JPS592740B2 - Chemical containers with excellent corrosion resistance and high temperature resistance against embrittlement during use - Google Patents

Chemical containers with excellent corrosion resistance and high temperature resistance against embrittlement during use

Info

Publication number
JPS592740B2
JPS592740B2 JP55002906A JP290680A JPS592740B2 JP S592740 B2 JPS592740 B2 JP S592740B2 JP 55002906 A JP55002906 A JP 55002906A JP 290680 A JP290680 A JP 290680A JP S592740 B2 JPS592740 B2 JP S592740B2
Authority
JP
Japan
Prior art keywords
less
chemical
stainless steel
corrosion resistance
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55002906A
Other languages
Japanese (ja)
Other versions
JPS56102561A (en
Inventor
基 戸倉
等 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55002906A priority Critical patent/JPS592740B2/en
Publication of JPS56102561A publication Critical patent/JPS56102561A/en
Publication of JPS592740B2 publication Critical patent/JPS592740B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は金属組成的に2属以上の多層構造を有する化学
容器に関するものであつて、特に高温高圧の水および水
素雰囲気、また、塩素イオンやボ30リチオン酸の発生
するような環境においても脆化が少なく、かつ、応力腐
食割れを起こし難い内層材を有する化学容器に係るもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a chemical container having a multi-layered structure of two or more metal groups, and particularly relates to a chemical container having a multilayered structure of two or more metal groups, and is particularly suitable for use in high-temperature, high-pressure water and hydrogen atmospheres, as well as the generation of chloride ions and boron-30 lithioic acid. The present invention relates to a chemical container having an inner layer material that is less susceptible to embrittlement and less likely to cause stress corrosion cracking even in environments where the chemical containers are exposed to harsh conditions.

一般に、炭素鋼および低合金鋼などで製造される種々の
圧力容器や化学反応容器の内面は耐食性35の観点から
主としてオーステナイト係のステンレス鋼によるライニ
ングがなされている。
Generally, the inner surfaces of various pressure vessels and chemical reaction vessels manufactured from carbon steel, low alloy steel, etc. are lined with mainly austenitic stainless steel from the viewpoint of corrosion resistance.

これらのクラッド鋼による圧力容器において、クラッド
部は高温高圧水および水素による脆化(主として延性、
靭性の低下)と熱応力および腐食環境との複合によつて
生じる応力腐食割れの危険に曝されるため、より一層信
頼性の高い内層材の出現が望まれている。この問題点を
解決すべく、本発明者らはステンレス鋼内層材の合金成
分系について検討を行つた。
In pressure vessels made of these clad steels, the cladding becomes embrittled (mainly ductile,
Because of the risk of stress corrosion cracking caused by a combination of thermal stress and a corrosive environment (reduced toughness), there is a desire for an even more reliable inner layer material. In order to solve this problem, the present inventors investigated the alloy composition system of the stainless steel inner layer material.

その際、容器の製造は操作条件が苛酷になるにつれ外層
材の板厚が厚くなり、クラツド法としては肉盛溶接法が
主として用いられるため、クラツド鋼の製作工程上、ク
ラツド部について固溶化熱処理が自由に行い得ないばか
りでなく、600〜750℃で20〜50時間に及ぶ炭
素鋼または低合金鋼側の応力除去熱処理の影響を受け炭
化物の析出やσ相の生成が促進される。また、内層材と
外層材との境界部においては、炭素鋼または低合金鋼側
からステンレス鋼側への炭素の拡散が行われ硬化層がで
きるなど、これらは耐食性および機械的性質にとつて好
ましくないことを念頭においたまず、一般のオーステナ
イト系ステンレス鋼の溶接に対しては熱間割れを防止す
るため数%のフエライト量を含む組織とすることが通常
であるが本発明者らはMnおよびNを適当に調整するこ
とにより完全なオーステナイト組織においても熱間割れ
に対して鈍感になることを見い出した。
At this time, as the operating conditions become more severe in container manufacturing, the thickness of the outer layer material becomes thicker, and overlay welding is mainly used as the cladding method. Not only is this not possible freely, but also the stress relief heat treatment on the carbon steel or low alloy steel side at 600 to 750°C for 20 to 50 hours promotes the precipitation of carbides and the formation of the σ phase. In addition, at the boundary between the inner layer material and the outer layer material, carbon diffuses from the carbon steel or low alloy steel side to the stainless steel side, forming a hardened layer, which is favorable for corrosion resistance and mechanical properties. First of all, when welding general austenitic stainless steel, it is normal to create a structure that contains a few percent of ferrite to prevent hot cracking, but the present inventors have developed a structure that contains Mn and It has been found that by appropriately adjusting N, even a completely austenitic structure can become insensitive to hot cracking.

