To prevent exactly a hydrogen peeling crack by forming a build-up weld layer which contains C, Si, Mn, Cr, Ni, Mo, Nb and N respectively in specific wt% and of which the delta ferrite amt. calculated by the prescribed formula is within a prescribed range. CONSTITUTION:The build-up weld layer of an austenitic stainless steel is formed to have the compsn. contg. <=0.1% C, <=1.0% Si, <=3.0% Mn, 17.0-23.0% Cr, 7.0- 15.0% Ni, <=0.4% Mo and <=1.0% Nb and consisting of 0.08-0.20% N. The calculated value of the delta ferrite by the prescribed formula is kept within a -2.0-20.0% range, by which generation of a blowhole is obviated and the resistance to the hydrogen peeling crack of a vessel or the like to be used in a hydrogen atmosphere is prevented and said hydrogen peeling crack is prevented.

Description

【発明の詳細な説明】 技術分野 オーステナイト系ステンレス鋼肉盛り溶接を内面に施し
た炭素鋼又は低合金鋼製圧力容器におけする水素脆性割
れの有利な回避に関してこの明細書で述べる技術内容は
、この柚の肉盛り溶接技法の有利な改良を与えようとす
るものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The technical subject matter described herein relates to the advantageous avoidance of hydrogen embrittlement cracking in carbon steel or low-alloy steel pressure vessels internally coated with austenitic stainless steel build-up welds. It is intended to provide an advantageous improvement of this overlay welding technique.

背景技術 石油精製工業における直接脱硫装置や、ハイドロクラッ
カーなどの反応容器内面には耐食性を考慮し、オーステ
ナイトステンレス鋼が肉盛り溶接される。
Background Art In consideration of corrosion resistance, austenitic stainless steel is overlay-welded to the inner surface of reaction vessels such as direct desulfurization equipment and hydrocrackers in the oil refining industry.

これらの反応容器は、高温高圧水素雰囲気で使用される
ため、その間母材および肉盛り金属中に水素が吸蔵され
る。そこでシャットダウンの冷却時に母材と肉盛り金属
の境界部に水素が濃化することに起因した水素脆性割れ
(以下水素はく少割れという)が発生することがあり、
問題となっている。また今後の石炭液化装置の反応容器
などでは更に厳しい水素雰囲気で使用されるため耐水素
はぐり割れ性の良好な肉盛り溶接方法が望まれている0 従来技術と問題 さて耐水素はく9割れに対しては特開昭54−7174
6号公報にフェライト系ステンレス鋼k 一層目に肉盛
りする方法、また特開昭54−107458号公報に母
材と同じ成分系でNb ’1含有する肉盛り金属を一層
目に溶接する方法、さらに特開昭55−117562号
公報には、マルテンサイト’に含むオーステナイト系ス
テンレス鋼の肉盛り溶接を行う方法がそれぞれ開示され
ている0 しかしこれらの方法は全て2層盛りを基本とし、耐腐食
性の考慮において0r18重量係(以下単にチで示す〕
以上を含むオーステナイト系ステンレス鋼を2層目に肉
盛溶接しなければならず・ここに必要な溶接材、+4費
、溶接施工時間が厖大となる不利が著しい。
Since these reaction vessels are used in a high-temperature, high-pressure hydrogen atmosphere, hydrogen is occluded in the base material and overlay metal. Therefore, hydrogen embrittlement cracking (hereinafter referred to as hydrogen flaking cracking) may occur due to the concentration of hydrogen at the boundary between the base metal and overlay metal during cooling during shutdown.
This has become a problem. In addition, since reaction vessels of future coal liquefaction equipment will be used in even more severe hydrogen atmospheres, a build-up welding method with good resistance to hydrogen cracking is desired. For Japanese Patent Publication No. 54-7174
No. 6 describes a method of overlaying the first layer of ferritic stainless steel k, and JP-A-54-107458 describes a method of welding a build-up metal containing Nb'1 in the first layer with the same composition as the base metal. Furthermore, JP-A-55-117562 discloses a method for overlay welding of austenitic stainless steel containing martensite. However, all of these methods are based on two-layer welding and are corrosion-resistant. Considering gender, 0r18 weight ratio (hereinafter simply indicated by ``chi'')
The austenitic stainless steel containing the above must be overlay welded to the second layer, and there is a significant disadvantage in that the required welding material, +4 cost, and welding time are enormous.