したがつて、容器製造時に使用するクラツド部材質をM
nおよびNを高めた完全オーステナイト系ステンレス鋼
にすることにより、まず、クラツド部となる素材の圧延
性がよくなり素材の製造を容易とした。また、容器製造
時に行われる応力除去熱処理に際してフエライト相を含
まないことからσ相による脆化の心配がなく、かつまた
、フエライト相を含まない内層材でなることから容器稼
動中における水素吸収によるクラツド部の延性低下に対
しても好ましい結果が得られた。しかし、完全オーステ
ナイト系ステンレス鋼では粒界腐食について問題がある
。これに対してBを添加することによりフエライト相を
有するオーステナイト系ステンレス鋼の場合より耐粒界
腐食性を改善することができた。本発明は上記知見に基
づいてなされたものであつて、その要旨とするところは
、炭素鋼または低合金鋼を外層材とし、オーステナイト
系ステンレス鋼を内層材とする金属組織的に2層以上の
多層構造を有する化学容器において該ステンレス鋼部の
化学成分が重量%でMnが3〜8%,Nが0.08〜0
.4%,Bが0.002〜0.08%であり、さらにC
O.l5O!)以丁、Sil,O%以下、Ni8,O〜
28.0%,Crl8.O〜28.0%を含み、又はさ
らにMO4.O%以下、又はこれにさらにNbl.O%
以下を含み、残部は鉄および不可避不純物からなり、か
つ、その化学成分のNieq=Ni+30C+0.5M
n+30NCreq=Cr+1.5Si+0.5Nb−
1−MOから計算した値がデイロングの状態図において
完全オーステナイト域にある組成を有することを特徴と
する耐食、耐高温使用中脆化特性に優れた化学容器にあ
る〇以下に本発明を詳細に説明する。
Therefore, the cladding material used during container manufacturing is M
By using fully austenitic stainless steel with increased n and nitrogen content, firstly, the rollability of the material that will become the cladding portion is improved, making it easier to manufacture the material. In addition, since it does not contain a ferrite phase during the stress relief heat treatment performed during container manufacturing, there is no risk of embrittlement due to the sigma phase, and since the inner layer material does not contain a ferrite phase, it will not cause cracking due to hydrogen absorption during container operation. Favorable results were also obtained regarding the reduction in ductility of the parts. However, fully austenitic stainless steel has problems with intergranular corrosion. On the other hand, by adding B, the intergranular corrosion resistance could be improved compared to the case of austenitic stainless steel having a ferrite phase. The present invention has been made based on the above findings, and the gist thereof is to have two or more metallographic layers of carbon steel or low alloy steel as the outer layer material and austenitic stainless steel as the inner layer material. In a chemical container having a multilayer structure, the chemical components of the stainless steel part are 3 to 8% Mn and 0.08 to 0% N by weight.
.. 4%, B is 0.002-0.08%, and C
O. l5O! ) It, Sil, O% or less, Ni8, O~
28.0%, Crl8. O~28.0%, or further contains MO4. 0% or less, or further Nbl. O%
Contains the following, with the remainder consisting of iron and unavoidable impurities, and its chemical components Nieq=Ni+30C+0.5M
n+30NCreq=Cr+1.5Si+0.5Nb-
1-A chemical container with excellent corrosion resistance, high temperature resistance and embrittlement properties during use, characterized by having a composition whose value calculated from MO is in the fully austenite region in the Daylong phase diagram〇The present invention will be described in detail below. explain.

まず、本発明化学容器内層のステンレス鋼クラツド部に
ついて、各化学成分範囲を前記のごとく定めた理由につ
いて記述する。
First, the reason why each chemical component range was determined as described above for the stainless steel cladding portion of the inner layer of the chemical container of the present invention will be described.

Mnはクラツド部素材製造に際し、熱問加工性を向上さ
せ、クラツド部の強度を増加させるばかりでなく、クラ
ツド部の接合溶接に際して溶接金属中のSと結合して溶
接時の熱間割れ感受性を低めるうえで3%以上含有する
と効果があるが、これを多量に含有することは応力腐食
割れ感受性を高め、かつクラツド部の材質を劣化させる
ため、また、クラツド部が常に完全オーステナイト組織
として安定するに必要な量としては8%で十分であるこ
とから、含有Mn量は3(f)〜8%とした。
When manufacturing the cladding material, Mn not only improves hot workability and increases the strength of the cladding, but also combines with S in the weld metal during welding of the cladding, reducing hot cracking susceptibility during welding. Containing 3% or more is effective in reducing the stress, but containing a large amount increases stress corrosion cracking susceptibility and deteriorates the material quality of the cladding, and the cladding always remains stable as a completely austenitic structure. Since 8% is sufficient as the amount necessary for this, the amount of Mn contained was set to 3(f) to 8%.

Nの添加は本発明の一つの重要な要件である。Nは水素
による脆化を防ぐための完全オーステナイト組織を安定
化する元素で、クラツド部素材製造時およびクラツド部
の溶接時に溶接金属の結晶粒を微細化して熱間割れ感受
性をも低下させ、また高温強度を高めるにも有効である
。一方、腐食環境下においてNは窒素化合物をつくり腐
食雰囲気の塩素度を上昇させるので、クラツド部の腐食
発生抵抗を増大させる。耐食へのN含有量の効果は0.
08%以上から現われ、0.4%の固溶限附近まで続く
。しかし、MnおよびNによる相安定化の完全オーステ
ナイト・ステンレス鋼それ自身では粒界腐食および応力
腐食割れに対して抵抗力が極端に小さく、これを改善す
るためには特に有効な元素としてBを添加しなけれはな
らない。
Addition of N is one important requirement of the present invention. N is an element that stabilizes the fully austenitic structure to prevent embrittlement due to hydrogen, and it refines the crystal grains of the weld metal during manufacturing of the cladding material and welding of the cladding, reducing hot cracking susceptibility. It is also effective in increasing high temperature strength. On the other hand, in a corrosive environment, N forms nitrogen compounds and increases the chlorine content of the corrosive atmosphere, thereby increasing the corrosion resistance of the cladding. The effect of N content on corrosion resistance is 0.
It appears from 0.08% or higher and continues until close to the solid solubility limit of 0.4%. However, fully austenitic stainless steel with phase stabilization by Mn and N has extremely low resistance to intergranular corrosion and stress corrosion cracking, and to improve this, B is added as a particularly effective element. I have to.