一層盛り溶接で耐水素はくり割れの良好な肉盛り方法が
望まれる所以である0 発想の端緒 発明者らは肉盛り金属の化学成分が耐水素はく9割れ性
に及ぼす影響について検討し、その結果第1層目の肉盛
り金属化学成分のうちでN量が耐水素はぐり割れ性に大
きく影響し内盛シ金属のN°量が0.08%以上を含む
肉盛9溶接を行えば面1水素1はくり割れ性が改善され
ることを見い出した。
This is why a build-up method with good resistance to hydrogen flaking and cracking in single-layer build-up welding is desired.O Origin of the ideaThe inventors studied the influence of the chemical composition of build-up metal on the resistance to hydrogen flaking and cracking. As a result, the amount of N in the chemical components of the build-up metal in the first layer has a large effect on the hydrogen cracking resistance. It has been found that surface 1 hydrogen 1 has improved chipping resistance.

この実験の内容についてまず説明する。First, the contents of this experiment will be explained.

板厚100 mmの2′/4Or−IM。鋼板上((、
表1のごとく肉盛り金属のN量全0.0218〜Q、2
45%の範囲にわたり種々に変えたSUS 808タイ
プのオーステナイト系ステンレス鋼を1層盛り肉盛り溶
接した試験片を作製したO ことに用いた溶接方法は、現在広く使用されている帯状
電極(SUS 809 L 0.4X 7571Lm 
)による水平エレクトロスラグ肉盛り溶接とし、肉盛9
金椙のN量は表2に示したN量の異なるSUS 809
L(WlおよびWZ)と、窒化マンガン鉄および窒化ク
ロムを添加した高GaF2タイグ(GaF、52%。
2'/4Or-IM with a plate thickness of 100 mm. On the steel plate ((,
As shown in Table 1, the total N amount of overlay metal is 0.0218 to Q, 2
Test specimens were prepared by welding a single layer of SUS 808 type austenitic stainless steel with various changes over a range of 45%.The welding method used was a strip electrode (SUS 809 L 0.4X 7571Lm
) horizontal electroslag overlay welding, and overlay 9
The N content of Kanasu is SUS 809 with different N content shown in Table 2.
L (Wl and WZ) and high GaF2 TiG (GaF, 52%) with addition of manganese iron nitride and chromium nitride.

Al2O,l %、Sin、 12%、0a011%)
の焼成型フラックスとの組合せによシ調整した。
Al2O, l%, Sin, 12%, 0a011%)
It was adjusted by combining it with the firing type flux.

表1に示す化学成分になる肉盛p試験片は、695℃×
20時間の熱処理後、407711g X 5Q mm
”X 100 mm’に加工後500℃X 200 k
V/cIn の水素雰囲気のオートクレーブにて24時
間水素チャージを行い、空冷後、72時間たってから超
音波探傷により水素はくり割れの有無を確認した。
The overlay p test piece with the chemical composition shown in Table 1 is 695℃×
After 20 hours of heat treatment, 407711g x 5Q mm
500℃ x 200k after processing to ``X 100mm''
Hydrogen charging was carried out in an autoclave in a hydrogen atmosphere of V/cIn for 24 hours, and after air cooling, the presence or absence of hydrogen cracking was confirmed by ultrasonic flaw detection after 72 hours.

その結果の1例を宍1に掲げたように肉盛り金棺のN量
が0.08%未満では水素はくう割れが発生するのに反
し、O,OS〜0.20 %の範囲では発生しないこと
が判明し、これは母材からの浸炭により生じる粒界−の
炭化物析出がNによって抑制されたためとみられるが、
N量が0.200 %をこえると肉盛金属中にブローホ
ールが発生し、好1しくないことが明らかとなったので
ある。
As shown in Shishi 1, an example of the results shows that hydrogen cracks occur when the amount of N in a metal overlay metal coffin is less than 0.08%, but cracks occur when the amount of N in the overlay metal coffin is less than 0.08%. It was found that this was because N suppressed carbide precipitation at grain boundaries caused by carburization from the base metal.
It has become clear that if the N content exceeds 0.200%, blowholes will occur in the overlay metal, which is not desirable.