このBは0.002%以上の添加から粒界における炭化
物析出を抑制する効果が認められるが、0.08%超の
添加では低融点の硼素化合物を生成し、製造時に熱間割
れを生じるので好ましくない。このためBは0.002
(f)〜0.08(f)とした。Cは熱処理により粒界
にクロム炭化物を析出させCr欠乏による粒界腐食の原
因となるので0.15%以下とされている。Siは強力
な脱酸剤ではあるが靭性の低下などから1.0%以下で
なければならない。Niはオーステナイト系ステンレス
鋼の基本元素でありオーステナイトを安定化さすために
8.0%以上は必要である。
Addition of 0.002% or more of B has the effect of suppressing carbide precipitation at grain boundaries, but addition of more than 0.08% produces boron compounds with a low melting point, causing hot cracking during manufacturing. Undesirable. Therefore, B is 0.002
(f) to 0.08(f). C precipitates chromium carbide at grain boundaries during heat treatment and causes intergranular corrosion due to Cr deficiency, so the content is limited to 0.15% or less. Although Si is a strong deoxidizing agent, it must be contained in an amount of 1.0% or less because it reduces toughness. Ni is a basic element of austenitic stainless steel, and 8.0% or more is required to stabilize austenite.

Niの増加は靭性の向上のみならず耐応力腐食割れ性を
向上させるが高価なため28.0(f)以下で使用され
る。Crはステンレス鋼の基本成分であり、12(f)
から耐食性がでてきて耐孔食性などに優れた性質を示す
には18.0%以上が必要である。
Increasing Ni not only improves toughness but also stress corrosion cracking resistance, but it is expensive and is used at 28.0(f) or less. Cr is a basic component of stainless steel, and 12(f)
18.0% or more is required to exhibit corrosion resistance and exhibit excellent properties such as pitting corrosion resistance.

Crは多い程耐食性を向上させるがフエライト安定元素
であり、Crを増大させてかつ完全オーステナイト組織
にするにはオーステナイト安定元素であるNi,Mn,
Nなどを多量に添加する必要がある。このように添加元
素の高い合金は高価になるので通常のステンレス鋼の範
囲としては28.001)までで充分である。また、本
発明においては、前記ステンレス鋼部にさらにMO4.
OOl)以下、又はこれにさらにNbl.O%以下を含
むことができる。
The more Cr is, the better the corrosion resistance is, but it is a ferrite stable element.
It is necessary to add a large amount of N or the like. Since alloys with such high additive elements are expensive, up to 28.001) is sufficient for ordinary stainless steel. Further, in the present invention, the stainless steel portion further includes MO4.
OOl) or further Nbl. It can contain up to 0%.

MOは耐孔食性に優れた元素であり、高温強度を高める
のに役立つが4.0%超では65『C以上の熱処理で脆
化し衝撃値が低下する。
MO is an element with excellent pitting corrosion resistance and is useful for increasing high-temperature strength, but if it exceeds 4.0%, it becomes brittle and the impact value decreases when heat treated at 65'C or higher.

NbはCを固定し耐粒界腐食性を改善する元素である。Nb is an element that fixes C and improves intergranular corrosion resistance.

しかしCの重量%で8〜10倍以上でかつ1.001:
I超のNbの添加は溶接に際して熱間割れ感受性を高め
る。その他不可避的な不純物としてP,Sなどがあるが
、これらの成分はクラツド部材製造時の割れ感受性を高
めるため極めて少ないことが好ましい。
However, the weight percent of C is 8 to 10 times or more and 1.001:
Addition of more than I of Nb increases hot cracking susceptibility during welding. Other unavoidable impurities include P and S, but it is preferable that these components be extremely small in order to increase the susceptibility to cracking during manufacture of the cladding member.

また、不可避的に微量のAl,Ti,Cal或いはVな
どが含まれることがある。さらに、該ステンレス鋼部に
おいては、その化学成分がNieq+30C+0.5M
n+30N,CreqCr+1.5Si+0.5Nb+
MOから計算した値がデイロングの状態図において完全
オーステナイト域にあることを必須とする。
Further, trace amounts of Al, Ti, Cal, V, etc. may be unavoidably contained. Furthermore, the chemical composition of the stainless steel part is Nieq+30C+0.5M.
n+30N, CreqCr+1.5Si+0.5Nb+
It is essential that the value calculated from MO be in the complete austenite region in the Daylong phase diagram.