発明の目的 上記知見に基き、オーステナイト系ステンレス鋼の肉盛
9溶接に↓るライニング−が施されて水素雰囲気で使用
される圧力容器類における水素はくり割れのとくに有利
な解決を与えることが、この発明の目的である。
OBJECT OF THE INVENTION Based on the above findings, it is an object of the present invention to provide a particularly advantageous solution to hydrogen cracking in pressure vessels used in a hydrogen atmosphere by applying a lining to the overlay welds of austenitic stainless steel. This is the object of this invention.

発明の構成 この発明は、炭素鋼又は低合金鋼を主体に組立てた圧力
容器の内面にオーステナイト系ステンレス鋼を肉盛シ溶
接するに当たり、該肉盛り溶接層1)10:0.1%以
下、Si : 1.0 %U下、Mn : 8.0チ以
下、Qr : 17.O〜28.0%、Nx : 7.
U 〜15.0チ、MO: 0.4%以下オヨびNb 
; 1,0%以下、全含み、かつN : 0.08〜0
.20%を含有する組成に成り)しかも下記式により計
算されたデルタフェライト−iFが−2,0〜20.0
俤となるものとするこ°とから成るオーステナイト系ス
テンレス鋼肉盛シ溶接における水素はぐり割れ防止方法
である。
Structure of the Invention The present invention provides a method for overlay welding austenitic stainless steel onto the inner surface of a pressure vessel mainly made of carbon steel or low alloy steel, in which the overlay weld layer 1) is 10:0.1% or less; Si: 1.0% U or less, Mn: 8.0% or less, Qr: 17. O~28.0%, Nx: 7.
U ~15.0chi, MO: 0.4% or less and Nb
; 1.0% or less, all included, and N: 0.08-0
.. 20%) and delta ferrite-iF calculated by the following formula is -2.0 to 20.0.
This is a method for preventing hydrogen cracking in overlay welding of austenitic stainless steel.

F’=3.2xOr、−2,5XN16q −24,7
ここに1元素配号?併記した係記号にて、その元素の成
分量を重量%であられすものとして、0roq−チ央十
%M。+ 1.5 X SSi+0.5 X%NbN1
eq−%N4+3ux%O+13UX%N+0.5X%
都とする。
F'=3.2xOr, -2,5XN16q -24,7
One element arrangement here? The accompanying symbol indicates the amount of the element in weight%: 0roq - 10%M. + 1.5 X SSi+0.5 X%NbN1
eq-%N4+3ux%O+13UX%N+0.5X%
Make it the capital.

この発明においてオーステナイト系ステンレス鋼肉盛り
溶接層の成分組成を限定する理由は次のとおりである。
The reason for limiting the composition of the austenitic stainless steel build-up weld layer in this invention is as follows.

Ofは・多くなるほど耐食性を劣化させるので0.1係
以下に制限する必要がある。
Since the corrosion resistance deteriorates as the value of Of increases, it is necessary to limit it to a factor of 0.1 or less.

5ifi−は、溶接時の脱酸作用に有効であり、溶接ス
ラグからの還元作用でも混入するが、多過ぎるとシグマ
相脆化を促進させ、耐食性も劣化させるため、1.0係
以下に押える必要がある。
5ifi- is effective in deoxidizing action during welding, and is also mixed in by the reducing action from welding slag, but if it is too large, it promotes sigma phase embrittlement and deteriorates corrosion resistance, so it should be kept below a coefficient of 1.0. There is a need.

Mn量は、溶接時の耐高温割れ性の面で寄与するが、多
過ぎると機械的性質が低下するため8.0係以下に定め
た。
The amount of Mn contributes to the hot cracking resistance during welding, but if it is too large, the mechanical properties deteriorate, so it is set to a coefficient of 8.0 or less.