この式から得られた値が第1図に示すデイロングの状態
図において完全オーステナイト域にある場合、容器製造
時の熱処理によつて生じるσ相脆化を防ぎ、かつ、使用
時の高温高圧水および水素環境などによつて生じる水素
脆化を防ぐことになる。ここで第1図における完全オー
ステナイト域とは同図に示すように、M(マルテンサイ
ト)+A(オステナイト)の線よりNieqが高く、か
つフエライト量0(f)の線よりNieqが高い範囲が
これに該当するものである。
If the value obtained from this equation is in the fully austenite region in the Daylong phase diagram shown in Figure 1, it will prevent σ phase embrittlement caused by heat treatment during container manufacturing, and This prevents hydrogen embrittlement caused by hydrogen environments. Here, the completely austenite region in Figure 1 is the range where Nieq is higher than the M (martensite) + A (austenite) line and higher than the ferrite amount 0 (f) line, as shown in the same figure. This applies to

このような内層材からなる金属組織的に2層以上の多層
構造を有する化学容器の素材を得る方法としては炭素鋼
または低合金鋼と前述の化学成分範囲を満足するオース
テナイト・ステンレス鋼とを組合せて圧延または爆発圧
接などにより貼り合わせる方法および肉盛溶接による方
法がある。
A method of obtaining a material for a chemical container having a multilayer structure of two or more metallographic layers consisting of the inner layer material is to combine carbon steel or low alloy steel with austenitic stainless steel that satisfies the above-mentioned chemical composition range. There are two methods: pasting by rolling or explosive welding, and overlay welding.

また、肉盛溶接の方法としては被覆アータ溶接、潜弧溶
接、TIG溶接、MIG溶接、自己被包ガス溶接、エレ
クトロスラグ溶接およびガス溶接などの溶接法を用いる
ことができる。これらの各種溶接法によりクラツド鋼の
内層材を得る場合にはそれぞれの溶接方法での母材に対
する稀釈率(一般には5〜40(:f))組合せるフラ
ツクス剤またはガス組成にて変化する合金成分の歩留り
を考慮して電極材の成分を決定すべきである。
In addition, as a method of overlay welding, welding methods such as covered arter welding, submerged arc welding, TIG welding, MIG welding, self-encapsulating gas welding, electroslag welding, and gas welding can be used. When obtaining the inner layer material of clad steel by these various welding methods, the dilution ratio (generally 5 to 40 (:f)) to the base material of each welding method and the alloy that changes depending on the flux agent or gas composition to be combined are used. The components of the electrode material should be determined by considering the yield of the components.

また、肉盛溶接法にてクラツド部材を得る場合には稀釈
率の小さい溶接旋工法を採るべきであり、単層または多
層の肉盛部において各層の肉盛溶接金属が本発明の化学
成分範囲を満足することが好ましいが、表面層すなわち
最終層のみ満足する場合においても本発明の目的を十分
満足する。以下、本発明の効果を実施例により更に具体
的に説明する。外層材の低合金鋼については(A)SB
46鋼、(日A387−22鋼および(0A533B鋼
を使用し、ステンレス鋼の内層材としては第1表に示す
溶接金属が得られるよう0.4×75mm断面形状を有
する第2表に示す帯状電極と第3表に示す潜弧フラツク
スとを組合せて直流定電圧の溶接機にて逆極性で120
0A,25,18CTrL/―の溶接条件にて溶接を行
つた。
In addition, when obtaining a clad member by overlay welding, a weld turning method with a small dilution rate should be used, and in a single layer or multilayer overlay part, the overlay weld metal of each layer should be within the chemical composition range of the present invention. Although it is preferable that the above conditions are satisfied, the object of the present invention is sufficiently satisfied even when only the surface layer, that is, the final layer is satisfied. Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples. Regarding low alloy steel for the outer layer material, (A) SB
46 steel, (Japanese A387-22 steel and (0A533B steel) were used, and the inner layer material of the stainless steel was a belt-like material having a cross-sectional shape of 0.4 x 75 mm shown in Table 2 to obtain the weld metal shown in Table 1. Combine the electrode and the latent arc flux shown in Table 3 and use a DC constant voltage welding machine with reverse polarity to 120
Welding was performed under welding conditions of 0A, 25, 18CTrL/-.

なお、参考までに第1表に示された溶接金属について各
試験滝のもののNieqとCreqとをそれぞれ計算し
、それらの関係を第1図に表示すると同図中の各点のよ
うになり、本発明例のものはすべて完全オーステナイト
域にあることがわかる。
For reference, the Nieq and Creq of each test waterfall are calculated for the weld metals shown in Table 1, and the relationship between them is shown in Figure 1, as indicated by each point in the figure. It can be seen that all the examples of the present invention are in the completely austenite range.

このステンレス鋼クラツド部について溶接のままの状態
でバイストレイン割れ試験を行い、また690℃で22
時間の溶接後熱処理の後、ストラウス粒界腐食試験、ポ
リチオン酸による応力腐食試験、501)H2SO4+
3%NaCl中での分極測定による孔食電位測定を行つ
た。
A bistrain cracking test was conducted on this stainless steel clad part in the welded state, and
After hours of post-weld heat treatment, Strauss intergranular corrosion test, stress corrosion test with polythionic acid, 501) H2SO4+
Pitting potential was measured by polarization measurement in 3% NaCl.

この試験結果を第4表に示す。更に溶接後熱処理後のス
テンレス鋼クラツド部について400℃,100kg/
Crit水素分圧の雰囲気中にて7200時間の暴露試
験を行つた後、側曲げ試験、引張試験および衝撃試験な
どの機械試験を行い第5表に示す結果を得た。以上のご
とく、内層材が本発明による化学組成を有する化学容器
であれば優れた耐食、耐高温使用中脆化特性を有するも
のとなる。
The test results are shown in Table 4. Furthermore, for the stainless steel cladding part after post-weld heat treatment, 400℃, 100kg/
After conducting an exposure test for 7200 hours in an atmosphere with a Crit hydrogen partial pressure, mechanical tests such as a side bending test, a tensile test, and an impact test were performed, and the results shown in Table 5 were obtained. As described above, if the inner layer material has a chemical composition according to the present invention, the chemical container will have excellent corrosion resistance and high temperature resistance to embrittlement during use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はデイロングの状態図である。 FIG. 1 is a state diagram of the daylong.

Claims (1)