Cr量は、4食性のため17.0%以上を必要とするが
、28.0%をこえると熱処理を行な゛うとシグマ相脆
化がおこるため28.0%以下にする必要があるO Ni景は、耐食性のため7.0%以上必袂であるが、1
5.0 % ’gこえると完全オーステナイト組織とな
り1溶接時に高温割れをおこしやすくなるため、15.
0%以下にする必要がめる。
The amount of Cr needs to be 17.0% or more because it is tetraphagous, but if it exceeds 28.0%, sigma phase embrittlement will occur if heat treatment is performed, so it needs to be less than 28.0%. For Ni-kei, 7.0% or more is required for corrosion resistance, but 1
If it exceeds 5.0%'g, the structure becomes completely austenitic and hot cracking is likely to occur during one welding, so 15.
It is necessary to keep it below 0%.

Moは鋼板からの希釈により肉盛り金属中に含まれるこ
とがあるが、多過ぎるとシグマ相脆化を促進するため0
.4−以下に定めた。
Mo may be included in the overlay metal by dilution from the steel plate, but if it is too much, it promotes sigma phase embrittlement, so it is
.. 4- As defined below.

Nbは、とくに低炭素の場合には効JP:は少ないlこ
め腐食環境によっては、積極的に添加しないことが多い
。しかし炭素量が多く、かつ腐食環境の厳しい場合には
、Nbを積極的に添加し、炭素全炭化Nbで固定させる
ことがある。この場合のNb童は8×Cチ以上は必要で
あるが、1.0%をこえるとシグマ相脆化を生じるため
、1.0%以下に制限する。
Nb has little effect, especially in the case of low carbon, and is often not actively added depending on the corrosive environment. However, when the amount of carbon is large and the corrosive environment is severe, Nb may be actively added to fix the carbon with fully carbonized Nb. In this case, the Nb content is required to be 8×C or more, but if it exceeds 1.0%, sigma phase embrittlement occurs, so it is limited to 1.0% or less.

Hf4についてはすでにのべlcところに従い0.08
〜0.20係の範囲が必要である。
As for Hf4, it is already 0.08 according to lc.
A range of 0.20 to 0.20 is required.

次にデルタフェライト量は、溶接時の高温割れン:防止
するために必要であって、下記式からめたフェライト量
Fが−2,0%以上あれば高温割れは発生しない、−万
Fが+20.0チをこえるとシグマ相の生成が促進し熱
処理によシ脆化するためF≦H,Oqbにする必要があ
る。
Next, the amount of delta ferrite is necessary to prevent high temperature cracking during welding, and based on the formula below, if the amount of ferrite F is -2.0% or more, high temperature cracking will not occur. If it exceeds .0, the formation of sigma phase will be promoted and the heat treatment will cause embrittlement, so it is necessary to satisfy F≦H, Oqb.

F= 8.2xOr、−2,5XNieq−24,7た
だし Creq ” % Or+%Mo+1.5X%Si+0
.5X%NbNi、q=JNi+80X%0+80X%
N+0.5X%M。
F= 8.2xOr, -2,5XNieq-24,7 However, Creq "% Or+%Mo+1.5X%Si+0
.. 5X%NbNi, q=JNi+80X%0+80X%
N+0.5X%M.

とし、元素記号を併記した係記号は、核元素の成分量を
指すものとする。
The symbol with the element symbol indicates the amount of the nuclear element.

さて炭素鋼又は低合金鋼とオーステナイト系ス°テンレ
ス鋼のような異種金属の肉盛り溶接では、溶接方法や溶
接条件の如何によって母材の希釈率が変υ、肉盛り金属
の化学成分も影響されるが、とくに帯状電極を用いた上
掲エレクトロスラグ溶i (ESW)のほか、同様の帯
状電極を用いるサブマージアーク溶接(SAW)法や、
被着アーク溶接(SMAW )法において溶接条件にち
がいはあっても母材上への肉盛シ金属の化学成分および
デルタフェライト量がこれらにつきすでに掲げた範囲内
であれば耐水素はくシ割れ性に効果がみられた。
Now, in overlay welding of dissimilar metals such as carbon steel or low alloy steel and austenitic stainless steel, the dilution ratio of the base metal varies depending on the welding method and welding conditions, and the chemical composition of the overlay metal also has an effect. In particular, in addition to the above-mentioned electroslag welding (ESW) method using a strip-shaped electrode, submerged arc welding (SAW) method using a similar strip-shaped electrode,
In the deposited arc welding (SMAW) method, even if the welding conditions are different, as long as the chemical composition of the metal deposited on the base metal and the amount of delta ferrite are within the ranges listed above, the hydrogen foil will not crack. Effects were seen on sex.