【特許請求の範囲】 1 炭素鋼または低合金鋼を外層材とし、オーステナイ
トステンレス鋼を内層材とする金属組織的に2層以上の
多層構造を有する化学容器において、該ステンレス鋼部
の化学成分が重量%でMnが3〜8%、Nが0.08〜
0.4%、Bが0.002〜0.08%であり、さらに
Cが0.15%以下、Siが1.0%以下、Niが8.
0〜28.0%、Crが18.0〜28.0%、残部は
鉄および不可避不純物からなり、かつ、その化学成分の
Nieq=Ni+30C+0.5Mn+30NCreq
=Cr+1.5Si+0.5Nb+Moから計算した値
がデイロングの状態図において完全オーステナイト域に
ある組成を有することを特徴とする耐食・耐高温使用中
脆化特性に優れた化学容器。 2 炭素鋼または低合金鋼を外層材とし、オーステナイ
トステンレス鋼を内層材とする金属組織的に2層以上の
多層構造を有する化学容器において、該ステンレス鋼部
の化学成分が重量%でMnが3〜8%、Nが0.08〜
0.4%、Bが0.002〜0.08%であり、さらに
Cが0.15%以下、Siが1.0以下、Niが8.0
〜28.0%、Crが18.0〜28.0%、Moが4
.0%以下、残部は鉄および不可避不純物からなり、か
つ、その化学成分のNieq=Ni+30C+0.5M
n+30NCreq=Cr+1.5Si+0.5Nb+
Moから計算した値がデイロングの状態図において完全
オーステナイト域にある組成を有することを特徴とする
耐食・耐高温使用中脆化特性に優れた化学容器。 3 炭素鋼または低合金鋼を外層材とし、オーステナイ
トステンレス鋼を内層材とする金属組織的に2層以上の
多層構造を有する化学容器において、該ステンレス鋼部
の化学成分が重量%でMnが3〜8%、Nが0.08〜
0.4%、Bが0.002〜0.08%であり、さらに
Cが0.15%以下、Siが1.0%以下、Niが8.
0〜28.0%、Crが18.0〜28.0%、Moが
4.0%以下、Nbが1.0%以下、残部は鉄および不
可避不純物からなり、かつ、その化学成分のNieq=
Ni+30C+0.5Mn+30NCreq=Cr+1
.5Si+0.5Nb+Moから計算した値がデイロン
グの状態図において完全オーステナイト域にある組成を
有することを特徴とする耐食・耐高温使用中脆化特性に
優れた化学容器。
[Claims] 1. A chemical container having a metallographically multilayered structure of two or more layers, with an outer layer made of carbon steel or low alloy steel and an inner layer made of austenitic stainless steel, in which the chemical composition of the stainless steel part is Mn is 3-8% and N is 0.08-8% by weight.
0.4%, B is 0.002 to 0.08%, C is 0.15% or less, Si is 1.0% or less, and Ni is 8.0%.
0 to 28.0%, Cr 18.0 to 28.0%, the remainder consisting of iron and unavoidable impurities, and its chemical components Nieq = Ni + 30C + 0.5Mn + 30NCreq
A chemical container having excellent corrosion resistance and high temperature resistance to embrittlement during use, characterized in that the value calculated from =Cr+1.5Si+0.5Nb+Mo has a composition in the fully austenite region in the Daylong phase diagram. 2. In a chemical container having a metallographically multilayered structure of two or more layers, in which carbon steel or low alloy steel is used as the outer layer material and austenitic stainless steel is used as the inner layer material, the chemical composition of the stainless steel part is Mn in weight %. ~8%, N is 0.08~
0.4%, B is 0.002 to 0.08%, further C is 0.15% or less, Si is 1.0 or less, and Ni is 8.0%.
~28.0%, Cr 18.0~28.0%, Mo 4
.. 0% or less, the remainder consists of iron and unavoidable impurities, and its chemical components Nieq = Ni + 30C + 0.5M
n+30NCreq=Cr+1.5Si+0.5Nb+
A chemical container having excellent corrosion resistance and resistance to embrittlement during high temperature use, characterized by having a composition whose value calculated from Mo is in the fully austenite region in the Daylong phase diagram. 3. In a chemical container having a metallographically multilayered structure of two or more layers, in which carbon steel or low alloy steel is used as the outer layer material and austenitic stainless steel is used as the inner layer material, the chemical composition of the stainless steel part is 3% by weight, and Mn is 3% by weight. ~8%, N is 0.08~
0.4%, B is 0.002 to 0.08%, C is 0.15% or less, Si is 1.0% or less, and Ni is 8.0%.
0 to 28.0%, Cr 18.0 to 28.0%, Mo 4.0% or less, Nb 1.0% or less, the balance consisting of iron and inevitable impurities, and its chemical components Nieq =
Ni+30C+0.5Mn+30NCreq=Cr+1
.. A chemical container having excellent corrosion resistance and high temperature resistance to embrittlement during use, characterized in that the value calculated from 5Si+0.5Nb+Mo is in the fully austenite region in the Daylong phase diagram.
JP55002906A 1980-01-14 1980-01-14 Chemical containers with excellent corrosion resistance and high temperature resistance against embrittlement during use Expired JPS592740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55002906A JPS592740B2 (en) 1980-01-14 1980-01-14 Chemical containers with excellent corrosion resistance and high temperature resistance against embrittlement during use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55002906A JPS592740B2 (en) 1980-01-14 1980-01-14 Chemical containers with excellent corrosion resistance and high temperature resistance against embrittlement during use

Publications (2)

Publication Number Publication Date
JPS56102561A JPS56102561A (en) 1981-08-17
JPS592740B2 true JPS592740B2 (en) 1984-01-20

Family

ID=11542394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55002906A Expired JPS592740B2 (en) 1980-01-14 1980-01-14 Chemical containers with excellent corrosion resistance and high temperature resistance against embrittlement during use

Country Status (1)

Country Link
JP (1) JPS592740B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026632B2 (en) * 1982-04-22 1985-06-25 川崎製鉄株式会社 Overlay welding method using austenitic stainless steel
JPS60239783A (en) * 1984-05-15 1985-11-28 Fuji Xerox Co Ltd Magnetic developing method of electronic copying machine
DE3614290A1 (en) * 1986-04-26 1987-10-29 Messer Griesheim Gmbh COMPRESSED GAS TANKS FROM AN AUSTENITIC STEEL ALLOY
JP3867142B2 (en) * 2003-06-18 2007-01-10 独立行政法人産業技術総合研究所 Method for judging austenitic stainless steel
JP5527228B2 (en) * 2011-01-20 2014-06-18 Jfeスチール株式会社 Stainless steel clad steel with excellent chemical resistance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
METAL PROGRESS=1960 *
WELDING RESERCH=1977 *

Also Published As

Publication number Publication date
JPS56102561A (en) 1981-08-17

Similar Documents

Publication Publication Date Title
EP0864663B1 (en) High-strength welded steel structures having excellent corrosion resistance
Altstetter et al. Processing and properties of Fe Mn Al alloys
KR20150055112A (en) Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure
WO1998010888A1 (en) Welding material for stainless steels
Campbell Ferritic stainless steel welding metallurgy
JPH10280085A (en) Welding material for low cr ferritic steel, excellent in toughness
KR20210069097A (en) Welded structure and its manufacturing method
US4832765A (en) Duplex alloy
JP4699164B2 (en) Non-consumable electrode welding wire for austenitic stainless steel welding with excellent low temperature toughness and seawater corrosion resistance
JPS592740B2 (en) Chemical containers with excellent corrosion resistance and high temperature resistance against embrittlement during use
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JPS6130007B2 (en)
US4653684A (en) Welding material for austenite stainless steel having high Si content and method of application
JPH03204196A (en) Wire for welding two-phase stainless steel having excellent concentrated sulfuric acid corrosion resistance
JP3854554B2 (en) Submerged arc welding method for austenitic stainless steel with excellent resistance to sulfuric acid corrosion and pitting corrosion
JP4465066B2 (en) Welding materials for ferrite and austenitic duplex stainless steels
JPH03294084A (en) Welding wire for high-hardness build-up welding
JP3531351B2 (en) Welded structure and method of manufacturing the same
JP3141646B2 (en) Austenitic stainless steel for nitric acid containing environment
JP2018135601A (en) Two-phase stainless steel and two-phase stainless steel pipe prepared therewith
JP7011987B2 (en) Ni-based weld metal and welded structure
JPS5852460A (en) High strength chromium steel with superior weathering resistance and weldability
RU2768949C1 (en) Welding wire with high nitrogen content
JP2002155341A (en) Corrosion resistant steel having excellent carbon dioxide gas corrosion resistance and weld zone toughness, and corrosion resistant line pipe using the steel
JPS62297440A (en) Austenitic stainless steel having superior pitting corrosion resistance