なおこの発明でとくに重要なNの添加方法としては、帯
状電極や溶接用ワイヤのN量全多くすることまたこれに
加えて、組合せフラックスや被覆剤中に窒化物を添加す
ることによって、肉盛り金属のN量を調整しても効果は
同じであった。
In addition, the method of adding N that is particularly important in this invention is to increase the total amount of N in the strip electrode and welding wire, and in addition to this, by adding nitrides to the combination flux and coating material, Even if the amount of N in the metal was adjusted, the effect was the same.

添加する窒化物としては、さきに述べfC,重化マンガ
ン鉄や窒化クロムの他に、窒化けい素、石灰窒素など一
肉盛り金属の化学成分を満足できる窒化物であれば全て
使用できる。
As for the nitride to be added, in addition to fC, heavy manganese iron, and chromium nitride mentioned above, any nitride that can satisfy the chemical composition of the one-layer metal, such as silicon nitride and lime nitrogen, can be used.

実 施 例 4皮厚ILIOmmのASTM A387 Gr 22
 C1gの2/4Cr−IM。銅板に表2の化学成分の
肉盛り金属を一層盛りおよび2層盛りにて肉&9溶接し
た0溶接方法は、帯状電極(0,4X 15(lL?i
 ) k用いたエレクトロスラグ肉盛り溶接(ESW)
、また帯状電極(0,4x75mm)を用いたサブマー
ジアーク肉盛り溶接(SAW )および被覆アーク溶接
(SMAW)の8種類を適用しfc。
Example 4 ASTM A387 Gr 22 with skin thickness ILIOmm
2/4 Cr-IM of C1g. The welding method is one-layer and two-layer welding of overlay metal with the chemical composition shown in Table 2 on a copper plate.
) electroslag overlay welding (ESW) using
In addition, eight types of submerged arc overlay welding (SAW) and shielded arc welding (SMAW) using a strip electrode (0.4 x 75 mm) were applied.

なおESWおよびSAWに用いた帯状電極は表2におい
てすでに掲げたWB〜W8を用いた。
Note that the strip electrodes WB to W8 listed in Table 2 were used for ESW and SAW.

次にb;swの7ラツクスはOaF 55 % Sl!
20819%、5in−1% 、 Oao 18 % 
k主成分とする原料后・溶製、粉砕し、2UX150メ
ツシユに整粒した溶融型フラックスと、OaF、50%
、AJ20825飴、S1010%、M、010%が主
成分で窒化クロム粉を4%添加して水ガラスで造粒、焼
成し、11X200メツシユに整粒した焼成型フラック
スの2種類を用いた。
Next, b; sw 7 lux is OaF 55% Sl!
20819%, 5in-1%, Oao 18%
After the raw material as the main component, melted flux, pulverized and sized into 2UX150 mesh, OaF, 50%
, AJ20825 candy, 10% S, 10% M, 010% as main components, 4% chromium nitride powder added, granulated with water glass, fired, and sized to a 11x200 mesh were used.

またSAW用のフラックスはMy080%、aaO20
係、AI!20820%、sio、20%、GaF25
 % −(r主成分とする焼成型フラックスを用いた。
Also, the flux for SAW is My080%, aaO20
Person in charge, AI! 20820%, sio, 20%, GaF25
% −(r) A sintered flux was used as the main component.

帯状電極を用いた肉盛り溶接の溶接条件は、ESW S
AWともに溶接電流1200〜2500 A X電圧2
5〜80V溶接速度15〜28 cn1/分で行った。
The welding conditions for build-up welding using a strip electrode are ESW S
Welding current 1200 to 2500 for both AW and A X voltage 2
The welding was carried out at a welding speed of 15 to 28 cn1/min at 5 to 80V.

被覆アーク溶接は、石灰窒素を5係添加したライム系の
JISD 809L、 4.0mmφ(71)ステ7レ
ス鋼被覆アーク溶接棒を用い、溶接電流150Aで溶接
を行った。
Covered arc welding was performed at a welding current of 150 A using a lime-based JISD 809L, 4.0 mmφ (71) stainless steel coated arc welding rod with 5 parts of lime nitrogen added.

上記各肉盛り溶接施工層の鋼板は、何れも695℃X2
0時間の熱処理後、水素はくり割れ試験片・ASME 
Sea IXによる側曲げ試験片およびJIS G。
The steel plates for each build-up welding layer above are 695℃
After 0 hours of heat treatment, hydrogen cracking test piece/ASME
Side bending test piece according to Sea IX and JIS G.

57りにもとすく硫酸−硫酸銅腐食試験片を採取し、各
種試験に供した。
A sulfuric acid-copper sulfate corrosion test piece was taken from the 57th grade and subjected to various tests.

試験片の一般形状を第1図に示し、1は肉盛り金属、2
は母材(A 887 Gr22 ) テ;6 ル。
The general shape of the test piece is shown in Figure 1, where 1 is built-up metal, 2
is the base material (A 887 Gr22).

なお水素はくり割れ試験は500℃・200 k4/l
ynの水素雰囲気のオートクレーブ内で24時間水素チ
ャージを行ない、空冷後超音波探傷法によりはくり割れ
の有無について確認を行ったO 各試験片の肉盛シ金属の化学成分とデルタフェライト量
Fを表8に掲げ、各試験の結果を表4に示す〇 笑施例Bl−B6では溶接方法、肉盛り層数に関係なく
、水素はぐり割れはなく、側曲は試験結果、腐食試験結
果ならびに溶接性ともに良好であって、健全な肉盛り金
属が得らねだ。
The hydrogen cracking test was conducted at 500°C and 200 k4/l.
Hydrogen was charged in an autoclave with hydrogen atmosphere for 24 hours, and after cooling in air, the presence or absence of peeling and cracking was confirmed by ultrasonic flaw detection. The results of each test are listed in Table 8, and the results of each test are shown in Table 4. In Example Bl-B6, there was no hydrogen cracking regardless of the welding method or the number of build-up layers, and the side bending was determined by the test results, corrosion test results, and welding. Both properties are good and a sound overlay metal can be obtained.

これに対し比較例のB7はN創不足で水素はぐり割れ金
生じ、B8はN i過多でブローホールができ、またB
9はNi、Or不足のため、粒界腐食割れ′fr:起し
、さらにBIOは、Qr過多のため側曲げ試験で開口割
れを来し、B11は第1層のテルタラエライ)F値が低
すぎて1高温割i″L全生じた。
On the other hand, in the comparative example B7, hydrogen cracking occurred due to lack of N holes, and in B8, blowholes were formed due to excessive Ni.
9 caused intergranular corrosion cracking due to lack of Ni and Or, BIO caused open cracking in the side bending test due to excessive Qr, and B11 had too low F value of the first layer. At 1 high temperature, a total of i″L was generated.

発明の効果 この発明によればオーステナイト系ステンレス鋼肉盛り
溶接によるライニングの必要性能に何らの問題もなく、
水素はくシ割れの的確な防止が実現される0
Effects of the Invention According to this invention, there is no problem with the required performance of the lining made by overlay welding of austenitic stainless steel.
Accurate prevention of hydrogen foil cracking is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験片の外観図である。 FIG. 1 is an external view of the test piece.

Claims (1)

【特許請求の範囲】 1 炭素鋼又は低合金鋼を生体に組立てた圧力容器の内
面にオーステナイト系ステンレス鋼を肉盛り溶接するに
当たシ、該肉盛p溶接層が c:o、’を車量%以下 S土:1.0重量%以下 Mn:8.o重量係以下 Or : 17.0〜28.0重量係 Niニア、o〜15.0重量係 MO: 0.4重量qb以下および Nb : 1.0重量%以下 全含みかつN : 0.08〜0.20重量%を含有す
る組成に成り、しかも下記式によシ計算されたデルタフ
ェライトi−Fが−2,0〜2U、O%となるものとす
ることを特徴とするオーステナイト系ステンレス鋼肉盛
り溶接における水素はくり割れ防止方法 記 F −s、z−×aroq−2,5X N1oq−24
,7ここに、元素記号を併記した%記号にて、その元素
の成分量を重量%であられすものとして、 Or e q−%Qr十%MO+1.5X%Si+o、
5x%NbNi、−%Ni十aox%O+80X%N+
0.5X%Mnとする。
[Claims] 1. When overlaying austenitic stainless steel on the inner surface of a pressure vessel made of carbon steel or low alloy steel assembled into a living body, the overlay p welding layer has c:o,'. Vehicle weight % or less S soil: 1.0 weight % or less Mn: 8. o weight ratio or less Or: 17.0 to 28.0 weight ratio Ni near, o to 15.0 weight ratio MO: 0.4 weight qb or less and Nb: 1.0 weight% or less, all included and N: 0.08 An austenitic stainless steel having a composition containing ~0.20% by weight and a delta ferrite i-F calculated by the following formula of -2.0 to 2U, O%. Method for preventing hydrogen cracking in steel overlay welding F-s, z-xaroq-2, 5X N1oq-24
,7 Here, the component amount of the element is expressed in weight% using the % symbol with the element symbol, Or e q-% Qr 10% MO + 1.5X% Si + o,
5x%NbNi, -%Ni+aox%O+80X%N+
0.5X%Mn.
JP22846083A 1983-12-05 1983-12-05 Prevention of hydrogen peeling crack in build-up welding of austenitic stainless steel Pending JPS60121098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22846083A JPS60121098A (en) 1983-12-05 1983-12-05 Prevention of hydrogen peeling crack in build-up welding of austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22846083A JPS60121098A (en) 1983-12-05 1983-12-05 Prevention of hydrogen peeling crack in build-up welding of austenitic stainless steel

Publications (1)

Publication Number Publication Date
JPS60121098A true JPS60121098A (en) 1985-06-28

Family

ID=16876830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22846083A Pending JPS60121098A (en) 1983-12-05 1983-12-05 Prevention of hydrogen peeling crack in build-up welding of austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPS60121098A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247458A (en) * 1985-08-26 1987-03-02 Kobe Steel Ltd Pressure vessel having resistance to hydrogen attack and used in hydrogen atmosphere at high temperature and pressure
JP2004324800A (en) * 2003-04-25 2004-11-18 Nippon Steel Corp Tank for high pressure hydrogen gas, and piping
CN103154291A (en) * 2010-09-29 2013-06-12 新日铁住金不锈钢株式会社 Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
EP2692887A1 (en) * 2011-03-31 2014-02-05 Kubota Corporation Cast austenitic stainless steel
EP2737972A1 (en) * 2012-11-28 2014-06-04 Sandvik Intellectual Property AB Welding material for weld cladding
CN104526167A (en) * 2014-11-04 2015-04-22 南方增材科技有限公司 Electric smelting forming method of hydrogenation reactor barrel
WO2015190574A1 (en) * 2014-06-11 2015-12-17 株式会社神戸製鋼所 Buildup welded body
WO2015190534A1 (en) * 2014-06-11 2015-12-17 株式会社神戸製鋼所 Buildup welded metal and machine structure
WO2016143509A1 (en) * 2015-03-10 2016-09-15 株式会社神戸製鋼所 Build-up welding metal and mechanical structure
CN111266713A (en) * 2020-03-09 2020-06-12 武汉一冶钢结构有限责任公司 Deposited metal material for ultralow-temperature 304L austenitic stainless steel welding and preparation method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247458A (en) * 1985-08-26 1987-03-02 Kobe Steel Ltd Pressure vessel having resistance to hydrogen attack and used in hydrogen atmosphere at high temperature and pressure
JP2004324800A (en) * 2003-04-25 2004-11-18 Nippon Steel Corp Tank for high pressure hydrogen gas, and piping
JP4700263B2 (en) * 2003-04-25 2011-06-15 新日本製鐵株式会社 High-pressure hydrogen gas tank and piping
CN103154291A (en) * 2010-09-29 2013-06-12 新日铁住金不锈钢株式会社 Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
EP2692887A1 (en) * 2011-03-31 2014-02-05 Kubota Corporation Cast austenitic stainless steel
EP2692887A4 (en) * 2011-03-31 2015-01-21 Kubota Kk Cast austenitic stainless steel
EP2737972A1 (en) * 2012-11-28 2014-06-04 Sandvik Intellectual Property AB Welding material for weld cladding
WO2014083009A1 (en) * 2012-11-28 2014-06-05 Sandvik Intellectual Property Ab Welding material for weld cladding
US10807203B2 (en) 2012-11-28 2020-10-20 Esab Sweden Ab Welding material for weld cladding
WO2015190534A1 (en) * 2014-06-11 2015-12-17 株式会社神戸製鋼所 Buildup welded metal and machine structure
WO2015190574A1 (en) * 2014-06-11 2015-12-17 株式会社神戸製鋼所 Buildup welded body
JP2016000411A (en) * 2014-06-11 2016-01-07 株式会社神戸製鋼所 Padding body
JP2016000412A (en) * 2014-06-11 2016-01-07 株式会社神戸製鋼所 Padding metal, and mechanical structure
CN104526167B (en) * 2014-11-04 2016-08-17 南方增材科技有限公司 Hydrogenation reactor cylinder electric smelting manufacturing process
CN104526167A (en) * 2014-11-04 2015-04-22 南方增材科技有限公司 Electric smelting forming method of hydrogenation reactor barrel
WO2016143509A1 (en) * 2015-03-10 2016-09-15 株式会社神戸製鋼所 Build-up welding metal and mechanical structure
JP2016165750A (en) * 2015-03-10 2016-09-15 株式会社神戸製鋼所 Build-up welding metal and machine structure
CN107405732A (en) * 2015-03-10 2017-11-28 株式会社神户制钢所 Deposited metal and mechanical structure thing
CN111266713A (en) * 2020-03-09 2020-06-12 武汉一冶钢结构有限责任公司 Deposited metal material for ultralow-temperature 304L austenitic stainless steel welding and preparation method
CN111266713B (en) * 2020-03-09 2021-12-03 武汉一冶钢结构有限责任公司 Deposited metal material for ultralow-temperature 304L austenitic stainless steel welding and preparation method

Similar Documents

Publication Publication Date Title
Castro et al. Welding metallurgy of stainless and heat-resisting steels
KR101210113B1 (en) Carburization-resistant metal material
US5183198A (en) Method of producing clad steel plate having good low-temperature toughness
JPH0244896B2 (en)
US3110798A (en) Submerged arc weld metal composition
JPS60121098A (en) Prevention of hydrogen peeling crack in build-up welding of austenitic stainless steel
WO1984000122A1 (en) Build-up welding method
JPS60204870A (en) Corrosion resistant austenite alloy
JPH02182378A (en) Submerged arc welding procedure for high-strength cr-mo steel
JP7423395B2 (en) Manufacturing method of austenitic stainless steel welded joints
JPH02182377A (en) Method for gas shield arc welding high-strength cr-mo steel
JPS6317038B2 (en)
JPS61115674A (en) Single layer build up welding of austenitic stainless steel excellent in peeling crack resistance
JPH0635615B2 (en) Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds
JPH0231631B2 (en)
JPS592740B2 (en) Chemical containers with excellent corrosion resistance and high temperature resistance against embrittlement during use
Kelly Stainless steels
JPS63268592A (en) Ferrite welding material
JPS61123496A (en) Pressure vessel excelient in corrosion resistance and peeling crack resistance due to hydrogen
JP2642835B2 (en) Corrosion protection method for seawater-resistant steel welds
JP3466303B2 (en) Nickel base alloy for overlay welding of reactor pressure vessel and reactor pressure vessel using the same
KP et al. A Review on Microstructure Development and Mechanical Properties of Fusion Welded Duplex Stainless Steels
JPS62114795A (en) Steel wire for welding cr-mo low alloy heat resisting steel
JPS61147990A (en) Submerged arc welding wire for high tension steel
JPS63255341A (en) Highly corrosion resistant steel plate for welding construction excellent in salt damage resistance